From a403e7a0154af1ffbabdd56a327c73871663f17e Mon Sep 17 00:00:00 2001 From: hardin47 Date: Thu, 29 Feb 2024 16:53:05 -0800 Subject: [PATCH] chp 19 exercises --- .../execute-results/html.json | 2 +- .../fig-tDistCompareToNormalDist-1.png | Bin 138699 -> 138840 bytes .../figure-html/unnamed-chunk-34-1.png | Bin 172144 -> 172191 bytes exercises/_19-ex-inference-one-mean.qmd | 320 ++++++++++-------- 4 files changed, 174 insertions(+), 148 deletions(-) diff --git a/_freeze/19-inference-one-mean/execute-results/html.json b/_freeze/19-inference-one-mean/execute-results/html.json index 5a04e6e6..3a6fda73 100644 --- a/_freeze/19-inference-one-mean/execute-results/html.json +++ b/_freeze/19-inference-one-mean/execute-results/html.json @@ -2,7 +2,7 @@ "hash": "f049a8b0baa9b41c55805f2310d27dca", "result": { "engine": "knitr", - "markdown": "# Inference for a single mean {#sec-inference-one-mean}\n\n\n\n\n\n::: {.chapterintro data-latex=\"\"}\nFocusing now on Statistical Inference for **numerical data**, again, we will revisit and expand upon the foundational aspects of hypothesis testing from [Chapter -@sec-foundations-randomization].\n\nThe important data structure for this chapter is a numeric response variable (that is, the outcome is quantitative).\nThe four data structures we detail are one numeric response variable, one numeric response variable which is a difference across a pair of observations, a numeric response variable broken down by a binary explanatory variable, and a numeric response variable broken down by an explanatory variable that has two or more levels.\nWhen appropriate, each of the data structures will be analyzed using the three methods from [Chapter -@sec-foundations-randomization], [Chapter -@sec-foundations-bootstrapping], and [Chapter -@sec-foundations-mathematical]: randomization test, bootstrapping, and mathematical models, respectively.\n\nAs we build on the inferential ideas, we will visit new foundational concepts in statistical inference.\nOne key new idea rests in estimating how the sample mean (as opposed to the sample proportion) varies from sample to sample; the resulting value is referred to as the standard error of the mean.\nWe will also introduce a new important mathematical model, the $t$-distribution (as the foundation for the $t$-test).\n:::\n\n\n\n\n\nIn this chapter, we focus on the sample mean (instead of, for example, the sample median or the range of the observations) because of the well-studied mathematical model which describes the behavior of the sample mean.\nWe will not cover mathematical models which describe other statistics, but the bootstrap and randomization techniques described below are immediately extendable to any function of the observed data.\nThe sample mean will be calculated in one group, two paired groups, two independent groups, and many groups settings.\nThe techniques described for each setting will vary slightly, but you will be well served to find the structural similarities across the different settings.\n\nSimilar to how we can model the behavior of the sample proportion $\\hat{p}$ using a normal distribution, the sample mean $\\bar{x}$ can also be modeled using a normal distribution when certain conditions are met.\n\\index{point estimate!single mean} However, we'll soon learn that a new distribution, called the $t$-distribution, tends to be more useful when working with the sample mean.\nWe'll first learn about this new distribution, then we'll use it to construct confidence intervals and conduct hypothesis tests for the mean.\n\n## Bootstrap confidence interval for a mean {#sec-boot1mean}\n\nConsider a situation where you want to know whether you should buy a franchise of the used car store Awesome Autos.\nAs part of your planning, you'd like to know for how much an average car from Awesome Autos sells.\nIn order to go through the example more clearly, let's say that you are only able to randomly sample five cars from Awesome Auto.\n(If this were a real example, you would surely be able to take a much larger sample size, possibly even being able to measure the entire population!)\n\n### Observed data\n\n@fig-5cars shows a (small) random sample of observations from Awesome Auto.\nThe actual cars as well as their selling price is shown.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![A sample of five cars from Awesome Auto.](images/5cars.png){#fig-5cars fig-alt='Photographs of 5 different automobiles. The cars are different color and\ndifferent makes and models. On top of the image of each car is its price;\nthe five prices range from 9600 dollars to 27000 dollars.' width=75%}\n:::\n:::\n\n::: {.cell}\n\n:::\n\n\nThe sample average car price of \\$17140.00 is a first guess at the price of the average car price at Awesome Auto.\nHowever, as a student of statistics, you understand that one sample mean based on a sample of five observations will not necessarily equal the true population average car price for all the cars at Awesome Auto.\nIndeed, you can see that the observed car prices vary with a standard deviation of \\$7170.29, and surely the average car price would be different if a different sample of size five had been taken from the population.\nFortunately, as it did in previous chapters for the sample proportion, bootstrapping will approximate the variability of the sample mean from sample to sample.\n\n### Variability of the statistic\n\nAs with the inferential ideas covered in [Chapter -@sec-foundations-randomization], [Chapter -@sec-foundations-bootstrapping], and [Chapter -@sec-foundations-mathematical], the inferential analysis methods in this chapter are grounded in quantifying how one dataset differs from another when they are both taken from the same population.\nTo repeat, the idea is that we want to know how datasets differ from one another, but we aren't ever going to take more than one sample of observations.\nIt does not make sense to take repeated samples from the same population because if you have the ability to take more samples, a larger sample size will benefit you more than taking two samples from the population.\nInstead, of taking repeated samples from the actual population, we use bootstrapping to measure how the samples behave under an estimate of the population.\n\nAs mentioned previously, to get a sense of the cars at Awesome Auto, you take a sample of five cars from the Awesome Auto branch near you as a way to gauge the price of the cars being sold.\n@fig-bootpop1mean shows how the unknown original population can be estimated by using the sample to approximate the distribution of car prices from the population of cars at Awesome Auto.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![As seen previously, the idea behind bootstrapping is to consider the sample\nat hand as an estimate of the population. Sampling from the sample (of 5 cars)\nis identical to sampling from an infinite population which is made up of only the\ncars in the original sample.\n](images/bootpop1mean.png){#fig-bootpop1mean fig-alt='The sample of 5 cars is drawn from a large population with other values (i.e.,\nother car prices) unknown. The sample of five cars is replicated infinitely many\ntimes to create a proxy population where the car prices are given by the original\ndataset in the same relative distribution as measured in the sample.' width=90%}\n:::\n:::\n\n\nBy taking repeated samples from the estimated population, the variability from sample to sample can be observed.\nIn @fig-boot2 the repeated bootstrap samples are seen to be different both from each other and from the original population.\nRecall that the bootstrap samples were taken from the same (estimated) population, and so the differences in bootstrap samples are due entirely to natural variability in the sampling procedure.\nFor the situation at hand where the sample mean is the statistic of interest, the variability from sample to sample can be seen in @fig-bootsamps1mean.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![To estimate the natural variability in the sample mean, different bootstrap\nsamples are taken from the original sample. Notice that each bootstrap resample\nis different from each other as well as from the original sample\n](images/bootsamps1mean.png){#fig-bootsamps1mean fig-alt='The sample is shown being taken from the large unknown population. The bootstrap\nresamples, however, are taken directly from the original sample (sampling\nwith replacement) as if the resamples had been taken from an infinitely large\nproxy population. Three bootstrap resamples of 5 cars each are shown,\neach resample is slightly different due to the process of resampling with replacement.' width=90%}\n:::\n:::\n\n\nBy summarizing each of the bootstrap samples (here, using the sample mean), we see, directly, the variability of the sample mean, $\\bar{x},$ from sample to sample.\nThe distribution of $\\bar{x}_{bs}$ for the Awesome Auto cars is shown in @fig-bootmeans1mean.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![Because each of the bootstrap resamples respresents a different set of cars,\nthe mean of the each bootstrap resample will be a different value. Each of the\nbootstrapped means is calculated, and a histogram of the values describes the inherent\nnatural variability of the sample mean which is due to the sampling process.\n](images/bootmeans1mean.png){#fig-bootmeans1mean fig-alt='The sample is shown being taken from the large unknown population. Three\nbootstrap resamples of 5 cars each are shown; the three resamples have an average\ncar price of 11780 dollars, 19020 dollars, and 20260 dollars, respectively. A histogram\nrepresenting many bootstrap resamples indicates that the bootstrap averages vary\nfrom roughly 10000 dollars to 25000 dollars.' width=100%}\n:::\n:::\n\n\n@fig-carsbsmean summarizes one thousand bootstrap samples in a histogram of the bootstrap sample means.\nThe bootstrapped average car prices vary from about \\$10,000 to \\$25,000.\nThe bootstrap percentile confidence interval is found by locating the middle 90% (for a 90% confidence interval) or a 95% (for a 95% confidence interval) of the bootstrapped statistics.\n\n::: {.workedexample data-latex=\"\"}\nUsing @fig-carsbsmean, find the 90% and 95% bootstrap percentile confidence intervals for the true average price of a car from Awesome Auto.\n\n------------------------------------------------------------------------\n\nA 90% confidence interval is given by \\$12,140 and \\$22,007.\nThe conclusion is that we are 90% confident that the true average car price at Awesome Auto lies somewhere between \\$12,140 and \\$22,007.\n\nA 95% confidence interval is given by \\$11,778 to \\$22,500.\nThe conclusion is that we are 95% confident that the true average car price at Awesome Auto lies somewhere between \\$11,778 to \\$22,500.\n:::\n\n\n::: {.cell}\n::: {.cell-output-display}\n![The original Awesome Auto data is bootstrapped 1,000 times. The histogram provides a sense for the variability of the average car price from sample to sample.](19-inference-one-mean_files/figure-html/fig-carsbsmean-1.png){#fig-carsbsmean fig-alt='A histogram of the means of 1000 bootstrapped samples from the Awesome Auto data. The percentiles of the bootstrapped means are given to create 80%, 90%, 95%, or 99% bootstrap confidence intervals for the true mean of the population.' width=100%}\n:::\n:::\n\n\n### Bootstrap SE confidence interval\n\nAs seen in @sec-two-prop-boot-ci, another method for creating bootstrap confidence intervals directly uses a calculation of the variability of the bootstrap statistics (here, the bootstrap means).\nIf the bootstrap distribution is relatively symmetric and bell-shaped, then the 95% bootstrap SE confidence interval can be constructed with the formula familiar from the mathematical models in previous chapters:\n\n$$\\mbox{point estimate} \\pm 2 \\cdot SE_{BS}$$ The number 2 is an approximation connected to the \"95%\" part of the confidence interval (remember the 68-95-99.7 rule).\nAs will be seen in @sec-one-mean-math, a new distribution (the $t$-distribution) will be applied to most mathematical inference on numerical variables.\nHowever, because bootstrapping is not grounded in the same theory as the mathematical approach given in this text, we stick with the standard normal quantiles (in R use the function `qnorm()` to find normal percentiles other than 95%) for different confidence percentages.[^19-inference-one-mean-1]\n\n[^19-inference-one-mean-1]: There is a large literature on understanding and improving bootstrap intervals, see @Hesterbeg:2015 titled [\"What Teachers Should Know About the Bootstrap\"](https://www.tandfonline.com/doi/full/10.1080/00031305.2015.1089789) and @Hayden:2019 titled [\"Questionable Claims for Simple Versions of the Bootstrap\"](https://www.tandfonline.com/doi/full/10.1080/10691898.2019.1669507) for more information.\n\n::: {.workedexample data-latex=\"\"}\nExplain how the standard error (SE) of the bootstrapped means is calculated and what it is measuring.\n\n------------------------------------------------------------------------\n\nThe SE of the bootstrapped means measures how variable the means are from resample to resample.\nThe bootstrap SE is a good approximation to the SE of means as if we had taken repeated samples from the original population (which we agreed isn't something we would do because of wasted resources).\n\nLogistically, we can find the standard deviation of the bootstrapped means using the same calculations from [Chapter -@sec-explore-numerical].\nThat is, the bootstrapped means are the individual observations about which we measure the variability.\n:::\n\nAlthough we won't spend a lot of energy on this concept, you may be wondering some of the differences between a standard error and a standard deviation.\nThe **standard error**\\index{standard error} describes how a statistic (e.g., sample mean or sample proportion) varies from sample to sample.\nThe **standard deviation**\\index{standard deviation} can be thought of as a function applied to any list of numbers which measures how far those numbers vary from their own average.\nSo, you can have a standard deviation calculated on a column of dog heights or a standard deviation calculated on a column of bootstrapped means from the resampled data.\nNote that the standard deviation calculated on the bootstrapped means is referred to as the bootstrap standard error of the mean.\n\n\n\n\n\n::: {.guidedpractice data-latex=\"\"}\nIt turns out that the standard deviation of the bootstrapped means from @fig-carsbsmean is \\$2,891.87 (a value which is an excellent approximation for the standard error of sample means if we were to take repeated samples from the population).\n\\[Note: in R the calculation was done using the function `sd()`.\\] The average of the observed prices is \\$17,140, ad we will consider the sample average to be the best guess point estimate for $\\mu.$ .\n\nFind and interpret the confidence interval for $\\mu$ (the true average cost of a car at Awesome Auto) using the bootstrap SE confidence interval formula.[^19-inference-one-mean-2]\n:::\n\n[^19-inference-one-mean-2]: Using the formula for the bootstrap SE interval, we find the 95% confidence interval for $\\mu$ is: $17,140 \\pm 2 \\cdot 2,891.87 \\rightarrow$ (\\$11,356.26, \\$22,923.74).\n We are 95% confident that the true average car price at Awesome Auto is somewhere between \\$11,356.26 and \\$22,923.74.\n\n::: {.workedexample data-latex=\"\"}\nCompare and contrast the two different 95% confidence intervals for $\\mu$ created by finding the percentiles of the bootstrapped means and created by finding the SE of the bootstrapped means.\nDo you think the intervals *should* be identical?\n\n------------------------------------------------------------------------\n\n- Percentile interval: (\\$11,778, \\$22,500)\n- SE interval: (\\$11,356.26, \\$22,923.74)\n\nThe intervals were created using different methods, so it is not surprising that they are not identical.\nHowever, we are pleased to see that the two methods provide very similar interval approximations.\n\nThe technical details surrounding which data structures are best for percentile intervals and which are best for SE intervals is beyond the scope of this text.\nHowever, the larger the samples are, the better (and closer) the interval estimates will be.\n:::\n\n### Bootstrap percentile confidence interval for a standard deviation\n\nSuppose that the research question at hand seeks to understand how variable the prices of the cars are at Awesome Auto.\nThat is, your interest is no longer in the average car price but in the *standard deviation* of the prices of all cars at Awesome Auto, $\\sigma.$ You may have already realized that the sample standard deviation, $s,$ will work as a good **point estimate** for the parameter of interest: the population standard deviation, $\\sigma.$ The point estimate of the five observations is calculated to be $s = \\$7,170.286.$ While $s = \\$7,170.286$ might be a good guess for $\\sigma,$ we prefer to have an interval estimate for the parameter of interest.\nAlthough there is a mathematical model which describes how $s$ varies from sample to sample, the mathematical model will not be presented in this text.\nEven without the mathematical model, bootstrapping can be used to find a confidence interval for the parameter $\\sigma.$ Using the same technique as presented for a confidence interval for $\\mu,$ here we find the bootstrap percentile confidence interval for $\\sigma.$\n\n\n\n\n\n::: {.workedexample data-latex=\"\"}\nDescribe the bootstrap distribution for the standard deviation shown in @fig-carsbssd.\n\n------------------------------------------------------------------------\n\nThe distribution is skewed left and centered near \\$7,170.286, which is the point estimate from the original data.\nMost observations in this distribution lie between \\$0 and \\$10,000.\n:::\n\n::: {.guidedpractice data-latex=\"\"}\nUsing @fig-carsbssd, find *and interpret* a 90% bootstrap percentile confidence interval for the population standard deviation for car prices at Awesome Auto.[^19-inference-one-mean-3]\n:::\n\n[^19-inference-one-mean-3]: By looking at the percentile values in @fig-carsbssd, the middle 90% of the bootstrap standard deviations are given by the 5 percentile (\\$3,602.5) and 95 percentile (\\$8,737.2).\n That is, we are 90% confident that the true standard deviation of car prices is between \\$3,602.5 and \\$8,737.2.\n Note, the problem was set up as 90% to indicate that there was not a need for a high level of confidence (such a 95% or 99%).\n A lower degree of confidence increases potential for error, but it also produces a more narrow interval.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![The original Awesome Auto data is bootstrapped 1,000 times. The histogram\nprovides a sense for the variability of the standard deviation of the car prices\nfrom sample to sample.\n](19-inference-one-mean_files/figure-html/fig-carsbssd-1.png){#fig-carsbssd fig-alt='A histogram of the standard deviations of 1000 bootstrapped samples from the Awesome Auto data. The percentiles of the bootstrapped standard deviations are given to create 80%, 90%, 95%, or 99% bootstrap confidence intervals for the true standard deviation of the population.' width=100%}\n:::\n:::\n\n\n### Bootstrapping is not a solution to small sample sizes!\n\nThe example presented above is done for a sample with only five observations.\nAs with analysis techniques that build on mathematical models, bootstrapping works best when a large random sample has been taken from the population.\nBootstrapping is a method for capturing the variability of a statistic when the mathematical model is unknown (it is not a method for navigating small samples).\nAs you might guess, the larger the random sample, the more accurately that sample will represent the population of interest.\n\n## Mathematical model for a mean {#sec-one-mean-math}\n\nAs with the sample proportion, the variability of the sample mean is well described by the mathematical theory given by the Central Limit Theorem.\nHowever, because of missing information about the inherent variability in the population ($\\sigma$), a $t$-distribution is used in place of the standard normal when performing hypothesis test or confidence interval analyses.\n\n### Mathematical distribution of the sample mean\n\nThe sample mean tends to follow a normal distribution centered at the population mean, $\\mu,$ when certain conditions are met.\nAdditionally, we can compute a standard error for the sample mean using the population standard deviation $\\sigma$ and the sample size $n.$\n\n::: {.important data-latex=\"\"}\n**Central Limit Theorem for the sample mean.**\n\nWhen we collect a sufficiently large sample of $n$ independent observations from a population with mean $\\mu$ and standard deviation $\\sigma,$ the sampling distribution of $\\bar{x}$ will be nearly normal with\n\n$$\\text{Mean} = \\mu \\qquad \\text{Standard Error }(SE) = \\frac{\\sigma}{\\sqrt{n}}$$\n:::\n\nBefore diving into confidence intervals and hypothesis tests using $\\bar{x},$ we first need to cover two topics:\n\n- When we modeled $\\hat{p}$ using the normal distribution, certain conditions had to be satisfied. The conditions for working with $\\bar{x}$ are a little more complex, and below, we will discuss how to check conditions for inference using a mathematical model.\n- The standard error is dependent on the population standard deviation, $\\sigma.$ However, we rarely know $\\sigma,$ and instead we must estimate it. Because this estimation is itself imperfect, we use a new distribution called the $t$-distribution to fix this problem, which we discuss below.\n\n\\index{t-distribution@$t$-distribution}\n\n\n\n\n\n### Evaluating the two conditions required for modeling $\\bar{x}$\n\nTwo conditions are required to apply the Central Limit Theorem\\index{Central Limit Theorem} for a sample mean $\\bar{x}:$\n\n- **Independence.** The sample observations must be independent.\n The most common way to satisfy this condition is when the sample is a simple random sample from the population.\n If the data come from a random process, analogous to rolling a die, this would also satisfy the independence condition.\n\n- **Normality.** When a sample is small, we also require that the sample observations come from a normally distributed population.\n We can relax this condition more and more for larger and larger sample sizes.\n This condition is obviously vague, making it difficult to evaluate, so next we introduce a couple rules of thumb to make checking this condition easier.\n\n\n\n\n\n::: {.important data-latex=\"\"}\n**General rule for performing the normality check.**\n\nThere is no perfect way to check the normality condition, so instead we use two general rules based on the number and magnitude of extreme observations.\nNote, it often takes practice to get a sense for whether a normal approximation is appropriate.\n\n- Small $n$: If the sample size $n$ is small and there are **no clear outliers** in the data, then we typically assume the data come from a nearly normal distribution to satisfy the condition.\n- Large $n$: If the sample size $n$ is large and there are no **particularly extreme** outliers, then we typically assume the sampling distribution of $\\bar{x}$ is nearly normal, even if the underlying distribution of individual observations is not.\n\nSome guidelines for determining whether $n$ is considered small or large are as follows: slight skew is okay for sample sizes of 15, moderate skew for sample sizes of 30, and strong skew for sample sizes of 60.\n:::\n\nIn this first course in statistics, you aren't expected to develop perfect judgment on the normality condition.\nHowever, you are expected to be able to handle clear cut cases based on the rules of thumb.[^19-inference-one-mean-4]\n\n[^19-inference-one-mean-4]: More nuanced guidelines would consider further relaxing the *particularly extreme outlier* check when the sample size is very large.\n However, we'll leave further discussion here to a future course.\n\n::: {.workedexample data-latex=\"\"}\nConsider the four plots provided in @fig-outliersandsscondition that come from simple random samples from different populations.\nTheir sample sizes are $n_1 = 15$ and $n_2 = 50.$\n\nAre the independence and normality conditions met in each case?\n\n------------------------------------------------------------------------\n\nEach samples is from a simple random sample of its respective population, so the independence condition is satisfied.\nLet's next check the normality condition for each using the rule of thumb.\n\nThe first sample has fewer than 30 observations, so we are watching for any clear outliers.\nNone are present; while there is a small gap in the histogram on the right, this gap is small and over 20% of the observations in this small sample are represented to the left of the gap, so we can hardly call these clear outliers.\nWith no clear outliers, the normality condition can be reasonably assumed to be met.\n\nThe second sample has a sample size greater than 30 and includes an outlier that appears to be roughly 5 times further from the center of the distribution than the next furthest observation.\nThis is an example of a particularly extreme outlier, so the normality condition would not be satisfied.\n\nIt's often helpful to also visualize the data using a box plot to assess skewness and existence of outliers.\nThe box plots provided underneath each histogram confirms our conclusions that the first sample does not have any outliers and the second sample does, with one outlier being particularly more extreme than the others.\n:::\n\n\n::: {.cell}\n::: {.cell-output-display}\n![Histograms of samples from two different populations.](19-inference-one-mean_files/figure-html/fig-outliersandsscondition-1.png){#fig-outliersandsscondition fig-alt='Two histogram and boxplot pairs. The first pair of plots describes a sample size of 15 and the points are distributed between zero and six with no outliers. The second pair of plots describes a sample of size 50 and the points are distributed between zero and six with one additional outlying point above 20.' width=90%}\n:::\n:::\n\n\nIn practice, it's typical to also do a mental check to evaluate whether we have reason to believe the underlying population would have moderate skew (if $n < 30)$ or have particularly extreme outliers $(n \\geq 30)$ beyond what we observe in the data.\nFor example, consider the number of followers for each individual account on Twitter, and then imagine this distribution.\nThe large majority of accounts have built up a couple thousand followers or fewer, while a relatively tiny fraction have amassed tens of millions of followers, meaning the distribution is extremely skewed.\nWhen we know the data come from such an extremely skewed distribution, it takes some effort to understand what sample size is large enough for the normality condition to be satisfied.\n\n\\index{Central Limit Theorem}\n\n### Introducing the t-distribution\n\n\\index{t-distribution}\n\nIn practice, we cannot directly calculate the standard error for $\\bar{x}$ since we do not know the population standard deviation, $\\sigma.$ We encountered a similar issue when computing the standard error for a sample proportion, which relied on the population proportion, $p.$ Our solution in the proportion context was to use the sample value in place of the population value when computing the standard error.\nWe'll employ a similar strategy for computing the standard error of $\\bar{x},$ using the sample standard deviation $s$ in place of $\\sigma:$\n\n$$SE = \\frac{\\sigma}{\\sqrt{n}} \\approx \\frac{s}{\\sqrt{n}}$$\n\nThis strategy tends to work well when we have a lot of data and can estimate $\\sigma$ using $s$ accurately.\nHowever, the estimate is less precise with smaller samples, and this leads to problems when using the normal distribution to model $\\bar{x}.$\n\nWe'll find it useful to use a new distribution for inference calculations called the $t$-distribution.\nA $t$-distribution, shown as a solid line in @fig-tDistCompareToNormalDist, has a bell shape.\nHowever, its tails are thicker than the normal distribution's, meaning observations are more likely to fall beyond two standard deviations from the mean than under the normal distribution.\n\nThe extra thick tails of the $t$-distribution are exactly the correction needed to resolve the problem (due to extra variability of the T score) of using $s$ in place of $\\sigma$ in the $SE$ calculation.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![Comparison of a $t$-distribution and a normal distribution.](19-inference-one-mean_files/figure-html/fig-tDistCompareToNormalDist-1.png){#fig-tDistCompareToNormalDist fig-alt='Two symmetric bell-shaped curves on top of one another. One is a normal curve with smaller tails and a higher peak in the middle. The other is a t-distribution with longer tails, meaning that there are more more observations far from the center of a t-distribution than of a normal distribution.' width=60%}\n:::\n:::\n\n\nThe $t$-distribution is always centered at zero and has a single parameter: degrees of freedom.\nThe **degrees of freedom** describes the precise form of the bell-shaped $t$-distribution.\nSeveral $t$-distributions are shown in @fig-tDistConvergeToNormalDist in comparison to the normal distribution.\nSimilar to the Chi-square distribution, the shape of the $t$-distribution also depends on the degrees of freedom.\n\nIn general, we'll use a $t$-distribution with $df = n - 1$ to model the sample mean when the sample size is $n.$ That is, when we have more observations, the degrees of freedom will be larger and the $t$-distribution will look more like the standard normal distribution; when the degrees of freedom is about 30 or more, the $t$-distribution is nearly indistinguishable from the normal distribution.\n\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![The larger the degrees of freedom, the more closely the $t$-distribution\nresembles the standard normal distribution.\n](19-inference-one-mean_files/figure-html/fig-tDistConvergeToNormalDist-1.png){#fig-tDistConvergeToNormalDist fig-alt='A normal distribution and four t distributions, all super imposed on top of one another. The smaller the degrees of freedom, the wider the tails in the t distribution.' width=90%}\n:::\n:::\n\n\n::: {.important data-latex=\"\"}\n**Degrees of freedom: df.**\n\nThe degrees of freedom describes the shape of the $t$-distribution.\nThe larger the degrees of freedom, the more closely the distribution approximates the normal distribution.\n\nWhen modeling $\\bar{x}$ using the $t$-distribution, use $df = n - 1.$\n:::\n\nThe $t$-distribution allows us greater flexibility than the normal distribution when analyzing numerical data.\nIn practice, it's common to use statistical software, such as R, Python, or SAS for these analyses.\nIn R, the function used for calculating probabilities under a $t$-distribution is `pt()` (which should seem similar to previous R functions, `pnorm()` and `pchisq()`).\nDon't forget that with the $t$-distribution, the degrees of freedom must always be specified!\n\nFor the examples and guided practices below, you may have to use a table or statistical software to find the answers.\nWe recommend trying the problems so as to get a sense for how the $t$-distribution can vary in width depending on the degrees of freedom.\nNo matter the approach you choose, apply your method using the examples below to confirm your working understanding of the $t$-distribution.\n\n::: {.workedexample data-latex=\"\"}\nWhat proportion of the $t$-distribution with 18 degrees of freedom falls below -2.10?\n\n------------------------------------------------------------------------\n\nJust like a normal probability problem, we first draw the picture in @fig-tDistDF18LeftTail2Point10 and shade the area below -2.10.\n\nUsing statistical software, we can obtain a precise value: 0.0250.\n:::\n\n\\clearpage\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use pt() to find probability under the $t$-distribution\npt(-2.10, df = 18)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.025\n```\n\n\n:::\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![The $t$-distribution with 18 degrees of freedom. The area below -2.10 has\nbeen shaded.\n](19-inference-one-mean_files/figure-html/fig-tDistDF18LeftTail2Point10-1.png){#fig-tDistDF18LeftTail2Point10 fig-alt='A t distribution with 18 degrees of freedom. The area below -2.10 has been shaded.' width=60%}\n:::\n:::\n\n\n::: {.workedexample data-latex=\"\"}\nA $t$-distribution with 20 degrees of freedom is shown in @fig-tDistDF20RightTail1Point65.\nEstimate the proportion of the distribution falling above 1.65.\n\n------------------------------------------------------------------------\n\nNote that with 20 degrees of freedom, the $t$-distribution is relatively close to the normal distribution.\nWith a normal distribution, this would correspond to about 0.05, so we should expect the $t$-distribution to give us a value in this neighborhood.\nUsing statistical software: 0.0573.\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use pt() to find probability under the $t$-distribution\n1 - pt(1.65, df = 20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.0573\n```\n\n\n:::\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![The $t$-distribution with 20 degrees of freedom, with the area above\n1.65 shaded.\n](19-inference-one-mean_files/figure-html/fig-tDistDF20RightTail1Point65-1.png){#fig-tDistDF20RightTail1Point65 fig-alt='A t distribution with 20 degrees of freedom. The area above 1.65 has been shaded.' width=50%}\n:::\n:::\n\n\n::: {.workedexample data-latex=\"\"}\nA $t$-distribution with 2 degrees of freedom is shown in @fig-tDistDF23UnitsFromMean.\nEstimate the proportion of the distribution falling more than 3 units from the mean (above or below).\n\n------------------------------------------------------------------------\n\nWith so few degrees of freedom, the $t$-distribution will give a more notably different value than the normal distribution.\nUnder a normal distribution, the area would be about 0.003 using the 68-95-99.7 rule.\nFor a $t$-distribution with $df = 2,$ the area in both tails beyond 3 units totals 0.0955.\nThis area is dramatically different than what we obtain from the normal distribution.\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use pt() to find probability under the $t$-distribution\npt(-3, df = 2) + (1 - pt(3, df = 2))\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.0955\n```\n\n\n:::\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![The $t$-distribution with 2 degrees of freedom, with the area further than\n3 units from 0 shaded.\n](19-inference-one-mean_files/figure-html/fig-tDistDF23UnitsFromMean-1.png){#fig-tDistDF23UnitsFromMean fig-alt='A t distribution with 2 degrees of freedom. The area below negative 3 and above positive 3 has been shaded.' width=50%}\n:::\n:::\n\n\n::: {.guidedpractice data-latex=\"\"}\nWhat proportion of the $t$-distribution with 19 degrees of freedom falls above -1.79 units?\nUse your preferred method for finding tail areas.[^19-inference-one-mean-5]\n:::\n\n[^19-inference-one-mean-5]: We want to find the shaded area *above* -1.79 (we leave the picture to you).\n The lower tail area has an area of 0.0447, so the upper area would have an area of $1 - 0.0447 = 0.9553.$\n\n\\index{t-distribution}\n\n### One sample t-intervals\n\nLet's get our first taste of applying the $t$-distribution in the context of an example about the mercury content of dolphin muscle.\nElevated mercury concentrations are an important problem for both dolphins and other animals, like humans, who occasionally eat them.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![A Risso's dolphin. Photo by Mike Baird, www.bairdphotos.com.](images/rissosDolphin.jpg){#fig-rissosDolphin fig-alt='A photograph of a Risso\\'s dolphin in the water.' width=75%}\n:::\n:::\n\n\nWe will identify a confidence interval for the average mercury content in dolphin muscle using a sample of 19 Risso's dolphins from the Taiji area in Japan.\nThe data are summarized in @tbl-summaryStatsOfHgInMuscleOfRissosDolphins.\nThe minimum and maximum observed values can be used to evaluate whether there are clear outliers.\n\n\n::: {#tbl-summaryStatsOfHgInMuscleOfRissosDolphins .cell tbl-cap='Summary of mercury content in the muscle of 19 Risso\\'s dolphins from the\nTaiji area. Measurements are in micrograms of mercury per wet gram of\nmuscle $(\\\\mu$g/wet g).'}\n::: {.cell-output-display}\n`````{=html}\n\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n\n
n Mean SD Min Max
19 4.4 2.3 1.7 9.2
\n\n`````\n:::\n:::\n\n\n::: {.workedexample data-latex=\"\"}\nAre the independence and normality conditions satisfied for this dataset?\n\n------------------------------------------------------------------------\n\nThe observations are a simple random sample, therefore it is reasonable to assume that the dolphins are independent.\nThe summary statistics in @tbl-summaryStatsOfHgInMuscleOfRissosDolphins do not suggest any clear outliers, with all observations within 2.5 standard deviations of the mean.\nBased on this evidence, the normality condition seems reasonable.\n:::\n\nIn the normal model, we used $z^{\\star}$ and the standard error to determine the width of a confidence interval.\nWe revise the confidence interval formula slightly when using the $t$-distribution:\n\n$$\n\\begin{aligned}\n\\text{point estimate} \\ &\\pm\\ t^{\\star}_{df} \\times SE \\\\\n\\bar{x} \\ &\\pm\\ t^{\\star}_{df} \\times \\frac{s}{\\sqrt{n}}\n\\end{aligned}\n$$\n\n::: {.workedexample data-latex=\"\"}\nUsing the summary statistics in @tbl-summaryStatsOfHgInMuscleOfRissosDolphins, compute the standard error for the average mercury content in the $n = 19$ dolphins.\n\n------------------------------------------------------------------------\n\nWe plug in $s$ and $n$ into the formula: $SE = \\frac{s}{\\sqrt{n}} = \\frac{2.3}{\\sqrt{19}} = 0.528.$\n:::\n\nThe value $t^{\\star}_{df}$ is a cutoff we obtain based on the confidence level and the $t$-distribution with $df$ degrees of freedom.\nThat cutoff is found in the same way as with a normal distribution: we find $t^{\\star}_{df}$ such that the fraction of the $t$-distribution with $df$ degrees of freedom within a distance $t^{\\star}_{df}$ of 0 matches the confidence level of interest.\n\n::: {.workedexample data-latex=\"\"}\nWhen $n = 19,$ what is the appropriate degrees of freedom?\nFind $t^{\\star}_{df}$ for this degrees of freedom and the confidence level of 95%\n\n------------------------------------------------------------------------\n\nThe degrees of freedom is easy to calculate: $df = n - 1 = 18.$\n\nUsing statistical software, we find the cutoff where the upper tail is equal to 2.5%: $t^{\\star}_{18} = 2.10.$ The area below -2.10 will also be equal to 2.5%.\nThat is, 95% of the $t$-distribution with $df = 18$ lies within 2.10 units of 0.\n:::\n\n\\clearpage\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use qt() to find the t-cutoff (with 95% in the middle)\nqt(0.025, df = 18)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] -2.1\n```\n\n\n:::\n\n```{.r .cell-code}\nqt(0.975, df = 18)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 2.1\n```\n\n\n:::\n:::\n\n\n::: {.important data-latex=\"\"}\n**Degrees of freedom for a single sample.**\n\nIf the sample has $n$ observations and we are examining a single mean, then we use the $t$-distribution with $df=n-1$ degrees of freedom.\n:::\n\n::: {.workedexample data-latex=\"\"}\nCompute and interpret the 95% confidence interval for the average mercury content in Risso's dolphins.\n\n------------------------------------------------------------------------\n\nWe can construct the confidence interval as\n\n$$\n\\begin{aligned}\n\\bar{x} \\ &\\pm\\ t^{\\star}_{18} \\times SE \\\\\n4.4 \\ &\\pm\\ 2.10 \\times 0.528 \\\\\n(3.29 \\ &, \\ 5.51)\n\\end{aligned} \n$$\n\nWe are 95% confident the average mercury content of muscles in Risso's dolphins is between 3.29 and 5.51 $\\mu$g/wet gram, which is considered extremely high.\n:::\n\n::: {.important data-latex=\"\"}\n**Calculating a** $t$**-confidence interval for the mean,** $\\mu.$\n\nBased on a sample of $n$ independent and nearly normal observations, a confidence interval for the population mean is\n\n$$\n\\begin{aligned}\n\\text{point estimate} \\ &\\pm\\ t^{\\star}_{df} \\times SE \\\\\n\\bar{x} \\ &\\pm\\ t^{\\star}_{df} \\times \\frac{s}{\\sqrt{n}}\n\\end{aligned}\n$$\n\nwhere $\\bar{x}$ is the sample mean, $t^{\\star}_{df}$ corresponds to the confidence level and degrees of freedom $df,$ and $SE$ is the standard error as estimated by the sample.\n:::\n\n::: {.guidedpractice data-latex=\"\"}\nThe FDA's webpage provides some data on mercury content of fish.\nBased on a sample of 15 croaker white fish (Pacific), a sample mean and standard deviation were computed as 0.287 and 0.069 ppm (parts per million), respectively.\nThe 15 observations ranged from 0.18 to 0.41 ppm.\nWe will assume these observations are independent.\nBased on the summary statistics of the data, do you have any objections to the normality condition of the individual observations?[^19-inference-one-mean-6]\n:::\n\n[^19-inference-one-mean-6]: The sample size is under 30, so we check for obvious outliers: since all observations are within 2 standard deviations of the mean, there are no such clear outliers.\n\n::: {.workedexample data-latex=\"\"}\nEstimate the standard error of $\\bar{x} = 0.287$ ppm using the data summaries in the previous Guided Practice.\nIf we are to use the $t$-distribution to create a 90% confidence interval for the actual mean of the mercury content, identify the degrees of freedom and $t^{\\star}_{df}.$\n\n------------------------------------------------------------------------\n\nThe standard error: $SE = \\frac{0.069}{\\sqrt{15}} = 0.0178.$\n\nDegrees of freedom: $df = n - 1 = 14.$\n\nSince the goal is a 90% confidence interval, we choose $t_{14}^{\\star}$ so that the two-tail area is 0.1: $t^{\\star}_{14} = 1.76.$\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use qt() to find the t-cutoff (with 90% in the middle)\nqt(0.05, df = 14)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] -1.76\n```\n\n\n:::\n\n```{.r .cell-code}\nqt(0.95, df = 14)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 1.76\n```\n\n\n:::\n:::\n\n\n::: {.guidedpractice data-latex=\"\"}\nUsing the information and results of the previous Guided Practice and Example, compute a 90% confidence interval for the average mercury content of croaker white fish (Pacific).[^19-inference-one-mean-7]\n:::\n\n[^19-inference-one-mean-7]: $\\bar{x} \\ \\pm\\ t^{\\star}_{14} \\times SE \\ \\to\\ 0.287 \\ \\pm\\ 1.76 \\times 0.0178 \\ \\to\\ (0.256, 0.318).$ We are 90% confident that the average mercury content of croaker white fish (Pacific) is between 0.256 and 0.318 ppm.\n\n::: {.guidedpractice data-latex=\"\"}\nThe 90% confidence interval from the previous Guided Practice is 0.256 ppm to 0.318 ppm.\nCan we say that 90% of croaker white fish (Pacific) have mercury levels between 0.256 and 0.318 ppm?[^19-inference-one-mean-8]\n:::\n\n[^19-inference-one-mean-8]: No, a confidence interval only provides a range of plausible values for a population parameter, in this case the population mean.\n It does not describe what we might observe for individual observations.\n\nRecall that the margin of error is defined by the standard error.\nThe margin of error for $\\bar{x}$ can be directly obtained from $SE(\\bar{x}).$\n\n::: {.important data-latex=\"\"}\n**Margin of error for** $\\bar{x}.$\n\nThe margin of error is $t^\\star_{df} \\times s/\\sqrt{n}$ where $t^\\star_{df}$ is calculated from a specified percentile on the t-distribution with *df* degrees of freedom.\n:::\n\n### One sample t-tests\n\nNow that we have used the $t$-distribution for making a confidence interval for a mean, let's speed on through to hypothesis tests for the mean.\n\n::: {.important data-latex=\"\"}\n**The test statistic for assessing a single mean is a T.**\n\nThe T score is a ratio of how the sample mean differs from the hypothesized mean as compared to how the observations vary.\n\n$$ T = \\frac{\\bar{x} - \\mbox{null value}}{s/\\sqrt{n}} $$\n\nWhen the null hypothesis is true and the conditions are met, T has a t-distribution with $df = n - 1.$\n\nConditions:\n\n- Independent observations.\n- Large samples and no extreme outliers.\n:::\n\n\\vspace{-3mm}\n\nIs the typical US runner getting faster or slower over time?\nWe consider this question in the context of the Cherry Blossom Race, which is a 10-mile race in Washington, DC each spring.\nThe average time for all runners who finished the Cherry Blossom Race in 2006 was 93.29 minutes (93 minutes and about 17 seconds).\nWe want to determine using data from 100 participants in the 2017 Cherry Blossom Race whether runners in this race are getting faster or slower, versus the other possibility that there has been no change.\n\n::: {.data data-latex=\"\"}\nThe [`run17`](http://openintrostat.github.io/cherryblossom/reference/run17.html) data can be found in the [**cherryblossom**](http://openintrostat.github.io/cherryblossom) R package.\n:::\n\n\\vspace{-3mm}\n\n::: {.guidedpractice data-latex=\"\"}\nWhat are appropriate hypotheses for this context?[^19-inference-one-mean-9]\n:::\n\n[^19-inference-one-mean-9]: $H_0:$ The average 10-mile run time was the same for 2006 and 2017.\n $\\mu = 93.29$ minutes.\n $H_A:$ The average 10-mile run time for 2017 was *different* than that of 2006.\n $\\mu \\neq 93.29$ minutes.\n\n\\vspace{-3mm}\n\n::: {.guidedpractice data-latex=\"\"}\nThe data come from a simple random sample of all participants, so the observations are independent.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](19-inference-one-mean_files/figure-html/unnamed-chunk-28-1.png){width=70%}\n:::\n:::\n\n\nA histogram of the race times is given to evaluate if we can move forward with a t-test.\nIs the normality condition met?[^19-inference-one-mean-10]\n:::\n\n[^19-inference-one-mean-10]: With a sample of 100, we should only be concerned if there is are particularly extreme outliers.\n The histogram of the data does not show any outliers of concern (and arguably, no outliers at all).\n\nWhen completing a hypothesis test for the one-sample mean, the process is nearly identical to completing a hypothesis test for a single proportion.\nFirst, we find the Z score using the observed value, null value, and standard error; however, we call it a **T score** since we use a $t$-distribution for calculating the tail area.\nThen we find the p-value using the same ideas we used previously: find the one-tail area under the sampling distribution, and double it.\n\n\n\n\n\n::: {.workedexample data-latex=\"\"}\nWith both the independence and normality conditions satisfied, we can proceed with a hypothesis test using the $t$-distribution.\nThe sample mean and sample standard deviation of the sample of 100 runners from the 2017 Cherry Blossom Race are 98.78 and 16.59 minutes, respectively.\nRecall that the average run time in 2006 was 93.29 minutes.\nFind the test statistic and p-value.\nWhat is your conclusion?\n\n------------------------------------------------------------------------\n\nTo find the test statistic (T score), we first must determine the standard error:\n\n$$ SE = 16.6 / \\sqrt{100} = 1.66 $$\n\nNow we can compute the **T score** using the sample mean (98.78), null value (93.29), and $SE:$\n\n$$ T = \\frac{98.8 - 93.29}{1.66} = 3.32 $$\n\nFor $df = 100 - 1 = 99,$ we can determine using statistical software (or a $t$-table) that the one-tail area is 0.000631, which we double to get the p-value: 0.00126.\n\nBecause the p-value is smaller than 0.05, we reject the null hypothesis.\nThat is, the data provide convincing evidence that the average run time for the Cherry Blossom Run in 2017 is different than the 2006 average.\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# using pt() to find the left tail and multiply by 2 to get both tails\n(1 - pt(3.32, df = 99)) * 2\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.00126\n```\n\n\n:::\n:::\n\n\n::: {.important data-latex=\"\"}\n**When using a** $t$**-distribution, we use a T score (similar to a Z score).**\n\nTo help us remember to use the $t$-distribution, we use a $T$ to represent the test statistic, and we often call this a **T score**.\nThe Z score and T score are computed in the exact same way and are conceptually identical: each represents how many standard errors the observed value is from the null value.\n:::\n\n\\clearpage\n\n## Chapter review {#sec-chp19-review}\n\n### Summary\n\nIn this chapter we extended the randomization / bootstrap / mathematical model paradigm to questions involving quantitative variables of interest.\nWhen there is only one variable of interest, we are often hypothesizing or finding confidence intervals about the population mean.\nNote, however, the bootstrap method can be used for other statistics like the population median or the population IQR.\nWhen comparing a quantitative variable across two groups, the question often focuses on the difference in population means (or sometimes a paired difference in means).\nThe questions revolving around one, two, and paired samples of means are addressed using the t-distribution; they are therefore called \"t-tests\" and \"t-intervals.\" When considering a quantitative variable across 3 or more groups, a method called ANOVA is applied.\nAgain, almost all the research questions can be approached using computational methods (e.g., randomization tests or bootstrapping) or using mathematical models.\nWe continue to emphasize the importance of experimental design in making conclusions about research claims.\nIn particular, recall that variability can come from different sources (e.g., random sampling vs. random allocation, see @fig-randsampValloc).\n\n### Terms\n\nWe introduced the following terms in the chapter.\nIf you're not sure what some of these terms mean, we recommend you go back in the text and review their definitions.\nWe are purposefully presenting them in alphabetical order, instead of in order of appearance, so they will be a little more challenging to locate.\nHowever, you should be able to easily spot them as **bolded text**.\n\n\n::: {.cell}\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Central Limit Theorem point estimate T score single mean
degrees of freedom SD single mean t-distribution
numerical data SE single mean
\n\n`````\n:::\n:::\n\n\n\\clearpage\n\n## Exercises {#sec-chp19-exercises}\n\nAnswers to odd-numbered exercises can be found in [Appendix -@sec-exercise-solutions-19].\n\n::: {.exercises data-latex=\"\"}\n1. **Statistics vs. parameters: one mean.** Each of the following scenarios were set up to assess an average value.\n For each one, identify, in words: the statistic and the parameter.\n\n a. A sample of 25 New Yorkers were asked how much sleep they get per night.\n\n b. Researchers at two different universities in California collected information on undergraduates' heights.\n\n2. **Statistics vs. parameters: one mean.** Each of the following scenarios were set up to assess an average value.\n For each one, identify, in words: the statistic and the parameter.\n\n a. Georgianna samples 20 children from a particular city and measures how many years they have each been playing piano.\n\n b. Traffic police officers (who are regularly exposed to lead from automobile exhaust) had their lead levels measured in their blood.\n\n3. **Heights of adults.** Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals.\n Summary statistics for the distribution of heights (measured in centimeters), along with a histogram, are provided below.[^_19-ex-inference-one-mean-1]\n [@Heinz:2003]\n\n ::: {.cell}\n ::: {.cell-output-display}\n `````{=html}\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Min Q1 Median Mean Q3 Max SD IQR
147 164 170 171 178 198 9.4 14
\n \n `````\n :::\n \n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-32-1.png){width=70%}\n :::\n :::\n\n a. What is the point estimate for the average height of active individuals?\n What about the median?\n\n b. What is the point estimate for the standard deviation of the heights of active individuals?\n What about the IQR?\n\n c. Is a person who is 1m 80cm (180 cm) tall considered unusually tall?\n And is a person who is 1m 55cm (155cm) considered unusually short?\n Explain your reasoning.\n\n d. The researchers take another random sample of physically active individuals.\n Would you expect the mean and the standard deviation of this new sample to be the ones given above?\n Explain your reasoning.\n\n e. The sample means obtained are point estimates for the mean height of all active individuals, if the sample of individuals is equivalent to a simple random sample.\n What measure do we use to quantify the variability of such an estimate?\n Compute this quantity using the data from the original sample under the condition that the data are a simple random sample.\n\n4. **Heights of adults, standard error.** Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters.\n Provide an estimate for the standard error of the mean for samples of following sizes.[^_19-ex-inference-one-mean-2]\n [@Heinz:2003]\n\n a. n = 10\n\n b. n = 50\n\n c. n = 100\n\n d. n = 1000\n\n e. The standard error of the mean is a number which describes what?\n\n5. **Heights of adults vs. kindergartners.** Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters.[^_19-ex-inference-one-mean-3]\n [@Heinz:2003]\n\n a. Would the standard deviation of the heights of a few hundred kindergartners be bigger or smaller than 9.4cm?\n Explain your reasoning.\n\n b. Suppose many samples of size 100 adults are taken and, separately, many samples of size 100 kindergarteners are taken.\n For each of the many samples, the average height is computed.\n Which set of sample averages would have a larger standard error of the mean, the adult sample averages or the kindergartner sample averages?\n\n6. **Heights of adults, bootstrap interval.** Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals.\n The histogram below shows the sample distribution of bootstrapped means from 1,000 different bootstrap samples.[^_19-ex-inference-one-mean-4]\n [@Heinz:2003]\n\n ::: {.cell}\n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-33-1.png){width=90%}\n :::\n :::\n\n a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean.\n\n b. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap percentile confidence interval for the true average adult height in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n c. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap SE confidence interval for the true average adult height in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n7. **Identify the critical** $t$.\n A random sample is selected from an approximately normal population with unknown standard deviation.\n Find the degrees of freedom and the critical $t$-value (t$^\\star$) for the given sample size and confidence level.\n\n a. $n = 6$, CL = 90%\n\n b. $n = 21$, CL = 98%\n\n c. $n = 29$, CL = 95%\n\n d. $n = 12$, CL = 99%\n\n8. $t$-distribution.\n The figure below shows three unimodal and symmetric curves: the standard normal (z) distribution, the $t$-distribution with 5 degrees of freedom, and the $t$-distribution with 1 degree of freedom.\n Determine which is which, and explain your reasoning.\n\n ::: {.cell}\n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-34-1.png){width=90%}\n :::\n :::\n\n9. **Find the p-value, I.** A random sample is selected from an approximately normal population with an unknown standard deviation.\n Find the p-value for the given sample size and test statistic.\n Also determine if the null hypothesis would be rejected at $\\alpha = 0.05$.\n\n a. $n = 11$, $T = 1.91$\n\n b. $n = 17$, $T = -3.45$\n\n c. $n = 7$, $T = 0.83$\n\n d. $n = 28$, $T = 2.13$\n\n10. **Find the p-value, II.** A random sample is selected from an approximately normal population with an unknown standard deviation.\n Find the p-value for the given sample size and test statistic.\n Also determine if the null hypothesis would be rejected at $\\alpha = 0.01$.\n\n a. $n = 26$, $T = 2.485$\n\n b. $n = 18$, $T = 0.5$\n\n \\clearpage\n\n11. **Length of gestation, confidence interval.** Every year, the United States Department of Health and Human Services releases to the public a large dataset containing information on births recorded in the country.\n This dataset has been of interest to medical researchers who are studying the relation between habits and practices of expectant mothers and the birth of their children.\n In this exercise we work with a random sample of 1,000 cases from the dataset released in 2014.\n The length of pregnancy, measured in weeks, is commonly referred to as gestation.\n The histograms below show the distribution of lengths of gestation from the random sample of 1,000 births (on the left) and the distribution of bootstrapped means of gestation from 1,500 different bootstrap samples (on the right).[^_19-ex-inference-one-mean-5]\n\n ::: {.cell}\n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-35-1.png){width=100%}\n :::\n :::\n\n a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean.\n\n b. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap percentile confidence interval for the true average gestation length in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n c. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap SE confidence interval for the true average gestation length in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n \\clearpage\n\n12. **Length of gestation, hypothesis test.** In this exercise we work with a random sample of 1,000 cases from the dataset released by the United States Department of Health and Human Services in 2014.\n Provided below are sample statistics for gestation (length of pregnancy, measured in weeks) of births in this sample.[^_19-ex-inference-one-mean-6]\n\n ::: {.cell}\n ::: {.cell-output-display}\n `````{=html}\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Min Q1 Median Mean Q3 Max SD IQR
21 38 39 38.7 40 46 2.6 2
\n \n `````\n :::\n :::\n\n a. What is the point estimate for the average length of pregnancy for all women?\n What about the median?\n\n b. You might have heard that human gestation is typically 40 weeks.\n Using the data, perform a complete hypothesis test, using mathematical models, to assess the 40 week claim.\n State the null and alternative hypotheses, find the T score, find the p-value, and provide a conclusion in context of the data.\n\n c. A quick internet search validates the claim of \"40 weeks gestation\" for humans.\n A friend of yours claims that there are different ways to measure gestation (starting at first day of last period, ovulation, or conception) which will result in estimates that are a week or two different.\n Another friend mentions that recent increases in cesarean births is likely to have decreased length of gestation.\n Do the data provide a mechanism to distinguish between your two friends' claims?\n\n13. **Interpreting confidence intervals for population mean.** For each of the following statements, indicate if they are a true or false interpretation of the confidence interval.\n If false, provide a reason or correction to the misinterpretation.\n You collect a large sample and calculate a 95% confidence interval for the average number of cans of sodas consumed annually per adult in the US to be (440 cans, 520 cans), i.e., on average, adults in the US consume just under two cans of soda per day.\n\n a. 95% of adults in the US consume between 440 and 520 cans of soda per year.\n\n b. There is a 95% probability that the true population average per adult yearly soda consumption is between 440 and 520 cans.\n\n c. The true population average per adult yearly soda consumption is between 440 and 520 cans, with 95% confidence.\n\n d. The average soda consumption of the people who were sampled is between 440 and 520 cans of soda per year, with 95% confidence.\n\n14. **Interpreting p-values for population mean.** For each of the following statements, indicate if they are a true or false interpretation of the p-value.\n If false, provide a reason or correction to the misinterpretation.\n You are wondering if the average amount of cereal in a 10oz cereal box is greater than 10oz.\n You collect 50 boxes of cereal, weigh them carefully, find a T score, and a p-value of 0.23.\n\n a. The probability that the average weight of all cereal boxes is 10 oz is 0.23.\n\n b. The probability that the average weight of all cereal boxes is greater than 10 oz is 0.23.\n\n c. Because the p-value is 0.23, the average weight of all cereal boxes is 10 oz.\n\n d. Because the p-value is small, the population average must be just barely above 10 oz (small effect).\n\n e. If $H_0$ is true, the probability of observing another sample with an average as or more extreme as the data is 0.23.\n\n \\clearpage\n\n15. **Working backwards, I.** A 95% confidence interval for a population mean, $\\mu$, is given as (18.985, 21.015).\n The population distribution is approximately normal and the population standard deviation is unknown.\n This confidence interval is based on a simple random sample of 36 observations.\n Calculate the sample mean, the margin of error, and the sample standard deviation.\n Assume that all conditions necessary for inference are satisfied.\n Use the $t$-distribution in any calculations.\n\n16. **Working backwards, II.** A 90% confidence interval for a population mean is (65, 77).\n The population distribution is approximately normal and the population standard deviation is unknown.\n This confidence interval is based on a simple random sample of 25 observations.\n Calculate the sample mean, the margin of error, and the sample standard deviation.\n Assume that all conditions necessary for inference are satisfied.\n Use the $t$-distribution in any calculations.\n\n17. **Sleep habits of New Yorkers.** New York is known as \"the city that never sleeps\".\n A random sample of 25 New Yorkers were asked how much sleep they get per night.\n Statistical summaries of these data are shown below.\n The point estimate suggests New Yorkers sleep less than 8 hours a night on average.\n Evaluate the claim that New York is the city that never sleeps keeping in mind that, despite this claim, the true average number of hours New Yorkers sleep could be less than 8 hours or more than 8 hours.\n\n ::: {.cell}\n ::: {.cell-output-display}\n `````{=html}\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
n Mean SD Min Max
25 7.73 0.77 6.17 9.78
\n \n `````\n :::\n :::\n\n a. Write the hypotheses in symbols and in words.\n\n b. Check conditions, then calculate the test statistic, $T$, and the associated degrees of freedom.\n\n c. Find and interpret the p-value in this context.\n Drawing a picture may be helpful.\n\n d. What is the conclusion of the hypothesis test?\n\n e. If you were to construct a 90% confidence interval that corresponded to this hypothesis test, would you expect 8 hours to be in the interval?\n\n18. **Find the mean.** You are given the hypotheses shown below.\n We know that the sample standard deviation is 8 and the sample size is 20.\n For what sample mean would the p-value be equal to 0.05?\n Assume that all conditions necessary for inference are satisfied.\n\n $$H_0: \\mu = 60 \\quad \\quad H_A: \\mu \\neq 60$$\n\n19. $t^\\star$ for the correct confidence level.\n As you've seen, the tails of a $t-$distribution are longer than the standard normal which results in $t^{\\star}_{df}$ being larger than $z^{\\star}$ for any given confidence level.\n When finding a CI for a population mean, explain how mistakenly using $z^{\\star}$ (instead of the correct $t^{*}_{df}$) would affect the confidence level.\n\n20. **Possible bootstrap samples.** Consider a simple random sample of the following observations: 47, 4, 92, 47, 12, 8.\n Which of the following could be a possible bootstrap samples from the observed data above?\n If the set of values could not be a bootstrap sample, indicate why not.\n\n a. 47, 47, 47, 47, 47, 47\n\n b. 92, 4, 13, 8, 47, 4\n\n c. 92, 47, 12\n\n d. 8, 47, 12, 12, 8, 4, 92\n\n e. 12, 4, 8, 8, 92, 12\n\n \\clearpage\n\n21. **Play the piano.** Georgianna claims that in a small city renowned for its music school, the average child takes less than 5 years of piano lessons.\n We have a random sample of 20 children from the city, with a mean of 4.6 years of piano lessons and a standard deviation of 2.2 years.\n\n a. Evaluate Georgianna's claim (or that the opposite might be true) using a hypothesis test.\n\n b. Construct a 95% confidence interval for the number of years students in this city take piano lessons, and interpret it in context of the data.\n\n c. Do your results from the hypothesis test and the confidence interval agree?\n Explain your reasoning.\n\n22. **Auto exhaust and lead exposure.** Researchers interested in lead exposure due to car exhaust sampled the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes while working traffic enforcement in a primarily urban environment.\n The blood samples of these officers had an average lead concentration of 124.32 $\\mu$g/l and a SD of 37.74 $\\mu$g/l; a previous study of individuals from a nearby suburb, with no history of exposure, found an average blood level concentration of 35 $\\mu$g/l.\n [@Mortada:2000]\n\n a. Write down the hypotheses that would be appropriate for testing if the police officers appear to have been exposed to a different concentration of lead.\n\n b. Explicitly state and check all conditions necessary for inference on these data.\n\n c. Test the hypothesis that the downtown police officers have a higher lead exposure than the group in the previous study.\n Interpret your results in context.\n\n[^_19-ex-inference-one-mean-1]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-2]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-3]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-4]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-5]: The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-6]: The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n\n:::\n", + "markdown": "# Inference for a single mean {#sec-inference-one-mean}\n\n\n\n\n\n::: {.chapterintro data-latex=\"\"}\nFocusing now on Statistical Inference for **numerical data**, again, we will revisit and expand upon the foundational aspects of hypothesis testing from [Chapter -@sec-foundations-randomization].\n\nThe important data structure for this chapter is a numeric response variable (that is, the outcome is quantitative).\nThe four data structures we detail are one numeric response variable, one numeric response variable which is a difference across a pair of observations, a numeric response variable broken down by a binary explanatory variable, and a numeric response variable broken down by an explanatory variable that has two or more levels.\nWhen appropriate, each of the data structures will be analyzed using the three methods from [Chapter -@sec-foundations-randomization], [Chapter -@sec-foundations-bootstrapping], and [Chapter -@sec-foundations-mathematical]: randomization test, bootstrapping, and mathematical models, respectively.\n\nAs we build on the inferential ideas, we will visit new foundational concepts in statistical inference.\nOne key new idea rests in estimating how the sample mean (as opposed to the sample proportion) varies from sample to sample; the resulting value is referred to as the standard error of the mean.\nWe will also introduce a new important mathematical model, the $t$-distribution (as the foundation for the $t$-test).\n:::\n\n\n\n\n\nIn this chapter, we focus on the sample mean (instead of, for example, the sample median or the range of the observations) because of the well-studied mathematical model which describes the behavior of the sample mean.\nWe will not cover mathematical models which describe other statistics, but the bootstrap and randomization techniques described below are immediately extendable to any function of the observed data.\nThe sample mean will be calculated in one group, two paired groups, two independent groups, and many groups settings.\nThe techniques described for each setting will vary slightly, but you will be well served to find the structural similarities across the different settings.\n\nSimilar to how we can model the behavior of the sample proportion $\\hat{p}$ using a normal distribution, the sample mean $\\bar{x}$ can also be modeled using a normal distribution when certain conditions are met.\n\\index{point estimate!single mean} However, we'll soon learn that a new distribution, called the $t$-distribution, tends to be more useful when working with the sample mean.\nWe'll first learn about this new distribution, then we'll use it to construct confidence intervals and conduct hypothesis tests for the mean.\n\n## Bootstrap confidence interval for a mean {#sec-boot1mean}\n\nConsider a situation where you want to know whether you should buy a franchise of the used car store Awesome Autos.\nAs part of your planning, you'd like to know for how much an average car from Awesome Autos sells.\nIn order to go through the example more clearly, let's say that you are only able to randomly sample five cars from Awesome Auto.\n(If this were a real example, you would surely be able to take a much larger sample size, possibly even being able to measure the entire population!)\n\n### Observed data\n\n@fig-5cars shows a (small) random sample of observations from Awesome Auto.\nThe actual cars as well as their selling price is shown.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![A sample of five cars from Awesome Auto.](images/5cars.png){#fig-5cars fig-alt='Photographs of 5 different automobiles. The cars are different color and\ndifferent makes and models. On top of the image of each car is its price;\nthe five prices range from 9600 dollars to 27000 dollars.' width=75%}\n:::\n:::\n\n::: {.cell}\n\n:::\n\n\nThe sample average car price of \\$17140.00 is a first guess at the price of the average car price at Awesome Auto.\nHowever, as a student of statistics, you understand that one sample mean based on a sample of five observations will not necessarily equal the true population average car price for all the cars at Awesome Auto.\nIndeed, you can see that the observed car prices vary with a standard deviation of \\$7170.29, and surely the average car price would be different if a different sample of size five had been taken from the population.\nFortunately, as it did in previous chapters for the sample proportion, bootstrapping will approximate the variability of the sample mean from sample to sample.\n\n### Variability of the statistic\n\nAs with the inferential ideas covered in [Chapter -@sec-foundations-randomization], [Chapter -@sec-foundations-bootstrapping], and [Chapter -@sec-foundations-mathematical], the inferential analysis methods in this chapter are grounded in quantifying how one dataset differs from another when they are both taken from the same population.\nTo repeat, the idea is that we want to know how datasets differ from one another, but we aren't ever going to take more than one sample of observations.\nIt does not make sense to take repeated samples from the same population because if you have the ability to take more samples, a larger sample size will benefit you more than taking two samples from the population.\nInstead, of taking repeated samples from the actual population, we use bootstrapping to measure how the samples behave under an estimate of the population.\n\nAs mentioned previously, to get a sense of the cars at Awesome Auto, you take a sample of five cars from the Awesome Auto branch near you as a way to gauge the price of the cars being sold.\n@fig-bootpop1mean shows how the unknown original population can be estimated by using the sample to approximate the distribution of car prices from the population of cars at Awesome Auto.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![As seen previously, the idea behind bootstrapping is to consider the sample\nat hand as an estimate of the population. Sampling from the sample (of 5 cars)\nis identical to sampling from an infinite population which is made up of only the\ncars in the original sample.\n](images/bootpop1mean.png){#fig-bootpop1mean fig-alt='The sample of 5 cars is drawn from a large population with other values (i.e.,\nother car prices) unknown. The sample of five cars is replicated infinitely many\ntimes to create a proxy population where the car prices are given by the original\ndataset in the same relative distribution as measured in the sample.' width=90%}\n:::\n:::\n\n\nBy taking repeated samples from the estimated population, the variability from sample to sample can be observed.\nIn @fig-boot2 the repeated bootstrap samples are seen to be different both from each other and from the original population.\nRecall that the bootstrap samples were taken from the same (estimated) population, and so the differences in bootstrap samples are due entirely to natural variability in the sampling procedure.\nFor the situation at hand where the sample mean is the statistic of interest, the variability from sample to sample can be seen in @fig-bootsamps1mean.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![To estimate the natural variability in the sample mean, different bootstrap\nsamples are taken from the original sample. Notice that each bootstrap resample\nis different from each other as well as from the original sample\n](images/bootsamps1mean.png){#fig-bootsamps1mean fig-alt='The sample is shown being taken from the large unknown population. The bootstrap\nresamples, however, are taken directly from the original sample (sampling\nwith replacement) as if the resamples had been taken from an infinitely large\nproxy population. Three bootstrap resamples of 5 cars each are shown,\neach resample is slightly different due to the process of resampling with replacement.' width=90%}\n:::\n:::\n\n\nBy summarizing each of the bootstrap samples (here, using the sample mean), we see, directly, the variability of the sample mean, $\\bar{x},$ from sample to sample.\nThe distribution of $\\bar{x}_{bs}$ for the Awesome Auto cars is shown in @fig-bootmeans1mean.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![Because each of the bootstrap resamples respresents a different set of cars,\nthe mean of the each bootstrap resample will be a different value. Each of the\nbootstrapped means is calculated, and a histogram of the values describes the inherent\nnatural variability of the sample mean which is due to the sampling process.\n](images/bootmeans1mean.png){#fig-bootmeans1mean fig-alt='The sample is shown being taken from the large unknown population. Three\nbootstrap resamples of 5 cars each are shown; the three resamples have an average\ncar price of 11780 dollars, 19020 dollars, and 20260 dollars, respectively. A histogram\nrepresenting many bootstrap resamples indicates that the bootstrap averages vary\nfrom roughly 10000 dollars to 25000 dollars.' width=100%}\n:::\n:::\n\n\n@fig-carsbsmean summarizes one thousand bootstrap samples in a histogram of the bootstrap sample means.\nThe bootstrapped average car prices vary from about \\$10,000 to \\$25,000.\nThe bootstrap percentile confidence interval is found by locating the middle 90% (for a 90% confidence interval) or a 95% (for a 95% confidence interval) of the bootstrapped statistics.\n\n::: {.workedexample data-latex=\"\"}\nUsing @fig-carsbsmean, find the 90% and 95% bootstrap percentile confidence intervals for the true average price of a car from Awesome Auto.\n\n------------------------------------------------------------------------\n\nA 90% confidence interval is given by \\$12,140 and \\$22,007.\nThe conclusion is that we are 90% confident that the true average car price at Awesome Auto lies somewhere between \\$12,140 and \\$22,007.\n\nA 95% confidence interval is given by \\$11,778 to \\$22,500.\nThe conclusion is that we are 95% confident that the true average car price at Awesome Auto lies somewhere between \\$11,778 to \\$22,500.\n:::\n\n\n::: {.cell}\n::: {.cell-output-display}\n![The original Awesome Auto data is bootstrapped 1,000 times. The histogram provides a sense for the variability of the average car price from sample to sample.](19-inference-one-mean_files/figure-html/fig-carsbsmean-1.png){#fig-carsbsmean fig-alt='A histogram of the means of 1000 bootstrapped samples from the Awesome Auto data. The percentiles of the bootstrapped means are given to create 80%, 90%, 95%, or 99% bootstrap confidence intervals for the true mean of the population.' width=100%}\n:::\n:::\n\n\n### Bootstrap SE confidence interval\n\nAs seen in @sec-two-prop-boot-ci, another method for creating bootstrap confidence intervals directly uses a calculation of the variability of the bootstrap statistics (here, the bootstrap means).\nIf the bootstrap distribution is relatively symmetric and bell-shaped, then the 95% bootstrap SE confidence interval can be constructed with the formula familiar from the mathematical models in previous chapters:\n\n$$\\mbox{point estimate} \\pm 2 \\cdot SE_{BS}$$ The number 2 is an approximation connected to the \"95%\" part of the confidence interval (remember the 68-95-99.7 rule).\nAs will be seen in @sec-one-mean-math, a new distribution (the $t$-distribution) will be applied to most mathematical inference on numerical variables.\nHowever, because bootstrapping is not grounded in the same theory as the mathematical approach given in this text, we stick with the standard normal quantiles (in R use the function `qnorm()` to find normal percentiles other than 95%) for different confidence percentages.[^19-inference-one-mean-1]\n\n[^19-inference-one-mean-1]: There is a large literature on understanding and improving bootstrap intervals, see @Hesterbeg:2015 titled [\"What Teachers Should Know About the Bootstrap\"](https://www.tandfonline.com/doi/full/10.1080/00031305.2015.1089789) and @Hayden:2019 titled [\"Questionable Claims for Simple Versions of the Bootstrap\"](https://www.tandfonline.com/doi/full/10.1080/10691898.2019.1669507) for more information.\n\n::: {.workedexample data-latex=\"\"}\nExplain how the standard error (SE) of the bootstrapped means is calculated and what it is measuring.\n\n------------------------------------------------------------------------\n\nThe SE of the bootstrapped means measures how variable the means are from resample to resample.\nThe bootstrap SE is a good approximation to the SE of means as if we had taken repeated samples from the original population (which we agreed isn't something we would do because of wasted resources).\n\nLogistically, we can find the standard deviation of the bootstrapped means using the same calculations from [Chapter -@sec-explore-numerical].\nThat is, the bootstrapped means are the individual observations about which we measure the variability.\n:::\n\nAlthough we won't spend a lot of energy on this concept, you may be wondering some of the differences between a standard error and a standard deviation.\nThe **standard error**\\index{standard error} describes how a statistic (e.g., sample mean or sample proportion) varies from sample to sample.\nThe **standard deviation**\\index{standard deviation} can be thought of as a function applied to any list of numbers which measures how far those numbers vary from their own average.\nSo, you can have a standard deviation calculated on a column of dog heights or a standard deviation calculated on a column of bootstrapped means from the resampled data.\nNote that the standard deviation calculated on the bootstrapped means is referred to as the bootstrap standard error of the mean.\n\n\n\n\n\n::: {.guidedpractice data-latex=\"\"}\nIt turns out that the standard deviation of the bootstrapped means from @fig-carsbsmean is \\$2,891.87 (a value which is an excellent approximation for the standard error of sample means if we were to take repeated samples from the population).\n\\[Note: in R the calculation was done using the function `sd()`.\\] The average of the observed prices is \\$17,140, ad we will consider the sample average to be the best guess point estimate for $\\mu.$ .\n\nFind and interpret the confidence interval for $\\mu$ (the true average cost of a car at Awesome Auto) using the bootstrap SE confidence interval formula.[^19-inference-one-mean-2]\n:::\n\n[^19-inference-one-mean-2]: Using the formula for the bootstrap SE interval, we find the 95% confidence interval for $\\mu$ is: $17,140 \\pm 2 \\cdot 2,891.87 \\rightarrow$ (\\$11,356.26, \\$22,923.74).\n We are 95% confident that the true average car price at Awesome Auto is somewhere between \\$11,356.26 and \\$22,923.74.\n\n::: {.workedexample data-latex=\"\"}\nCompare and contrast the two different 95% confidence intervals for $\\mu$ created by finding the percentiles of the bootstrapped means and created by finding the SE of the bootstrapped means.\nDo you think the intervals *should* be identical?\n\n------------------------------------------------------------------------\n\n- Percentile interval: (\\$11,778, \\$22,500)\n- SE interval: (\\$11,356.26, \\$22,923.74)\n\nThe intervals were created using different methods, so it is not surprising that they are not identical.\nHowever, we are pleased to see that the two methods provide very similar interval approximations.\n\nThe technical details surrounding which data structures are best for percentile intervals and which are best for SE intervals is beyond the scope of this text.\nHowever, the larger the samples are, the better (and closer) the interval estimates will be.\n:::\n\n### Bootstrap percentile confidence interval for a standard deviation\n\nSuppose that the research question at hand seeks to understand how variable the prices of the cars are at Awesome Auto.\nThat is, your interest is no longer in the average car price but in the *standard deviation* of the prices of all cars at Awesome Auto, $\\sigma.$ You may have already realized that the sample standard deviation, $s,$ will work as a good **point estimate** for the parameter of interest: the population standard deviation, $\\sigma.$ The point estimate of the five observations is calculated to be $s = \\$7,170.286.$ While $s = \\$7,170.286$ might be a good guess for $\\sigma,$ we prefer to have an interval estimate for the parameter of interest.\nAlthough there is a mathematical model which describes how $s$ varies from sample to sample, the mathematical model will not be presented in this text.\nEven without the mathematical model, bootstrapping can be used to find a confidence interval for the parameter $\\sigma.$ Using the same technique as presented for a confidence interval for $\\mu,$ here we find the bootstrap percentile confidence interval for $\\sigma.$\n\n\n\n\n\n::: {.workedexample data-latex=\"\"}\nDescribe the bootstrap distribution for the standard deviation shown in @fig-carsbssd.\n\n------------------------------------------------------------------------\n\nThe distribution is skewed left and centered near \\$7,170.286, which is the point estimate from the original data.\nMost observations in this distribution lie between \\$0 and \\$10,000.\n:::\n\n::: {.guidedpractice data-latex=\"\"}\nUsing @fig-carsbssd, find *and interpret* a 90% bootstrap percentile confidence interval for the population standard deviation for car prices at Awesome Auto.[^19-inference-one-mean-3]\n:::\n\n[^19-inference-one-mean-3]: By looking at the percentile values in @fig-carsbssd, the middle 90% of the bootstrap standard deviations are given by the 5 percentile (\\$3,602.5) and 95 percentile (\\$8,737.2).\n That is, we are 90% confident that the true standard deviation of car prices is between \\$3,602.5 and \\$8,737.2.\n Note, the problem was set up as 90% to indicate that there was not a need for a high level of confidence (such a 95% or 99%).\n A lower degree of confidence increases potential for error, but it also produces a more narrow interval.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![The original Awesome Auto data is bootstrapped 1,000 times. The histogram\nprovides a sense for the variability of the standard deviation of the car prices\nfrom sample to sample.\n](19-inference-one-mean_files/figure-html/fig-carsbssd-1.png){#fig-carsbssd fig-alt='A histogram of the standard deviations of 1000 bootstrapped samples from the Awesome Auto data. The percentiles of the bootstrapped standard deviations are given to create 80%, 90%, 95%, or 99% bootstrap confidence intervals for the true standard deviation of the population.' width=100%}\n:::\n:::\n\n\n### Bootstrapping is not a solution to small sample sizes!\n\nThe example presented above is done for a sample with only five observations.\nAs with analysis techniques that build on mathematical models, bootstrapping works best when a large random sample has been taken from the population.\nBootstrapping is a method for capturing the variability of a statistic when the mathematical model is unknown (it is not a method for navigating small samples).\nAs you might guess, the larger the random sample, the more accurately that sample will represent the population of interest.\n\n## Mathematical model for a mean {#sec-one-mean-math}\n\nAs with the sample proportion, the variability of the sample mean is well described by the mathematical theory given by the Central Limit Theorem.\nHowever, because of missing information about the inherent variability in the population ($\\sigma$), a $t$-distribution is used in place of the standard normal when performing hypothesis test or confidence interval analyses.\n\n### Mathematical distribution of the sample mean\n\nThe sample mean tends to follow a normal distribution centered at the population mean, $\\mu,$ when certain conditions are met.\nAdditionally, we can compute a standard error for the sample mean using the population standard deviation $\\sigma$ and the sample size $n.$\n\n::: {.important data-latex=\"\"}\n**Central Limit Theorem for the sample mean.**\n\nWhen we collect a sufficiently large sample of $n$ independent observations from a population with mean $\\mu$ and standard deviation $\\sigma,$ the sampling distribution of $\\bar{x}$ will be nearly normal with\n\n$$\\text{Mean} = \\mu \\qquad \\text{Standard Error }(SE) = \\frac{\\sigma}{\\sqrt{n}}$$\n:::\n\nBefore diving into confidence intervals and hypothesis tests using $\\bar{x},$ we first need to cover two topics:\n\n- When we modeled $\\hat{p}$ using the normal distribution, certain conditions had to be satisfied. The conditions for working with $\\bar{x}$ are a little more complex, and below, we will discuss how to check conditions for inference using a mathematical model.\n- The standard error is dependent on the population standard deviation, $\\sigma.$ However, we rarely know $\\sigma,$ and instead we must estimate it. Because this estimation is itself imperfect, we use a new distribution called the $t$-distribution to fix this problem, which we discuss below.\n\n\\index{t-distribution@$t$-distribution}\n\n\n\n\n\n### Evaluating the two conditions required for modeling $\\bar{x}$\n\nTwo conditions are required to apply the Central Limit Theorem\\index{Central Limit Theorem} for a sample mean $\\bar{x}:$\n\n- **Independence.** The sample observations must be independent.\n The most common way to satisfy this condition is when the sample is a simple random sample from the population.\n If the data come from a random process, analogous to rolling a die, this would also satisfy the independence condition.\n\n- **Normality.** When a sample is small, we also require that the sample observations come from a normally distributed population.\n We can relax this condition more and more for larger and larger sample sizes.\n This condition is obviously vague, making it difficult to evaluate, so next we introduce a couple rules of thumb to make checking this condition easier.\n\n\n\n\n\n::: {.important data-latex=\"\"}\n**General rule for performing the normality check.**\n\nThere is no perfect way to check the normality condition, so instead we use two general rules based on the number and magnitude of extreme observations.\nNote, it often takes practice to get a sense for whether a normal approximation is appropriate.\n\n- Small $n$: If the sample size $n$ is small and there are **no clear outliers** in the data, then we typically assume the data come from a nearly normal distribution to satisfy the condition.\n- Large $n$: If the sample size $n$ is large and there are no **particularly extreme** outliers, then we typically assume the sampling distribution of $\\bar{x}$ is nearly normal, even if the underlying distribution of individual observations is not.\n\nSome guidelines for determining whether $n$ is considered small or large are as follows: slight skew is okay for sample sizes of 15, moderate skew for sample sizes of 30, and strong skew for sample sizes of 60.\n:::\n\nIn this first course in statistics, you aren't expected to develop perfect judgment on the normality condition.\nHowever, you are expected to be able to handle clear cut cases based on the rules of thumb.[^19-inference-one-mean-4]\n\n[^19-inference-one-mean-4]: More nuanced guidelines would consider further relaxing the *particularly extreme outlier* check when the sample size is very large.\n However, we'll leave further discussion here to a future course.\n\n::: {.workedexample data-latex=\"\"}\nConsider the four plots provided in @fig-outliersandsscondition that come from simple random samples from different populations.\nTheir sample sizes are $n_1 = 15$ and $n_2 = 50.$\n\nAre the independence and normality conditions met in each case?\n\n------------------------------------------------------------------------\n\nEach samples is from a simple random sample of its respective population, so the independence condition is satisfied.\nLet's next check the normality condition for each using the rule of thumb.\n\nThe first sample has fewer than 30 observations, so we are watching for any clear outliers.\nNone are present; while there is a small gap in the histogram on the right, this gap is small and over 20% of the observations in this small sample are represented to the left of the gap, so we can hardly call these clear outliers.\nWith no clear outliers, the normality condition can be reasonably assumed to be met.\n\nThe second sample has a sample size greater than 30 and includes an outlier that appears to be roughly 5 times further from the center of the distribution than the next furthest observation.\nThis is an example of a particularly extreme outlier, so the normality condition would not be satisfied.\n\nIt's often helpful to also visualize the data using a box plot to assess skewness and existence of outliers.\nThe box plots provided underneath each histogram confirms our conclusions that the first sample does not have any outliers and the second sample does, with one outlier being particularly more extreme than the others.\n:::\n\n\n::: {.cell}\n::: {.cell-output-display}\n![Histograms of samples from two different populations.](19-inference-one-mean_files/figure-html/fig-outliersandsscondition-1.png){#fig-outliersandsscondition fig-alt='Two histogram and boxplot pairs. The first pair of plots describes a sample size of 15 and the points are distributed between zero and six with no outliers. The second pair of plots describes a sample of size 50 and the points are distributed between zero and six with one additional outlying point above 20.' width=90%}\n:::\n:::\n\n\nIn practice, it's typical to also do a mental check to evaluate whether we have reason to believe the underlying population would have moderate skew (if $n < 30)$ or have particularly extreme outliers $(n \\geq 30)$ beyond what we observe in the data.\nFor example, consider the number of followers for each individual account on Twitter, and then imagine this distribution.\nThe large majority of accounts have built up a couple thousand followers or fewer, while a relatively tiny fraction have amassed tens of millions of followers, meaning the distribution is extremely skewed.\nWhen we know the data come from such an extremely skewed distribution, it takes some effort to understand what sample size is large enough for the normality condition to be satisfied.\n\n\\index{Central Limit Theorem}\n\n### Introducing the t-distribution\n\n\\index{t-distribution}\n\nIn practice, we cannot directly calculate the standard error for $\\bar{x}$ since we do not know the population standard deviation, $\\sigma.$ We encountered a similar issue when computing the standard error for a sample proportion, which relied on the population proportion, $p.$ Our solution in the proportion context was to use the sample value in place of the population value when computing the standard error.\nWe'll employ a similar strategy for computing the standard error of $\\bar{x},$ using the sample standard deviation $s$ in place of $\\sigma:$\n\n$$SE = \\frac{\\sigma}{\\sqrt{n}} \\approx \\frac{s}{\\sqrt{n}}$$\n\nThis strategy tends to work well when we have a lot of data and can estimate $\\sigma$ using $s$ accurately.\nHowever, the estimate is less precise with smaller samples, and this leads to problems when using the normal distribution to model $\\bar{x}.$\n\nWe'll find it useful to use a new distribution for inference calculations called the $t$-distribution.\nA $t$-distribution, shown as a solid line in @fig-tDistCompareToNormalDist, has a bell shape.\nHowever, its tails are thicker than the normal distribution's, meaning observations are more likely to fall beyond two standard deviations from the mean than under the normal distribution.\n\nThe extra thick tails of the $t$-distribution are exactly the correction needed to resolve the problem (due to extra variability of the T score) of using $s$ in place of $\\sigma$ in the $SE$ calculation.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![Comparison of a $t$-distribution and a normal distribution.](19-inference-one-mean_files/figure-html/fig-tDistCompareToNormalDist-1.png){#fig-tDistCompareToNormalDist fig-alt='Two symmetric bell-shaped curves on top of one another. One is a normal curve with smaller tails and a higher peak in the middle. The other is a t-distribution with longer tails, meaning that there are more more observations far from the center of a t-distribution than of a normal distribution.' width=60%}\n:::\n:::\n\n\nThe $t$-distribution is always centered at zero and has a single parameter: degrees of freedom.\nThe **degrees of freedom** describes the precise form of the bell-shaped $t$-distribution.\nSeveral $t$-distributions are shown in @fig-tDistConvergeToNormalDist in comparison to the normal distribution.\nSimilar to the Chi-square distribution, the shape of the $t$-distribution also depends on the degrees of freedom.\n\nIn general, we'll use a $t$-distribution with $df = n - 1$ to model the sample mean when the sample size is $n.$ That is, when we have more observations, the degrees of freedom will be larger and the $t$-distribution will look more like the standard normal distribution; when the degrees of freedom is about 30 or more, the $t$-distribution is nearly indistinguishable from the normal distribution.\n\n\n\n\n::: {.cell}\n::: {.cell-output-display}\n![The larger the degrees of freedom, the more closely the $t$-distribution\nresembles the standard normal distribution.\n](19-inference-one-mean_files/figure-html/fig-tDistConvergeToNormalDist-1.png){#fig-tDistConvergeToNormalDist fig-alt='A normal distribution and four t distributions, all super imposed on top of one another. The smaller the degrees of freedom, the wider the tails in the t distribution.' width=90%}\n:::\n:::\n\n\n::: {.important data-latex=\"\"}\n**Degrees of freedom: df.**\n\nThe degrees of freedom describes the shape of the $t$-distribution.\nThe larger the degrees of freedom, the more closely the distribution approximates the normal distribution.\n\nWhen modeling $\\bar{x}$ using the $t$-distribution, use $df = n - 1.$\n:::\n\nThe $t$-distribution allows us greater flexibility than the normal distribution when analyzing numerical data.\nIn practice, it's common to use statistical software, such as R, Python, or SAS for these analyses.\nIn R, the function used for calculating probabilities under a $t$-distribution is `pt()` (which should seem similar to previous R functions, `pnorm()` and `pchisq()`).\nDon't forget that with the $t$-distribution, the degrees of freedom must always be specified!\n\nFor the examples and guided practices below, you may have to use a table or statistical software to find the answers.