You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm trying to use AutoTabPFNRegressor to train a tabular model. I keep getting the below error. I can't seem to fix it. For context, I have no problem using TabPFNRegressor for the same dataset.
My apologies if this is user error, but I am at a bit of a dead end.
Thank you
2025-02-05 20:44:50 INFO Using default preset for Post Hoc Ensemble.
2025-02-05 20:44:50 INFO Using categorical_feature_indices: [2]
2025-02-05 20:44:50 INFO Using task type: regression
2025-02-05 20:44:50 INFO Obtaining TabPFN models from a random portfolio.
2025-02-05 20:44:52 INFO Using 100 base models: ['default_tabpfn_model_0', 'random_tabpfn_model_1', 'random_rf_pfn_model_2', 'random_tabpfn_model_3', 'random_rf_pfn_model_4', 'random_rf_pfn_model_5', 'random_rf_pfn_model_6', 'random_rf_pfn_model_7', 'random_tabpfn_model_8', 'random_tabpfn_model_9', 'random_rf_pfn_model_10', 'random_rf_pfn_model_11', 'random_tabpfn_model_12', 'random_rf_pfn_model_13', 'random_tabpfn_model_14', 'random_tabpfn_model_15', 'random_rf_pfn_model_16', 'random_tabpfn_model_17', 'random_tabpfn_model_18', 'random_rf_pfn_model_19', 'random_rf_pfn_model_20', 'random_rf_pfn_model_21', 'random_tabpfn_model_22', 'random_rf_pfn_model_23', 'random_tabpfn_model_24', 'random_tabpfn_model_25', 'random_rf_pfn_model_26', 'random_tabpfn_model_27', 'random_tabpfn_model_28', 'random_rf_pfn_model_29', 'random_tabpfn_model_30', 'random_rf_pfn_model_31', 'random_tabpfn_model_32', 'random_tabpfn_model_33', 'random_rf_pfn_model_34', 'random_tabpfn_model_35', 'random_rf_pfn_model_36', 'random_rf_pfn_model_37', 'random_tabpfn_model_38', 'random_rf_pfn_model_39', 'random_tabpfn_model_40', 'random_tabpfn_model_41', 'random_tabpfn_model_42', 'random_rf_pfn_model_43', 'random_tabpfn_model_44', 'random_tabpfn_model_45', 'random_rf_pfn_model_46', 'random_tabpfn_model_47', 'random_rf_pfn_model_48', 'random_tabpfn_model_49', 'random_tabpfn_model_50', 'random_tabpfn_model_51', 'random_tabpfn_model_52', 'random_rf_pfn_model_53', 'random_tabpfn_model_54', 'random_tabpfn_model_55', 'random_rf_pfn_model_56', 'random_rf_pfn_model_57', 'random_rf_pfn_model_58', 'random_tabpfn_model_59', 'random_rf_pfn_model_60', 'random_tabpfn_model_61', 'random_rf_pfn_model_62', 'random_rf_pfn_model_63', 'random_tabpfn_model_64', 'random_rf_pfn_model_65', 'random_rf_pfn_model_66', 'random_rf_pfn_model_67', 'random_tabpfn_model_68', 'random_tabpfn_model_69', 'random_tabpfn_model_70', 'random_rf_pfn_model_71', 'random_tabpfn_model_72', 'random_rf_pfn_model_73', 'random_rf_pfn_model_74', 'random_rf_pfn_model_75', 'random_rf_pfn_model_76', 'random_rf_pfn_model_77', 'random_rf_pfn_model_78', 'random_tabpfn_model_79', 'random_rf_pfn_model_80', 'random_tabpfn_model_81', 'random_tabpfn_model_82', 'random_tabpfn_model_83', 'random_tabpfn_model_84', 'random_tabpfn_model_85', 'random_tabpfn_model_86', 'random_rf_pfn_model_87', 'random_rf_pfn_model_88', 'random_tabpfn_model_89', 'random_tabpfn_model_90', 'random_rf_pfn_model_91', 'random_rf_pfn_model_92', 'random_rf_pfn_model_93', 'random_tabpfn_model_94', 'random_tabpfn_model_95', 'random_tabpfn_model_96', 'random_tabpfn_model_97', 'random_rf_pfn_model_98', 'random_rf_pfn_model_99']
2025-02-05 20:44:52 INFO Starting 80-repeated holdout validation with holdout_frac=0.33.
2025-02-05 20:44:52 INFO Set time limit to 2500 seconds. We will early stop validation if needed.
2025-02-05 20:44:52 INFO Yield data for model default_tabpfn_model_0 and split 0 (repeat=1).
2025-02-05 20:45:43 INFO Yield data for model random_tabpfn_model_1 and split 0 (repeat=1).
2025-02-05 20:46:00 INFO Yield data for model random_rf_pfn_model_2 and split 0 (repeat=1).
