forked from NVlabs/stylegan3
-
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathlatent_walk.py
228 lines (193 loc) · 10.8 KB
/
latent_walk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import click
from typing import Union, List, Optional
from PIL import Image
import numpy as np
import torch
import scipy
import dnnlib
import legacy
from torch_utils import gen_utils
import os
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import moviepy.editor
# ----------------------------------------------------------------------------
# Helper function for parsing seeds for latent walk
def _parse_path(s: str) -> List[Union[str, os.PathLike]]:
"""
Input:
s (str): Comma separated list of names of dlatent vectors to visit
Output:
(list): List of names of dlatents to visit
"""
# Some sanity check
s = s.replace(' ', '')
# Split w.r.t. comma
str_list = s.split(',')
# Return the elements of s as a list of strings
return [str(el) for el in str_list]
# ----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--device', help='Device to use for image generation; using the CPU is much slower than the GPU', type=click.Choice(['cpu', 'cuda']), default='cuda', show_default=True)
@click.option('--cfg', type=click.Choice(['stylegan2', 'stylegan3-t', 'stylegan3-r']), help='Config of the network, used only if you want to use the pretrained models in torch_utils.gen_utils.resume_specs')
# Synthesis options
@click.option('--desired-path', '-path', type=_parse_path, help='Path of the dlatents to visit (in order)', required=True)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--trunc-start', 'truncation_psi_start', type=float, help='Initial value of pulsating truncation psi', default=None, show_default=True)
@click.option('--trunc-end', 'truncation_psi_end', type=float, help='Maximum/minimum value of pulsating truncation psi', default=None, show_default=True)
@click.option('--global-pulse', 'global_pulsation_trick', is_flag=True, help='If set, the truncation psi will pulsate globally (on all grid cells)')
@click.option('--wave-pulse', 'wave_pulsation_trick', is_flag=True, help='If set, the truncation psi will pulsate in a wave-like fashion from the upper left to the lower right in the grid')
@click.option('--frequency', 'pulsation_frequency', type=int, help='Frequency of the pulsation', default=1, show_default=True)
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--anchor-latent-space', '-anchor', is_flag=True, help='Anchor the latent space to w_avg to stabilize the video')
# Video options
@click.option('--grid-width', '-gw', type=click.IntRange(min=1), help='Video grid width / number of columns', required=True)
@click.option('--grid-height', '-gh', type=click.IntRange(min=1), help='Video grid height / number of rows', required=True)
@click.option('--dlatent-sec', '-sec', type=gen_utils.float_list, help='Duration length in seconds between each dlatent. Comma-separated values; if one is provided, it will be the same between all dlatents.', default=[5.0], show_default=True)
@click.option('--interp-type', '-interp', type=click.Choice(['linear', 'spherical']), help='Type of interpolation in W', default='spherical', show_default=True)
@click.option('--smooth', is_flag=True, help='Add flag to smooth the transition between dlatents')
@click.option('--smooth-path', is_flag=True, help='Add flag to smooth the whole path; might need fine-tuning!')
@click.option('--fps', type=gen_utils.parse_fps, help='Video FPS.', default=30, show_default=True)
@click.option('--compress', is_flag=True, help='Add flag to compress the final mp4 file via ffmpeg-python (same resolution, lower file size)')
# Extra parameters for saving the results
@click.option('--save-every-frame', '-saveall', is_flag=True, help='Save every frame into as a .png in the outdir')
@click.option('--save-dlatents', is_flag=True, help='Use flag to save individual dlatents (W) for each individual resulting image')
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'latent_walk'), show_default=True, metavar='DIR')
@click.option('--desc', type=str, help='Description name for the directory path to save results', default='latent-walk', show_default=True)
def latent_walk(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
device: Optional[str],
cfg: str,
desired_path: List[str],
truncation_psi: float,
truncation_psi_start: Optional[float],
truncation_psi_end: Optional[float],
global_pulsation_trick: Optional[bool],
wave_pulsation_trick: Optional[bool],
pulsation_frequency: int,
grid_width: Optional[int],
grid_height: Optional[int],
noise_mode: str,
anchor_latent_space: Optional[bool],
dlatent_sec: List[float],
interp_type: str,
smooth: Optional[bool],
smooth_path: Optional[bool],
fps: int,
compress: Optional[bool],
save_every_frame: Optional[bool],
save_dlatents: Optional[bool],
outdir: Union[str, os.PathLike],
desc: str,
):
# Path must visit at least 2 points in W!
if len(desired_path) == 1:
ctx.fail('"--desired-path" must have more than one element!')
# If only one duration is provided, use the same between each dlatent
if len(dlatent_sec) == 1:
dlatent_sec = (len(desired_path) - 1) * dlatent_sec
# Sanity check:
if len(dlatent_sec) != len(desired_path) - 1:
ctx.fail('Number of elements in "--dlatent-sec" should be one less than "--desired-path"!')
dlatent_sec = np.array(dlatent_sec)
# Number of steps to take between each latent vector
n_steps = np.rint(dlatent_sec * fps).astype(int)
# Number of frames in total
num_frames = n_steps.sum()
# Duration in seconds
duration_sec = num_frames / fps
n_digits = int(np.log10(num_frames)) + 1 # number of digits for naming the .jpg images
# If model name exists in the gen_utils.resume_specs dictionary, use it instead of the full url
try:
network_pkl = gen_utils.resume_specs[cfg][network_pkl]
except KeyError:
# Otherwise, it's a local file or an url
pass
print(f'Loading networks from "{network_pkl}"...')
device = torch.device(device)
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
# Setup for using CPU
if device.type == 'cpu':
gen_utils.use_cpu(G)
# Stabilize/anchor the latent space
if anchor_latent_space:
gen_utils.anchor_latent_space(G)
# Create the run dir with the given name description
desc = f'{desc}-smooth_path' if smooth_path else desc
run_dir = gen_utils.make_run_dir(outdir, desc)
# Get all the latent vectores from each of the directories in desired_path
print('Retrieveing W vectors...')
all_w = np.stack([np.squeeze(gen_utils.parse_all_projected_dlatents(dlatent_dir), axis=1) for dlatent_dir in desired_path])
src_w = np.empty([0] + list(all_w.shape[1:]), dtype=np.float32)
for i in range(len(all_w) - 1):
# We interpolate between each pair of dlatents
interp = gen_utils.interpolate(all_w[i], all_w[i + 1], n_steps[i], interp_type, smooth)
# Append it to our source
src_w = np.append(src_w, interp, axis=0)
# Smoothen the path?
if smooth_path:
# 5/4 is arbitrary, this has to bee fine-tuned to your needs
src_w = scipy.ndimage.gaussian_filter(src_w, sigma=[(5 / 4) * fps, 0, 0, 0], mode='nearest')
# For the truncation trick
w_avg = G.mapping.w_avg
# Aux function: Frame generation func for moviepy.
def make_frame(t):
frame_idx = int(np.clip(np.round(t * fps), 0, num_frames - 1))
# Select the pertinent w dlatent:
w = torch.from_numpy(src_w[frame_idx]).to(device)
if None not in (truncation_psi_start, truncation_psi_end):
# For both, truncation psi will have the general form of a sinusoid: psi = (cos(t) + alpha) / beta
if global_pulsation_trick:
# print('Using global pulsating truncation trick...')
tr = gen_utils.global_pulsate_psi(psi_start=truncation_psi_start,
psi_end=truncation_psi_end,
n_steps=num_frames)
elif wave_pulsation_trick:
# print('Using wave pulse truncation trick...')
tr = gen_utils.wave_pulse_truncation_psi(psi_start=truncation_psi_start,
psi_end=truncation_psi_end,
n_steps=num_frames,
grid_shape=(grid_width, grid_height),
frequency=pulsation_frequency,
time=frame_idx)
# Define how to use the truncation psi
if global_pulsation_trick:
tr = tr[frame_idx].to(device)
elif wave_pulsation_trick:
tr = tr.to(device)
else:
tr = truncation_psi
w = w_avg + (w - w_avg) * tr
# Run it through Gs to get the image
image = gen_utils.w_to_img(G, w, noise_mode)
# Generate the grid for this timestamp:
grid = gen_utils.create_image_grid(image, (grid_width, grid_height))
# grayscale => RGB
if grid.shape[2] == 1:
grid = grid.repeat(3, 2)
# Save each frame if user wants to
if save_every_frame and frame_idx % fps == 0:
frame_name = f'frame-{frame_idx:0{n_digits}d}.png'
im = Image.fromarray(grid)
im.save(os.path.join(run_dir, frame_name))
# Save each dlatent as a .npy file, if user wishes to
if save_dlatents:
np.save(os.path.join(run_dir, f'frame-{frame_idx:0{n_digits}d}.npy'), w.unsqueeze(0).cpu().numpy())
return grid
# Generate video using make_frame:
print('Generating latent_walk video...')
mp4 = "latent_walk"
videoclip = moviepy.editor.VideoClip(make_frame, duration=duration_sec)
videoclip.set_duration(duration_sec)
# Change the video parameters (codec, bitrate) if you so desire
final_video = os.path.join(run_dir, f'{mp4}.mp4')
videoclip.write_videofile(final_video, fps=fps, codec='libx264', bitrate='16M')
# Compress the video (lower file size, same resolution)
if compress:
gen_utils.compress_video(original_video=final_video, original_video_name=mp4, outdir=run_dir, ctx=ctx)
# ----------------------------------------------------------------------------
if __name__ == '__main__':
latent_walk()