-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
157 lines (106 loc) · 5.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
import collections
import json
import multiprocessing
import os
import numpy as np
from datetime import datetime
import torch
import catalyst
from catalyst.dl import SupervisedRunner, EarlyStoppingCallback
from catalyst.utils import load_checkpoint, unpack_checkpoint
from pytorch_toolbelt.utils.random import set_manual_seed, get_random_name
from dataset import get_datasets, get_dataloaders, get_datasets_universal
from model import get_model
from loss import get_loss
from callback import MyAccuracyCallback, IoUCallback
from optimizer import get_optim
from catalyst.dl import AccuracyCallback, OptimizerCallback, CheckpointCallback
from torch import nn
from torch.optim import lr_scheduler
import math
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='Random seed')
parser.add_argument('-v', '--verbose', action='store_true')
parser.add_argument('-dd', '--data_dir', type=str, default='data', help='Data directory')
parser.add_argument('-train_csv', '--train_csv', type=str, default='train.csv')
parser.add_argument('-test_csv', '--test_csv', type=str, default='test.csv')
parser.add_argument('-optim', '--optimizer', type = str, default = 'adam')
parser.add_argument('-lr', '--learning_rate', type=float, default=1e-4, help='Initial learning rate')
parser.add_argument('-weight_decay', '--weight_decay', type = float, default = 1e-6)
parser.add_argument('-scheduler', '--scheduler', type = str, default='CosineAnnealingWarmRestarts')
parser.add_argument('-m', '--model', type=str, default='mobilenetv2_120d', help='')
parser.add_argument('-b', '--batch_size', type=int, default=8, help='Batch Size during training, e.g. -b 64')
parser.add_argument('-e', '--epochs', type=int, default=100, help='Epoch to run')
parser.add_argument('-s', '--sizes', default=380, type=int, help='Image size for training & inference')
parser.add_argument('-a', '--augmentations', default='medium', type=str, help='')
parser.add_argument('-loss', '--loss', type = str, default = 'EfficientIoU')
parser.add_argument('-metric', '--metric', type = str, default = 'IoU')
parser.add_argument('-bce_coeff', '--bce_coeff', type = float, default = 0.2)
args = parser.parse_args()
seed = args.seed
verbose = args.verbose
data_dir = args.data_dir
train_csv = args.train_csv
test_csv = args.test_csv
optim_name = args.optimizer
learning_rate = args.learning_rate
weight_decay = args.weight_decay
scheduler_name = args.scheduler
model_name = args.model
batch_size = args.batch_size
epochs = args.epochs
size = args.sizes
augmentation_name = args.augmentations
main_metric = args.metric
loss_name = args.loss
bce_coeff = args.bce_coeff
current_time = datetime.now().strftime('%b%d_%H_%M')
random_name = get_random_name()
torch.cuda.empty_cache()
checkpoint_prefix = f'{model_name}_{size}_{augmentation_name}'
directory_prefix = f'{current_time}_{checkpoint_prefix}_{optim_name}_{learning_rate}_{loss_name}'
log_dir = os.path.join('runs', directory_prefix)
os.makedirs(log_dir, exist_ok=False)
set_manual_seed(seed)
model = get_model(model_name)
model = model.cuda()
image_size = (size, size)
train_ds, valid_ds = get_datasets_universal(data_dir=data_dir,
csv_train_file_name = train_csv,
csv_test_file_name = test_csv,
image_size=image_size,
augmentation=augmentation_name)
train_loader, valid_loader = get_dataloaders(train_ds, valid_ds,
batch_size=batch_size,
num_workers = 2)
loaders = collections.OrderedDict()
loaders["train"] = train_loader
loaders["valid"] = valid_loader
runner = SupervisedRunner(input_key='image')
criterions = get_loss(loss_name, bce_coeff)
optimizer = get_optim(optim_name, model, learning_rate, weight_decay)
min_lr = 1e-6
if scheduler_name == 'CosineAnnealingLR':
used_scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=min_lr)
elif scheduler_name == 'CosineAnnealingWarmRestarts':
used_scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=epochs, T_mult=1, eta_min=min_lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-6)
callbacks = [MyAccuracyCallback(), IoUCallback()]
runner.train(
fp16=dict(amp=True),
model=model,
verbose = verbose,
criterion=criterions,
optimizer=optimizer,
scheduler= scheduler,
callbacks=callbacks,
num_epochs=epochs,
loaders=loaders,
main_metric=main_metric,
logdir=log_dir,
minimize_metric=False,
)
if __name__ == '__main__':
main()