We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
以下是报错日志,用的是google colab
INFO:OUTPUT_MODEL:{'train': {'log_interval': 10, 'eval_interval': 100, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'final_annotation_train.txt', 'validation_files': 'final_annotation_val.txt', 'text_cleaners': ['cjke_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 1, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'symbols': ['_', ',', '.', '!', '?', '-', '~', '…', 'N', 'Q', 'a', 'b', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'ɑ', 'æ', 'ʃ', 'ʑ', 'ç', 'ɯ', 'ɪ', 'ɔ', 'ɛ', 'ɹ', 'ð', 'ə', 'ɫ', 'ɥ', 'ɸ', 'ʊ', 'ɾ', 'ʒ', 'θ', 'β', 'ŋ', 'ɦ', '⁼', 'ʰ', '`', '^', '#', '*', '=', 'ˈ', 'ˌ', '→', '↓', '↑', ' '], 'speakers': {'xuefeng': 0}, 'model_dir': '././OUTPUT_MODEL', 'max_epochs': 200, 'cont': True, 'drop_speaker_embed': False, 'train_with_pretrained_model': True, 'preserved': 4} INFO:torch.distributed.distributed_c10d:Added key: store_based_barrier_key:1 to store for rank: 0 INFO:torch.distributed.distributed_c10d:Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes. Failed to find latest checkpoint, loading G_0.pth... Train with pretrained model... INFO:OUTPUT_MODEL:emb_g.weight is not in the checkpoint INFO:OUTPUT_MODEL:Loaded checkpoint './pretrained_models/G_0.pth' (iteration 419) INFO:OUTPUT_MODEL:Loaded checkpoint './pretrained_models/D_0.pth' (iteration 419) 0% 0/2 [00:11<?, ?it/s] Traceback (most recent call last): File "finetune_speaker_v2.py", line 372, in <module> main() File "finetune_speaker_v2.py", line 55, in main mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) File "/content/vits/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 240, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/content/vits/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 198, in start_processes while not context.join(): File "/content/vits/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 160, in join raise ProcessRaisedException(msg, error_index, failed_process.pid) torch.multiprocessing.spawn.ProcessRaisedException: -- Process 0 terminated with the following error: Traceback (most recent call last): File "/content/vits/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap fn(i, *args) File "/content/VITS-fast-fine-tuning/finetune_speaker_v2.py", line 154, in run train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval]) File "/content/VITS-fast-fine-tuning/finetune_speaker_v2.py", line 174, in train_and_evaluate for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader)): File "/content/vits/lib/python3.8/site-packages/tqdm/std.py", line 1181, in __iter__ for obj in iterable: File "/content/vits/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 628, in __next__ data = self._next_data() File "/content/vits/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1333, in _next_data return self._process_data(data) File "/content/vits/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1359, in _process_data data.reraise() File "/content/vits/lib/python3.8/site-packages/torch/_utils.py", line 543, in reraise raise exception RuntimeError: Caught RuntimeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/content/vits/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 302, in _worker_loop data = fetcher.fetch(index) File "/content/vits/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 61, in fetch return self.collate_fn(data) File "/content/VITS-fast-fine-tuning/data_utils.py", line 156, in __call__ spec_padded[i, :, :spec.size(1)] = spec RuntimeError: expand(torch.FloatTensor{[2, 513, 65]}, size=[2, 513]): the number of sizes provided (2) must be greater or equal to the number of dimensions in the tensor (3)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
以下是报错日志,用的是google colab
The text was updated successfully, but these errors were encountered: