-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenetic.py
112 lines (93 loc) · 3.4 KB
/
Genetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# import Protodeep as ptd
from GAModel import GAModel
from Preprocessing.Split import Split
from random import random
"""
[{
unit_range = [40, 60]
fa = ['relu'....]
init = ['random'...]
w_reg = [''...]]
}, {}, {}]
"""
class Genetic():
def __init__(self, constraints, dataset, population_size=50,
mutation_rate=0.1, generation=20):
self.constraints = constraints
self.dataset = dataset
self.input_shape = dataset.features.shape[1:]
self.population_size = population_size
self.mutation_rate = mutation_rate
self.generation = generation
((self.x_train, self.y_train), (self.x_test, self.y_test)) = Split.train_test_split(
dataset.features, dataset.targets)
self.best_entity = None
# def new_rand_entity(self, constraints)
def init(self):
self.population = [
GAModel(self.constraints, self.input_shape, self.dataset) for i in range(self.population_size)
]
def evaluate(self):
return
def fit(self):
bestscore = self.best_entity.fitness if self.best_entity else -1
for entity in self.population:
fitness = entity.fit(self.x_train, self.y_train, self.x_test, self.y_test)
if fitness > bestscore:
bestscore = fitness
self.best_entity = entity
# print(self.best_entity.evaluate(self.x_train, self.y_train, self.x_test, self.y_test))
def find_model(self):
self.init()
for g in range(self.generation):
self.fit()
self.cross()
# self.mutate()
# self.best_entity.model.summary()
print(f"Best model :\n{self.best_entity.model_attr}")
print(f"Loss: {self.best_entity.evaluate(self.x_train, self.y_train, self.x_test, self.y_test)}")
return self.best_entity.models[0]
def create_pool(self):
fit_sum = sum([entity.fitness for entity in self.population])
current = 0
pool = []
for entity in self.population:
current += entity.fitness
pool.append({
'entity': entity,
'fs': current,
'fitness': entity.fitness
})
return pool, fit_sum
def select_one_parent(self, pool, fit_sum):
rnd = random() * fit_sum
for p in pool:
if p['fs'] > rnd:
return p['entity']
raise Exception("Unable to find a parent")
def select_parents(self, pool, fit_sum):
a, b = None, None
while a is b:
rnda = random() * fit_sum
rndb = random() * fit_sum
a, b = None, None
for p in pool:
if a is None and p['fs'] > rnda:
a = p['entity']
if b is None and p['fs'] > rndb:
b = p['entity']
return a, b
def cross(self):
pool, fit_sum = self.create_pool()
new_population = []
print(pool)
for i in range(self.population_size):
# a, b = self.select_parents(pool, fit_sum)
# new_population.append(a.cross(b, self.mutation_rate))
parent = self.select_one_parent(pool, fit_sum)
new_population.append(parent.cross(parent, self.mutation_rate))
self.population = new_population
# def mutate(self):
# pass
if __name__ == '__main__':
print('hello')