forked from NVlabs/stylegan3
-
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathsightseeding.py
199 lines (171 loc) · 8.79 KB
/
sightseeding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from typing import List, Union, Tuple
import click
import dnnlib
import legacy
import torch
import numpy as np
from torch_utils import gen_utils
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import moviepy.editor
# ----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--network', '-net', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--cfg', type=click.Choice(['stylegan2', 'stylegan3-t', 'stylegan3-r']), help='Config of the network, used only if you want to use the pretrained models in torch_utils.gen_utils.resume_specs')
# Synthesis options
@click.option('--seeds', '-s', type=gen_utils.num_range, help='List of seeds to visit in order ("a,b,c", "a-b", "a,b-c,d,e-f,a", ...', required=True)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--new-center', type=gen_utils.parse_new_center, help='New center for the W latent space; a seed (int) or a path to a projected dlatent (.npy/.npz)', default=None)
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--seed-sec', '-sec', type=float, help='Number of seconds between each seed transition', default=5.0, show_default=True)
@click.option('--interp-type', '-interp', type=click.Choice(['linear', 'spherical']), help='Type of interpolation in Z or W', default='spherical', show_default=True)
@click.option('--interp-in-z', is_flag=True, help='Add flag to interpolate in Z instead of in W')
# Video options
@click.option('--smooth', is_flag=True, help='Add flag to smooth the transition between the latent vectors')
@click.option('--fps', type=gen_utils.parse_fps, help='Video FPS.', default=30, show_default=True)
@click.option('--compress', is_flag=True, help='Add flag to compress the final mp4 file via ffmpeg-python (same resolution, lower file size)')
# Run options
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'sightseeding'), show_default=True, metavar='DIR')
@click.option('--desc', type=str, help='Additional description for the directory name where', default='', show_default=True)
def sightseeding(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
cfg: str,
seeds: List[int],
class_idx: int,
truncation_psi: float,
new_center: Tuple[str, Union[int, np.ndarray]],
noise_mode: str,
seed_sec: float,
interp_type: str,
interp_in_z: bool,
smooth: bool,
fps: int,
compress: bool,
outdir: Union[str, os.PathLike],
desc: str,
):
"""
Examples:
# Will go from seeds 0 through 5, coming to the starting one in the end; the transition between each pair of seeds
taking 7.5 seconds, spherically (and smoothly) interpolating in W, compressing the final video with ffmpeg-python
python sightseeding.py --seeds=0-5,0 --seed-sec=7.5 --smooth --compress \
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqwild.pkl
"""
# Sanity check:
if len(seeds) < 2:
ctx.fail('Please enter more than one seed to interpolate between!')
device = torch.device('cuda')
# Load the network
G = gen_utils.load_network('G_ema', network_pkl, cfg, device)
# Get center of the latent space (global or user-indicated)
if new_center is None:
w_avg = G.mapping.w_avg
else:
new_center, new_center_value = new_center
# We get the new center using the int (a seed) or recovered dlatent (an np.ndarray)
if isinstance(new_center_value, int):
w_avg = gen_utils.get_w_from_seed(G, device, new_center_value,
truncation_psi=1.0) # We want the pure dlatent
elif isinstance(new_center_value, np.ndarray):
w_avg = torch.from_numpy(new_center_value).to(device)
else:
ctx.fail('Error: New center has strange format! Only an int (seed) or a file (.npy/.npz) are accepted!')
