-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcost_aggregation.h
380 lines (335 loc) · 27 KB
/
cost_aggregation.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#ifndef COST_AGGREGATION_H_
#define COST_AGGREGATION_H_
#define ITER_COPY 0
#define ITER_NORMAL 1
#define MIN_COMPUTE 0
#define MIN_NOCOMPUTE 1
#define DIR_UPDOWN 0
#define DIR_DOWNUP 1
#define DIR_LEFTRIGHT 2
#define DIR_RIGHTLEFT 3
template<int add_col, bool recompute, bool join_dispcomputation>
__device__ __forceinline__ void CostAggregationGenericIndexesIncrement(int *index, int *index_im, int *col, const int add_index, const int add_imindex,int *p1_index,int *p2_index,const int add_pindex) {
*index += add_index;
*p1_index += add_pindex;
*p2_index += add_pindex;
if (recompute || join_dispcomputation) {
*index_im += add_imindex;
if (recompute) {
*col += add_col;
}
}
}
template<class T, int iter_type, int min_type, int dir_type, bool first_iteration, bool recompute, bool join_dispcomputation>
__device__ __forceinline__ void CostAggregationGenericIteration(int index, int index_im, int col, uint32_t *old_values, int *old_value1, int *old_value2, int *old_value3, int *old_value4, uint32_t *min_cost, uint32_t *min_cost_p2, uint8_t* d_cost, uint8_t *d_L, const T *_d_transform0, const T *_d_transform1, const int lane, const int dis, T *rp0, T *rp1, T *rp2, T *rp3, uint8_t* __restrict__ d_disparity, const uint8_t* d_L0, const uint8_t* d_L1, const uint8_t* d_L2, const uint8_t* d_L3,const uint8_t* p_mem, int p1_index, int p2_index) {
const T __restrict__ *d_transform0 = _d_transform0;
const T __restrict__ *d_transform1 = _d_transform1;
uint32_t costs, next_dis, prev_dis;
uint8_t P1 = p_mem[p1_index];//##
uint8_t P2 = p_mem[p2_index];//##
uint32_t p1_vector = uchars_to_uint32(P1, P1, P1, P1);//###
uint32_t p2_vector = uchars_to_uint32(P2, P2, P2, P2);//###
int MAX_PAD = UCHAR_MAX - P1;//....###
if(iter_type == ITER_NORMAL) {
// First shuffle
int prev_dis1 = shfl_up_32(*old_value4, 1);
if(lane == 0) {
prev_dis1 = MAX_PAD;
}
// Second shuffle
int next_dis4 = shfl_down_32(*old_value1, 1);
if(lane == 31) {
next_dis4 = MAX_PAD;
}
// Shift + rotate
//next_dis = __funnelshift_r(next_dis4, *old_values, 8);
next_dis = __byte_perm(*old_values, next_dis4, 0x4321);
prev_dis = __byte_perm(*old_values, prev_dis1, 0x2104);
next_dis = next_dis + p1_vector;
prev_dis = prev_dis + p1_vector;
}
if(recompute) {
const int dif = col - dis;
if(dir_type == DIR_LEFTRIGHT) {
if(lane == 0) {
// lane = 0 is dis = 0, no need to subtract dis
*rp0 = d_transform1[index_im];
}
} else if(dir_type == DIR_RIGHTLEFT) {
// First iteration, load D pixels
if(first_iteration) {
const uint4 right = reinterpret_cast<const uint4*>(&d_transform1[index_im-dis-3])[0];
*rp3 = right.x;
*rp2 = right.y;
*rp1 = right.z;
*rp0 = right.w;
} else if(lane == 31 && dif >= 3) {
*rp3 = d_transform1[index_im-dis-3];
}
} else {
/*
__shared__ T right_p[MAX_DISPARITY+32];
const int warp_id = threadIdx.x / WARP_SIZE;
if(warp_id < 5) {
const int block_imindex = index_im - warp_id + 32;
const int rp_index = warp_id*WARP_SIZE+lane;
const int col_cpy = col-warp_id+32;
right_p[rp_index] = ((col_cpy-(159-rp_index)) >= 0) ? ld_gbl_cs(&d_transform1[block_imindex-(159-rp_index)]) : 0;
}*/
__shared__ T right_p[128+32];
const int warp_id = threadIdx.x / WARP_SIZE;
const int block_imindex = index_im - warp_id + 2;
const int rp_index = warp_id*WARP_SIZE+lane;
const int col_cpy = col-warp_id+2;
right_p[rp_index] = ((col_cpy-(129-rp_index)) >= 0) ? d_transform1[block_imindex-(129-rp_index)] : 0;
right_p[rp_index+64] = ((col_cpy-(129-rp_index-64)) >= 0) ? d_transform1[block_imindex-(129-rp_index-64)] : 0;
//right_p[rp_index+128] = ld_gbl_cs(&d_transform1[block_imindex-(129-rp_index-128)]);
if(warp_id == 0) {
right_p[128+lane] = ld_gbl_cs(&d_transform1[block_imindex-(129-lane)]);
}
__syncthreads();
const int px = MAX_DISPARITY+warp_id-dis-1;
*rp0 = right_p[px];
*rp1 = right_p[px-1];
*rp2 = right_p[px-2];
*rp3 = right_p[px-3];
}
const T left_pixel = d_transform0[index_im];
*old_value1 = popcount(left_pixel ^ *rp0);
*old_value2 = popcount(left_pixel ^ *rp1);
*old_value3 = popcount(left_pixel ^ *rp2);
*old_value4 = popcount(left_pixel ^ *rp3);
if(iter_type == ITER_COPY) {
*old_values = uchars_to_uint32(*old_value1, *old_value2, *old_value3, *old_value4);
} else {
costs = uchars_to_uint32(*old_value1, *old_value2, *old_value3, *old_value4);
}
// Prepare for next iteration
if(dir_type == DIR_LEFTRIGHT) {
*rp3 = shfl_up_32(*rp3, 1);
} else if(dir_type == DIR_RIGHTLEFT) {
*rp0 = shfl_down_32(*rp0, 1);
}
} else {
if(iter_type == ITER_COPY) {
*old_values = ld_gbl_ca(reinterpret_cast<const uint32_t*>(&d_cost[index]));
} else {
costs = ld_gbl_ca(reinterpret_cast<const uint32_t*>(&d_cost[index]));
}
}
if(iter_type == ITER_NORMAL) {
const uint32_t min1 = __vminu4(*old_values, prev_dis);
const uint32_t min2 = __vminu4(next_dis, *min_cost_p2);
const uint32_t min_prev = __vminu4(min1, min2);
*old_values = costs + (min_prev - *min_cost);
}
if(iter_type == ITER_NORMAL || !recompute) {
uint32_to_uchars(*old_values, old_value1, old_value2, old_value3, old_value4);
}
if(join_dispcomputation) {
const uint32_t L0_costs = *((uint32_t*) (d_L0+index));
const uint32_t L1_costs = *((uint32_t*) (d_L1+index));
const uint32_t L2_costs = *((uint32_t*) (d_L2+index));
int l0_x, l0_y, l0_z, l0_w;
int l1_x, l1_y, l1_z, l1_w;
int l2_x, l2_y, l2_z, l2_w;
uint32_to_uchars(L0_costs, &l0_x, &l0_y, &l0_z, &l0_w);
uint32_to_uchars(L1_costs, &l1_x, &l1_y, &l1_z, &l1_w);
uint32_to_uchars(L2_costs, &l2_x, &l2_y, &l2_z, &l2_w);
const uint16_t val1 = l0_x + l1_x + l2_x + *old_value1;
const uint16_t val2 = l0_y + l1_y + l2_y + *old_value2;
const uint16_t val3 = l0_z + l1_z + l2_z + *old_value3;
const uint16_t val4 = l0_w + l1_w + l2_w + *old_value4;
int min_idx1 = dis;
uint16_t min1 = val1;
if(val1 > val2) {
min1 = val2;
min_idx1 = dis+1;
}
int min_idx2 = dis+2;
uint16_t min2 = val3;
if(val3 > val4) {
min2 = val4;
min_idx2 = dis+3;
}
uint16_t minval = min1;
int min_idx = min_idx1;
if(min1 > min2) {
minval = min2;
min_idx = min_idx2;
}
const int min_warpindex = warpReduceMinIndex(minval, min_idx);
if(lane == 0) {
d_disparity[index_im] = min_warpindex;
}
} else {
st_gbl_cs(reinterpret_cast<uint32_t*>(&d_L[index]), *old_values);
}
if(min_type == MIN_COMPUTE) {
int min_cost_scalar = min(min(*old_value1, *old_value2), min(*old_value3, *old_value4));
*min_cost = uchar_to_uint32(warpReduceMin(min_cost_scalar));
*min_cost_p2 = *min_cost + p2_vector;
}
}
template<class T, int add_col, int dir_type, bool recompute, bool join_dispcomputation>
__device__ __forceinline__ void CostAggregationGeneric(uint8_t* d_cost, uint8_t *d_L, const int initial_row, const int initial_col, const int max_iter, const int cols, int add_index, const T *_d_transform0, const T *_d_transform1, const int add_imindex, uint8_t* __restrict__ d_disparity, const uint8_t* d_L0, const uint8_t* d_L1, const uint8_t* d_L2, const uint8_t* d_L3 ,const uint8_t* p_mem, int add_pindex,int p1_dis,int p2_dis) {
const int lane = threadIdx.x % WARP_SIZE;
const int dis = 4*lane;
int index = initial_row*cols*MAX_DISPARITY+initial_col*MAX_DISPARITY+dis;
int p1_index = initial_row*cols * 8 + initial_col * 8 + p1_dis;//###
int p2_index = initial_row*cols * 8 + initial_col * 8 + p2_dis;//###
int col, index_im;
if(recompute || join_dispcomputation) {
if(recompute) {
col = initial_col;
}
index_im = initial_row*cols+initial_col;
}
int old_value1;
int old_value2;
int old_value3;
int old_value4;
uint32_t min_cost, min_cost_p2, old_values;
T rp0, rp1, rp2, rp3;
if(recompute) {
if(dir_type == DIR_LEFTRIGHT) {
CostAggregationGenericIteration<T, ITER_COPY, MIN_COMPUTE, dir_type, true, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L,_d_transform0, _d_transform1, lane, dis, &rp3, &rp0, &rp1, &rp2, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp1, &rp2, &rp3, &rp0, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
for(int i = 4; i < max_iter-3; i+=4) {
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp3, &rp0, &rp1, &rp2, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp1, &rp2, &rp3, &rp0, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
}
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp3, &rp0, &rp1, &rp2, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_NOCOMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp1, &rp2, &rp3, &rp0, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
} else if(dir_type == DIR_RIGHTLEFT) {
CostAggregationGenericIteration<T, ITER_COPY, MIN_COMPUTE, dir_type, true, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp1, &rp2, &rp3, &rp0, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp3, &rp0, &rp1, &rp2, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
for(int i = 4; i < max_iter-3; i+=4) {
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp3, &rp0, &rp1, &rp2, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
}
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp1, &rp2, &rp3, &rp0, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp2, &rp3, &rp0, &rp1, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_NOCOMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp3, &rp0, &rp1, &rp2, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
} else {
CostAggregationGenericIteration<T, ITER_COPY, MIN_COMPUTE, dir_type, true, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
for(int i = 1; i < max_iter; i++) {
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
}
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_NOCOMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
}
} else {
CostAggregationGenericIteration<T, ITER_COPY, MIN_COMPUTE, dir_type, true, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
for(int i = 1; i < max_iter; i++) {
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_COMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
}
CostAggregationGenericIndexesIncrement<add_col, recompute, join_dispcomputation>(&index, &index_im, &col, add_index, add_imindex,&p1_index,&p2_index,add_pindex);
CostAggregationGenericIteration<T, ITER_NORMAL, MIN_NOCOMPUTE, dir_type, false, recompute, join_dispcomputation>(index, index_im, col, &old_values, &old_value1, &old_value2, &old_value3, &old_value4, &min_cost, &min_cost_p2, d_cost, d_L, _d_transform0, _d_transform1, lane, dis, &rp0, &rp1, &rp2, &rp3, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, p1_index, p2_index);
}
}
template<class T>
__global__ void CostAggregationKernelLeftToRight(uint8_t* d_cost, uint8_t *d_L, const int rows, const int cols, const T *d_transform0, const T *d_transform1, uint8_t* __restrict__ d_disparity, const uint8_t* d_L0, const uint8_t* d_L1, const uint8_t* d_L2, const uint8_t* d_L3,const uint8_t* p_mem) {
const int initial_row = blockIdx.x*(blockDim.x/WARP_SIZE) + (threadIdx.x / WARP_SIZE);
if(initial_row < rows) {
const int initial_col = 0;
const int add_index = MAX_DISPARITY;
const int add_imindex = 1;
const int max_iter = cols-1;
const int add_col = 1;
const bool recompute = true;
const bool join_dispcomputation = false;
const int add_pindex = 8;//##
const int p1_dis =2 ;//##
const int p2_dis =3 ;//##
CostAggregationGeneric<T, add_col, DIR_LEFTRIGHT, recompute, join_dispcomputation>(d_cost, d_L, initial_row, initial_col, max_iter, cols, add_index, d_transform0, d_transform1, add_imindex, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, add_pindex, p1_dis,p2_dis);
}
}
template<class T>
__global__ void CostAggregationKernelRightToLeft(uint8_t* d_cost, uint8_t *d_L, const int rows, const int cols, const T *d_transform0, const T *d_transform1, uint8_t* __restrict__ d_disparity, const uint8_t* d_L0, const uint8_t* d_L1, const uint8_t* d_L2, const uint8_t* d_L3,const uint8_t* p_mem) {
const int initial_row = blockIdx.x*(blockDim.x/WARP_SIZE) + (threadIdx.x / WARP_SIZE);
if(initial_row < rows) {
const int initial_col = cols-1;
const int add_index = -MAX_DISPARITY;
const int add_imindex = -1;
const int max_iter = cols-1;
const int add_col = -1;
const bool recompute = true;
const bool join_dispcomputation = false;
const int add_pindex = -8;//##
const int p1_dis = 6;//##
const int p2_dis = 7;//##
CostAggregationGeneric<T, add_col, DIR_RIGHTLEFT, recompute, join_dispcomputation>(d_cost, d_L, initial_row, initial_col, max_iter, cols, add_index, d_transform0, d_transform1, add_imindex, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, add_pindex, p1_dis,p2_dis);
}
}
template<class T>
__global__ void CostAggregationKernelDownToUp(uint8_t* d_cost, uint8_t *d_L, const int rows, const int cols, const T *d_transform0, const T *d_transform1, uint8_t* __restrict__ d_disparity, const uint8_t* d_L0, const uint8_t* d_L1, const uint8_t* d_L2, const uint8_t* d_L3,const uint8_t* p_mem) {
const int initial_col = blockIdx.x*(blockDim.x/WARP_SIZE) + (threadIdx.x / WARP_SIZE);
if(initial_col < cols) {
const int initial_row = rows-1;
const int add_index = -cols*MAX_DISPARITY;
const int add_imindex = -cols;
const int max_iter = rows-1;
const int add_col = 0;
const bool recompute = false;
const bool join_dispcomputation = PATH_AGGREGATION == 4;
const int add_pindex = -cols*8;//##
const int p1_dis = 0;//##
const int p2_dis = 1;//##
CostAggregationGeneric<T, add_col, DIR_DOWNUP, recompute, join_dispcomputation>(d_cost, d_L, initial_row, initial_col, max_iter, cols, add_index, d_transform0, d_transform1, add_imindex, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, add_pindex, p1_dis,p2_dis);
}
}
template<class T>
//__launch_bounds__(64, 16)
__global__ void CostAggregationKernelUpToDown(uint8_t* d_cost, uint8_t *d_L, const int rows, const int cols, const T *d_transform0, const T *d_transform1, uint8_t* __restrict__ d_disparity, const uint8_t* d_L0, const uint8_t* d_L1, const uint8_t* d_L2, const uint8_t* d_L3,const uint8_t* p_mem) {
const int initial_col = blockIdx.x*(blockDim.x/WARP_SIZE) + (threadIdx.x / WARP_SIZE);
if(initial_col < cols) {
const int initial_row = 0;
const int add_index = cols*MAX_DISPARITY;
const int add_imindex = cols;
const int max_iter = rows-1;
const int add_col = 0;
const bool recompute = false;
const bool join_dispcomputation = false;
const int add_pindex = cols*8;//##
const int p1_dis = 4;//##
const int p2_dis = 5;//##
CostAggregationGeneric<T, add_col, DIR_UPDOWN, recompute, join_dispcomputation>(d_cost, d_L, initial_row, initial_col, max_iter, cols, add_index, d_transform0, d_transform1, add_imindex, d_disparity, d_L0, d_L1, d_L2, d_L3, p_mem, add_pindex, p1_dis,p2_dis);
}
}
#endif /* COST_AGGREGATION_H_ */