-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAModel.py
154 lines (129 loc) · 6.13 KB
/
GAModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import Protodeep as ptd
from random import randrange, choice, random
import numpy as np
# import tensorflow as tf
class GAModel():
def __init__(self, constraints, input_shape, dataset,
metrics=['categorical_accuracy'],
loss='BinaryCrossentropy', optimizer='Adam',
model_attr=None):
self.constraints = constraints
self.input_shape = input_shape
self.dataset = dataset
self.metrics = metrics
self.loss = loss
self.optimizer = optimizer
self.model_attr = model_attr
self.create_model()
def create_model(self, summary=False):
self.models = []
for m in range(1):
inpt = ptd.layers.Input(self.input_shape)()
out = inpt
new_model_attr = self.model_attr is None
if new_model_attr:
self.model_attr = []
for i, c in enumerate(self.constraints):
if new_model_attr:
layer_attr = {
'unit': c['unit'][0] if len(c['unit']) == 1 else randrange(c['unit'][0], c['unit'][1]),
'fa': c['fa'][randrange(0, len(c['fa']))],
'initializer': c['initializer'][randrange(0, len(c['initializer']))],
'regularizer': c['regularizer'][randrange(0, len(c['regularizer']))]
}
self.model_attr.append(layer_attr)
else:
layer_attr = self.model_attr[i]
out = ptd.layers.Dense(
units=layer_attr['unit'],
activation=layer_attr['fa'],
kernel_initializer=layer_attr['initializer'],
kernel_regularizer=layer_attr['regularizer']
)(out)
model = ptd.model.Model(inputs=inpt, outputs=out)
model.compile(self.input_shape, metrics=self.metrics, loss=self.loss,
optimizer=self.optimizer)
if summary:
model.summary()
self.models.append(model)
# def create_model(self, summary=False):
# self.models = []
# for m in range(1):
# inpt = tf.keras.Input(self.input_shape)
# out = inpt
# new_model_attr = self.model_attr is None
# if new_model_attr:
# self.model_attr = []
# for i, c in enumerate(self.constraints):
# if new_model_attr:
# layer_attr = {
# 'unit': c['unit'][0] if len(c['unit']) == 1 else randrange(c['unit'][0], c['unit'][1]),
# 'fa': c['fa'][randrange(0, len(c['fa']))],
# 'initializer': c['initializer'][randrange(0, len(c['initializer']))],
# 'regularizer': c['regularizer'][randrange(0, len(c['regularizer']))]
# }
# self.model_attr.append(layer_attr)
# else:
# layer_attr = self.model_attr[i]
# out = tf.keras.layers.Dense(
# units=layer_attr['unit'],
# activation=layer_attr['fa'],
# kernel_initializer=layer_attr['initializer'],
# kernel_regularizer=layer_attr['regularizer']
# )(out)
# model = tf.keras.Model(inputs=inpt, outputs=out)
# model.compile(metrics=self.metrics, loss=self.loss,
# optimizer=self.optimizer)
# if summary:
# model.summary()
# self.models.append(model)
def evaluate(self, x_train, y_train, x_test, y_test):
losses = []
for model in self.models:
self.logs = model.fit(
x_train, y_train, epochs=100, validation_data=(x_test, y_test),
callbacks=[ptd.callbacks.EarlyStopping(restore_best_weights=True)],
# callbacks=[ptd.callbacks.EarlyStopping(baseline=0.08, restore_best_weights=True)],
verbose=False
)
# print(history.history.keys())
# print(self.logs.history['val_loss'])
losses.append(self.logs['val_loss'][-1])
return sum(losses) / len(losses)
# def evaluate(self, x_train, y_train, x_test, y_test):
# losses = []
# for model in self.models:
# self.logs = model.fit(
# x_train, y_train, epochs=100, validation_data=(x_test, y_test),
# callbacks=[tf.keras.callbacks.EarlyStopping(restore_best_weights=True)],
# # callbacks=[ptd.callbacks.EarlyStopping(baseline=0.08, restore_best_weights=True)],
# verbose=False
# )
# # print(history.history.keys())
# # print(self.logs.history['val_loss'])
# losses.append(self.logs.history['val_loss'][-1])
# return sum(losses) / len(losses)
def fit(self, x_train, y_train, x_test, y_test):
loss = self.evaluate(x_train, y_train, x_test, y_test)
self.fitness = 1 / (loss ** 2 * 2)
if np.isnan(loss):
self.fitness = 0
print(self.model_attr)
print(f"fitness: {self.fitness} -- loss: {loss}")
return self.fitness
def mutate_attr(self, l, key):
if key == 'unit':
return randrange(*self.constraints[l][key]) if len(self.constraints[l][key]) > 1 else self.constraints[l][key][0]
else:
return choice(self.constraints[l][key])
def cross(self, b, mutation_rate):
cross_model = []
for l, (ma, mb) in enumerate(zip(self.model_attr, b.model_attr)):
farand = [randrange(0, 2) for i in range(4)]
cross_model.append({key: self.mutate_attr(l, key) if random() < mutation_rate else (ma[key] if farand[i] else mb[key]) for i, key in enumerate(mb)})
# print(farand)
# print(ma, mb, cross_model)
return GAModel(self.constraints, self.input_shape, self.dataset,
model_attr=cross_model)
# baby = GAModel(cross)
# baby.create_model()