2025-02-05 20:46:00 INFO Using default preset for Post Hoc Ensemble.
2025-02-05 20:46:00 INFO Using categorical_feature_indices: [2]
2025-02-05 20:46:00 INFO Using task type: regression
2025-02-05 20:46:00 INFO Obtaining TabPFN models from a random portfolio.
An error occurred: Buffer dtype mismatch, expected 'const float32_t' but got 'double'
Full traceback:
Traceback (most recent call last):
File "C:\Users\User\AppData\Local\Temp\ipykernel_6384\507384520.py", line 75, in run_tabpfn_tuned
model.fit(X_train_np, y_train_np)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\sklearn_interface.py", line 222, in fit
self.predictor_.fit(
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\pfn_phe.py", line 333, in fit
self._ens_model.fit(X, y)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\greedy_weighted_ensemble.py", line 234, in fit
weights = self.get_weights(X, y)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\greedy_weighted_ensemble.py", line 173, in get_weights
oof_proba = self.get_oof_per_estimator(X, y)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\abstract_validation_utils.py", line 372, in get_oof_per_estimator
self._fill_predictions_in_place(
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\abstract_validation_utils.py", line 127, in _fill_predictions_in_place
base_model.fit(fold_X_train, fold_y_train)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\rf_pfn\SklearnBasedRandomForestTabPFN.py", line 98, in fit
super().fit(X, y)
File "C:\Users\User\anaconda3\envs\ml_testing\lib\site-packages\sklearn\base.py", line 1351, in wrapper
return fit_method(estimator, *args, **kwargs)
File "C:\Users\User\anaconda3\envs\ml_testing\lib\site-packages\sklearn\ensemble_forest.py", line 377, in fit
estimator._compute_missing_values_in_feature_mask(
File "C:\Users\User\anaconda3\envs\ml_testing\lib\site-packages\sklearn\tree_classes.py", line 228, in _compute_missing_values_in_feature_mask
missing_values_in_feature_mask = _any_isnan_axis0(X)
File "sklearn\tree\_utils.pyx", line 450, in sklearn.tree._utils._any_isnan_axis0
ValueError: Buffer dtype mismatch, expected 'const float32_t' but got 'double'
Steps/Code to Reproduce
No response
Expected Results
No response
Actual Results
No response
Versions
The text was updated successfully, but these errors were encountered:
Hey @Mccti078, thanks a lot! This should actually be fixed by PriorLabs/tabpfn-community#23, could you upgrade your tabpfn-extension package and try again?
Describe the bug
Hi Tabpfn,
I'm trying to use AutoTabPFNRegressor to train a tabular model. I keep getting the below error. I can't seem to fix it. For context, I have no problem using TabPFNRegressor for the same dataset.
My apologies if this is user error, but I am at a bit of a dead end.
Thank you
2025-02-05 20:44:50 INFO Using
default
preset for Post Hoc Ensemble.2025-02-05 20:44:50 INFO Using categorical_feature_indices: [2]
2025-02-05 20:44:50 INFO Using task type: regression
2025-02-05 20:44:50 INFO Obtaining TabPFN models from a random portfolio.
2025-02-05 20:44:52 INFO Using 100 base models: ['default_tabpfn_model_0', 'random_tabpfn_model_1', 'random_rf_pfn_model_2', 'random_tabpfn_model_3', 'random_rf_pfn_model_4', 'random_rf_pfn_model_5', 'random_rf_pfn_model_6', 'random_rf_pfn_model_7', 'random_tabpfn_model_8', 'random_tabpfn_model_9', 'random_rf_pfn_model_10', 'random_rf_pfn_model_11', 'random_tabpfn_model_12', 'random_rf_pfn_model_13', 'random_tabpfn_model_14', 'random_tabpfn_model_15', 'random_rf_pfn_model_16', 'random_tabpfn_model_17', 'random_tabpfn_model_18', 'random_rf_pfn_model_19', 'random_rf_pfn_model_20', 'random_rf_pfn_model_21', 'random_tabpfn_model_22', 'random_rf_pfn_model_23', 'random_tabpfn_model_24', 'random_tabpfn_model_25', 'random_rf_pfn_model_26', 'random_tabpfn_model_27', 'random_tabpfn_model_28', 'random_rf_pfn_model_29', 'random_tabpfn_model_30', 'random_rf_pfn_model_31', 'random_tabpfn_model_32', 'random_tabpfn_model_33', 'random_rf_pfn_model_34', 'random_tabpfn_model_35', 'random_rf_pfn_model_36', 'random_rf_pfn_model_37', 'random_tabpfn_model_38', 'random_rf_pfn_model_39', 'random_tabpfn_model_40', 'random_tabpfn_model_41', 'random_tabpfn_model_42', 'random_rf_pfn_model_43', 'random_tabpfn_model_44', 'random_tabpfn_model_45', 'random_rf_pfn_model_46', 'random_tabpfn_model_47', 'random_rf_pfn_model_48', 'random_tabpfn_model_49', 'random_tabpfn_model_50', 'random_tabpfn_model_51', 'random_tabpfn_model_52', 'random_rf_pfn_model_53', 'random_tabpfn_model_54', 'random_tabpfn_model_55', 'random_rf_pfn_model_56', 'random_rf_pfn_model_57', 'random_rf_pfn_model_58', 'random_tabpfn_model_59', 'random_rf_pfn_model_60', 'random_tabpfn_model_61', 'random_rf_pfn_model_62', 'random_rf_pfn_model_63', 'random_tabpfn_model_64', 'random_rf_pfn_model_65', 'random_rf_pfn_model_66', 'random_rf_pfn_model_67', 'random_tabpfn_model_68', 'random_tabpfn_model_69', 'random_tabpfn_model_70', 'random_rf_pfn_model_71', 'random_tabpfn_model_72', 'random_rf_pfn_model_73', 'random_rf_pfn_model_74', 'random_rf_pfn_model_75', 'random_rf_pfn_model_76', 'random_rf_pfn_model_77', 'random_rf_pfn_model_78', 'random_tabpfn_model_79', 'random_rf_pfn_model_80', 'random_tabpfn_model_81', 'random_tabpfn_model_82', 'random_tabpfn_model_83', 'random_tabpfn_model_84', 'random_tabpfn_model_85', 'random_tabpfn_model_86', 'random_rf_pfn_model_87', 'random_rf_pfn_model_88', 'random_tabpfn_model_89', 'random_tabpfn_model_90', 'random_rf_pfn_model_91', 'random_rf_pfn_model_92', 'random_rf_pfn_model_93', 'random_tabpfn_model_94', 'random_tabpfn_model_95', 'random_tabpfn_model_96', 'random_tabpfn_model_97', 'random_rf_pfn_model_98', 'random_rf_pfn_model_99']
2025-02-05 20:44:52 INFO Starting 80-repeated holdout validation with holdout_frac=0.33.
2025-02-05 20:44:52 INFO Set time limit to 2500 seconds. We will early stop validation if needed.
2025-02-05 20:44:52 INFO Yield data for model default_tabpfn_model_0 and split 0 (repeat=1).
2025-02-05 20:45:43 INFO Yield data for model random_tabpfn_model_1 and split 0 (repeat=1).
2025-02-05 20:46:00 INFO Yield data for model random_rf_pfn_model_2 and split 0 (repeat=1).
2025-02-05 20:46:00 INFO Using
default
preset for Post Hoc Ensemble.2025-02-05 20:46:00 INFO Using categorical_feature_indices: [2]
2025-02-05 20:46:00 INFO Using task type: regression
2025-02-05 20:46:00 INFO Obtaining TabPFN models from a random portfolio.
An error occurred: Buffer dtype mismatch, expected 'const float32_t' but got 'double'
Full traceback:
Traceback (most recent call last):
File "C:\Users\User\AppData\Local\Temp\ipykernel_6384\507384520.py", line 75, in run_tabpfn_tuned
model.fit(X_train_np, y_train_np)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\sklearn_interface.py", line 222, in fit
self.predictor_.fit(
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\pfn_phe.py", line 333, in fit
self._ens_model.fit(X, y)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\greedy_weighted_ensemble.py", line 234, in fit
weights = self.get_weights(X, y)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\greedy_weighted_ensemble.py", line 173, in get_weights
oof_proba = self.get_oof_per_estimator(X, y)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\abstract_validation_utils.py", line 372, in get_oof_per_estimator
self._fill_predictions_in_place(
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\post_hoc_ensembles\abstract_validation_utils.py", line 127, in _fill_predictions_in_place
base_model.fit(fold_X_train, fold_y_train)
File "C:\Users\User\tabpfn-extensions\src\tabpfn_extensions\rf_pfn\SklearnBasedRandomForestTabPFN.py", line 98, in fit
super().fit(X, y)
File "C:\Users\User\anaconda3\envs\ml_testing\lib\site-packages\sklearn\base.py", line 1351, in wrapper
return fit_method(estimator, *args, **kwargs)
File "C:\Users\User\anaconda3\envs\ml_testing\lib\site-packages\sklearn\ensemble_forest.py", line 377, in fit
estimator._compute_missing_values_in_feature_mask(
File "C:\Users\User\anaconda3\envs\ml_testing\lib\site-packages\sklearn\tree_classes.py", line 228, in _compute_missing_values_in_feature_mask
missing_values_in_feature_mask = _any_isnan_axis0(X)
File "sklearn\tree\_utils.pyx", line 450, in sklearn.tree._utils._any_isnan_axis0
ValueError: Buffer dtype mismatch, expected 'const float32_t' but got 'double'
Steps/Code to Reproduce
No response
Expected Results
No response
Actual Results
No response
Versions
The text was updated successfully, but these errors were encountered: