-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
resnet34_distill_resnet18_dkd.yaml
166 lines (150 loc) · 3.6 KB
/
resnet34_distill_resnet18_dkd.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 100
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
# mixed precision
AMP:
use_amp: False
use_fp16_test: False
scale_loss: 128.0
use_dynamic_loss_scaling: True
use_promote: False
# O1: mixed fp16, O2: pure fp16
level: O1
# model architecture
Arch:
name: "DistillationModel"
# if not null, its lengths should be same as models
pretrained_list:
# if not null, its lengths should be same as models
freeze_params_list:
- True
- False
models:
- Teacher:
name: ResNet34
pretrained: True
- Student:
name: ResNet18
pretrained: False
infer_model_name: "Student"
# loss function config for traing/eval process
Loss:
Train:
- DistillationGTCELoss:
weight: 1.0
model_names: ["Student"]
- DistillationDKDLoss:
weight: 1.0
model_name_pairs: [["Student", "Teacher"]]
temperature: 1
alpha: 1.0
beta: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
weight_decay: 1e-4
lr:
name: MultiStepDecay
learning_rate: 0.2
milestones: [30, 60, 90]
step_each_epoch: 1
gamma: 0.1
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/train_list.txt"
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: "./dataset/ILSVRC2012/"
cls_label_path: "./dataset/ILSVRC2012/val_list.txt"
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: "docs/images/inference_deployment/whl_demo.jpg"
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt"
Metric:
Train:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 5]
Eval:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 5]