# Create the run dir with the given name description
desc = f'{desc}-sightseeding' if len(desc) != 0 else 'sightseeding'
desc = f'{desc}-{interp_type}-smooth' if smooth else f'{desc}-{interp_type}'
desc = f'{desc}-in-Z' if interp_in_z else f'{desc}-in-W'
run_dir = gen_utils.make_run_dir(outdir, desc)
# Number of steps to take between each latent vector
n_steps = int(np.rint(seed_sec * fps))
# Total number of frames
num_frames = int(n_steps * (len(seeds) - 1))
# Total video length in seconds
duration_sec = num_frames / fps
# Labels
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
ctx.fail('Must specify class label with --class when using a conditional network')
label[:, class_idx] = 1
else:
if class_idx is not None:
print('warn: --class=lbl ignored when running on an unconditional network')
# Generate the random vectors from each seed
print('Generating Z vectors...')
all_z = np.stack([np.random.RandomState(seed).randn(G.z_dim).astype(np.float32) for seed in seeds])
# If user wants to interpolate in Z
if interp_in_z:
print(f'Interpolating in Z...(interpolation type: {interp_type})')
src_z = np.empty([0] + list(all_z.shape[1:]), dtype=np.float32)
for i in range(len(all_z) - 1):
# We interpolate between each pair of latents
interp = gen_utils.interpolate(all_z[i], all_z[i + 1], n_steps, interp_type, smooth)
# Append it to our source
src_z = np.append(src_z, interp, axis=0)
# Convert to dlatent vectors
print('Generating W vectors...')
src_w = G.mapping(torch.from_numpy(src_z).to(device), label)
# Otherwise, interpolation is done in W
else:
print(f'Interpolating in W... (interpolation type: {interp_type})')
print('Generating W vectors...')
all_w = G.mapping(torch.from_numpy(all_z).to(device), label).cpu()
src_w = np.empty([0] + list(all_w.shape[1:]), dtype=np.float32)
for i in range(len(all_w) - 1):
# We interpolate between each pair of dlatents
interp = gen_utils.interpolate(all_w[i], all_w[i + 1], n_steps, interp_type, smooth)
# Append it to our source
src_w = np.append(src_w, interp, axis=0)
src_w = torch.from_numpy(src_w).to(device)
# Do the truncation trick
src_w = w_avg + (src_w - w_avg) * truncation_psi
# Auxiliary function for moviepy
def make_frame(t):
frame_idx = int(np.clip(np.round(t * fps), 0, num_frames - 1))
w = src_w[frame_idx].unsqueeze(0) # [18, 512] -> [1, 18, 512]
image = gen_utils.w_to_img(G, w, noise_mode)
# Generate the grid for this timestamp
grid = gen_utils.create_image_grid(image, (1, 1))
# grayscale => RGB
if grid.shape[2] == 1:
grid = grid.repeat(3, 2)
return grid
# Generate video using make_frame
print('Generating sightseeding video...')
videoclip = moviepy.editor.VideoClip(make_frame, duration=duration_sec)
videoclip.set_duration(duration_sec)
mp4_name = '-'.join(map(str, seeds)) # Make it clear by the file name what is the path taken
mp4_name = f'{mp4_name}-sightseeding' if len(mp4_name) < 50 else 'sightseeding' # arbitrary rule of mine
# Set the video parameters (change if you like)
final_video = os.path.join(run_dir, f'{mp4_name}.mp4')
videoclip.write_videofile(final_video, fps=fps, codec='libx264', bitrate='16M')
# Save the configuration used for the experiment
ctx.obj = {
'network_pkl': network_pkl,
'config': cfg,
'seeds': seeds,
'class_idx': class_idx,
'truncation_psi': truncation_psi,
'noise_mode': noise_mode,
'seed_sec': seed_sec,
'duration_sec': duration_sec,
'interp_type': interp_type,
'interp_in_z': interp_in_z,
'smooth_video': smooth,
'video_fps': fps,
'compress': compress,
'run_dir': run_dir,
'description': desc,
}
# Save the run configuration
gen_utils.save_config(ctx=ctx, run_dir=run_dir)
# Compress the video (lower file size, same resolution)
if compress:
gen_utils.compress_video(original_video=final_video, original_video_name=mp4_name, outdir=run_dir, ctx=ctx)
# ----------------------------------------------------------------------------
if __name__ == '__main__':
sightseeding()
# ----------------------------------------------------------------------------