\nWe recommend trying the problems so as to get a sense for how the $t$-distribution can vary in width depending on the degrees of freedom.\nNo matter the approach you choose, apply your method using the examples below to confirm your working understanding of the $t$-distribution.\n\n::: {.workedexample data-latex=\"\"}\nWhat proportion of the $t$-distribution with 18 degrees of freedom falls below -2.10?\n\n------------------------------------------------------------------------\n\nJust like a normal probability problem, we first draw the picture in @fig-tDistDF18LeftTail2Point10 and shade the area below -2.10.\n\nUsing statistical software, we can obtain a precise value: 0.0250.\n:::\n\n\\clearpage\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use pt() to find probability under the $t$-distribution\npt(-2.10, df = 18)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.025\n```\n\n\n:::\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![The $t$-distribution with 18 degrees of freedom. The area below -2.10 has\nbeen shaded.\n](19-inference-one-mean_files/figure-html/fig-tDistDF18LeftTail2Point10-1.png){#fig-tDistDF18LeftTail2Point10 fig-alt='A t distribution with 18 degrees of freedom. The area below -2.10 has been shaded.' width=60%}\n:::\n:::\n\n\n::: {.workedexample data-latex=\"\"}\nA $t$-distribution with 20 degrees of freedom is shown in @fig-tDistDF20RightTail1Point65.\nEstimate the proportion of the distribution falling above 1.65.\n\n------------------------------------------------------------------------\n\nNote that with 20 degrees of freedom, the $t$-distribution is relatively close to the normal distribution.\nWith a normal distribution, this would correspond to about 0.05, so we should expect the $t$-distribution to give us a value in this neighborhood.\nUsing statistical software: 0.0573.\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use pt() to find probability under the $t$-distribution\n1 - pt(1.65, df = 20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.0573\n```\n\n\n:::\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![The $t$-distribution with 20 degrees of freedom, with the area above\n1.65 shaded.\n](19-inference-one-mean_files/figure-html/fig-tDistDF20RightTail1Point65-1.png){#fig-tDistDF20RightTail1Point65 fig-alt='A t distribution with 20 degrees of freedom. The area above 1.65 has been shaded.' width=50%}\n:::\n:::\n\n\n::: {.workedexample data-latex=\"\"}\nA $t$-distribution with 2 degrees of freedom is shown in @fig-tDistDF23UnitsFromMean.\nEstimate the proportion of the distribution falling more than 3 units from the mean (above or below).\n\n------------------------------------------------------------------------\n\nWith so few degrees of freedom, the $t$-distribution will give a more notably different value than the normal distribution.\nUnder a normal distribution, the area would be about 0.003 using the 68-95-99.7 rule.\nFor a $t$-distribution with $df = 2,$ the area in both tails beyond 3 units totals 0.0955.\nThis area is dramatically different than what we obtain from the normal distribution.\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use pt() to find probability under the $t$-distribution\npt(-3, df = 2) + (1 - pt(3, df = 2))\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.0955\n```\n\n\n:::\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![The $t$-distribution with 2 degrees of freedom, with the area further than\n3 units from 0 shaded.\n](19-inference-one-mean_files/figure-html/fig-tDistDF23UnitsFromMean-1.png){#fig-tDistDF23UnitsFromMean fig-alt='A t distribution with 2 degrees of freedom. The area below negative 3 and above positive 3 has been shaded.' width=50%}\n:::\n:::\n\n\n::: {.guidedpractice data-latex=\"\"}\nWhat proportion of the $t$-distribution with 19 degrees of freedom falls above -1.79 units?\nUse your preferred method for finding tail areas.[^19-inference-one-mean-5]\n:::\n\n[^19-inference-one-mean-5]: We want to find the shaded area *above* -1.79 (we leave the picture to you).\n The lower tail area has an area of 0.0447, so the upper area would have an area of $1 - 0.0447 = 0.9553.$\n\n\\index{t-distribution}\n\n### One sample t-intervals\n\nLet's get our first taste of applying the $t$-distribution in the context of an example about the mercury content of dolphin muscle.\nElevated mercury concentrations are an important problem for both dolphins and other animals, like humans, who occasionally eat them.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![A Risso's dolphin. Photo by Mike Baird, www.bairdphotos.com.](images/rissosDolphin.jpg){#fig-rissosDolphin fig-alt='A photograph of a Risso\\'s dolphin in the water.' width=75%}\n:::\n:::\n\n\nWe will identify a confidence interval for the average mercury content in dolphin muscle using a sample of 19 Risso's dolphins from the Taiji area in Japan.\nThe data are summarized in @tbl-summaryStatsOfHgInMuscleOfRissosDolphins.\nThe minimum and maximum observed values can be used to evaluate whether there are clear outliers.\n\n\n::: {#tbl-summaryStatsOfHgInMuscleOfRissosDolphins .cell tbl-cap='Summary of mercury content in the muscle of 19 Risso\\'s dolphins from the\nTaiji area. Measurements are in micrograms of mercury per wet gram of\nmuscle $(\\\\mu$g/wet g).'}\n::: {.cell-output-display}\n`````{=html}\n\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n\n
n Mean SD Min Max
19 4.4 2.3 1.7 9.2
\n\n`````\n:::\n:::\n\n\n::: {.workedexample data-latex=\"\"}\nAre the independence and normality conditions satisfied for this dataset?\n\n------------------------------------------------------------------------\n\nThe observations are a simple random sample, therefore it is reasonable to assume that the dolphins are independent.\nThe summary statistics in @tbl-summaryStatsOfHgInMuscleOfRissosDolphins do not suggest any clear outliers, with all observations within 2.5 standard deviations of the mean.\nBased on this evidence, the normality condition seems reasonable.\n:::\n\nIn the normal model, we used $z^{\\star}$ and the standard error to determine the width of a confidence interval.\nWe revise the confidence interval formula slightly when using the $t$-distribution:\n\n$$\n\\begin{aligned}\n\\text{point estimate} \\ &\\pm\\ t^{\\star}_{df} \\times SE \\\\\n\\bar{x} \\ &\\pm\\ t^{\\star}_{df} \\times \\frac{s}{\\sqrt{n}}\n\\end{aligned}\n$$\n\n::: {.workedexample data-latex=\"\"}\nUsing the summary statistics in @tbl-summaryStatsOfHgInMuscleOfRissosDolphins, compute the standard error for the average mercury content in the $n = 19$ dolphins.\n\n------------------------------------------------------------------------\n\nWe plug in $s$ and $n$ into the formula: $SE = \\frac{s}{\\sqrt{n}} = \\frac{2.3}{\\sqrt{19}} = 0.528.$\n:::\n\nThe value $t^{\\star}_{df}$ is a cutoff we obtain based on the confidence level and the $t$-distribution with $df$ degrees of freedom.\nThat cutoff is found in the same way as with a normal distribution: we find $t^{\\star}_{df}$ such that the fraction of the $t$-distribution with $df$ degrees of freedom within a distance $t^{\\star}_{df}$ of 0 matches the confidence level of interest.\n\n::: {.workedexample data-latex=\"\"}\nWhen $n = 19,$ what is the appropriate degrees of freedom?\nFind $t^{\\star}_{df}$ for this degrees of freedom and the confidence level of 95%\n\n------------------------------------------------------------------------\n\nThe degrees of freedom is easy to calculate: $df = n - 1 = 18.$\n\nUsing statistical software, we find the cutoff where the upper tail is equal to 2.5%: $t^{\\star}_{18} = 2.10.$ The area below -2.10 will also be equal to 2.5%.\nThat is, 95% of the $t$-distribution with $df = 18$ lies within 2.10 units of 0.\n:::\n\n\\clearpage\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use qt() to find the t-cutoff (with 95% in the middle)\nqt(0.025, df = 18)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] -2.1\n```\n\n\n:::\n\n```{.r .cell-code}\nqt(0.975, df = 18)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 2.1\n```\n\n\n:::\n:::\n\n\n::: {.important data-latex=\"\"}\n**Degrees of freedom for a single sample.**\n\nIf the sample has $n$ observations and we are examining a single mean, then we use the $t$-distribution with $df=n-1$ degrees of freedom.\n:::\n\n::: {.workedexample data-latex=\"\"}\nCompute and interpret the 95% confidence interval for the average mercury content in Risso's dolphins.\n\n------------------------------------------------------------------------\n\nWe can construct the confidence interval as\n\n$$\n\\begin{aligned}\n\\bar{x} \\ &\\pm\\ t^{\\star}_{18} \\times SE \\\\\n4.4 \\ &\\pm\\ 2.10 \\times 0.528 \\\\\n(3.29 \\ &, \\ 5.51)\n\\end{aligned} \n$$\n\nWe are 95% confident the average mercury content of muscles in Risso's dolphins is between 3.29 and 5.51 $\\mu$g/wet gram, which is considered extremely high.\n:::\n\n::: {.important data-latex=\"\"}\n**Calculating a** $t$**-confidence interval for the mean,** $\\mu.$\n\nBased on a sample of $n$ independent and nearly normal observations, a confidence interval for the population mean is\n\n$$\n\\begin{aligned}\n\\text{point estimate} \\ &\\pm\\ t^{\\star}_{df} \\times SE \\\\\n\\bar{x} \\ &\\pm\\ t^{\\star}_{df} \\times \\frac{s}{\\sqrt{n}}\n\\end{aligned}\n$$\n\nwhere $\\bar{x}$ is the sample mean, $t^{\\star}_{df}$ corresponds to the confidence level and degrees of freedom $df,$ and $SE$ is the standard error as estimated by the sample.\n:::\n\n::: {.guidedpractice data-latex=\"\"}\nThe FDA's webpage provides some data on mercury content of fish.\nBased on a sample of 15 croaker white fish (Pacific), a sample mean and standard deviation were computed as 0.287 and 0.069 ppm (parts per million), respectively.\nThe 15 observations ranged from 0.18 to 0.41 ppm.\nWe will assume these observations are independent.\nBased on the summary statistics of the data, do you have any objections to the normality condition of the individual observations?[^19-inference-one-mean-6]\n:::\n\n[^19-inference-one-mean-6]: The sample size is under 30, so we check for obvious outliers: since all observations are within 2 standard deviations of the mean, there are no such clear outliers.\n\n::: {.workedexample data-latex=\"\"}\nEstimate the standard error of $\\bar{x} = 0.287$ ppm using the data summaries in the previous Guided Practice.\nIf we are to use the $t$-distribution to create a 90% confidence interval for the actual mean of the mercury content, identify the degrees of freedom and $t^{\\star}_{df}.$\n\n------------------------------------------------------------------------\n\nThe standard error: $SE = \\frac{0.069}{\\sqrt{15}} = 0.0178.$\n\nDegrees of freedom: $df = n - 1 = 14.$\n\nSince the goal is a 90% confidence interval, we choose $t_{14}^{\\star}$ so that the two-tail area is 0.1: $t^{\\star}_{14} = 1.76.$\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# use qt() to find the t-cutoff (with 90% in the middle)\nqt(0.05, df = 14)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] -1.76\n```\n\n\n:::\n\n```{.r .cell-code}\nqt(0.95, df = 14)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 1.76\n```\n\n\n:::\n:::\n\n\n::: {.guidedpractice data-latex=\"\"}\nUsing the information and results of the previous Guided Practice and Example, compute a 90% confidence interval for the average mercury content of croaker white fish (Pacific).[^19-inference-one-mean-7]\n:::\n\n[^19-inference-one-mean-7]: $\\bar{x} \\ \\pm\\ t^{\\star}_{14} \\times SE \\ \\to\\ 0.287 \\ \\pm\\ 1.76 \\times 0.0178 \\ \\to\\ (0.256, 0.318).$ We are 90% confident that the average mercury content of croaker white fish (Pacific) is between 0.256 and 0.318 ppm.\n\n::: {.guidedpractice data-latex=\"\"}\nThe 90% confidence interval from the previous Guided Practice is 0.256 ppm to 0.318 ppm.\nCan we say that 90% of croaker white fish (Pacific) have mercury levels between 0.256 and 0.318 ppm?[^19-inference-one-mean-8]\n:::\n\n[^19-inference-one-mean-8]: No, a confidence interval only provides a range of plausible values for a population parameter, in this case the population mean.\n It does not describe what we might observe for individual observations.\n\nRecall that the margin of error is defined by the standard error.\nThe margin of error for $\\bar{x}$ can be directly obtained from $SE(\\bar{x}).$\n\n::: {.important data-latex=\"\"}\n**Margin of error for** $\\bar{x}.$\n\nThe margin of error is $t^\\star_{df} \\times s/\\sqrt{n}$ where $t^\\star_{df}$ is calculated from a specified percentile on the t-distribution with *df* degrees of freedom.\n:::\n\n### One sample t-tests\n\nNow that we have used the $t$-distribution for making a confidence interval for a mean, let's speed on through to hypothesis tests for the mean.\n\n::: {.important data-latex=\"\"}\n**The test statistic for assessing a single mean is a T.**\n\nThe T score is a ratio of how the sample mean differs from the hypothesized mean as compared to how the observations vary.\n\n$$ T = \\frac{\\bar{x} - \\mbox{null value}}{s/\\sqrt{n}} $$\n\nWhen the null hypothesis is true and the conditions are met, T has a t-distribution with $df = n - 1.$\n\nConditions:\n\n- Independent observations.\n- Large samples and no extreme outliers.\n:::\n\n\\vspace{-3mm}\n\nIs the typical US runner getting faster or slower over time?\nWe consider this question in the context of the Cherry Blossom Race, which is a 10-mile race in Washington, DC each spring.\nThe average time for all runners who finished the Cherry Blossom Race in 2006 was 93.29 minutes (93 minutes and about 17 seconds).\nWe want to determine using data from 100 participants in the 2017 Cherry Blossom Race whether runners in this race are getting faster or slower, versus the other possibility that there has been no change.\n\n::: {.data data-latex=\"\"}\nThe [`run17`](http://openintrostat.github.io/cherryblossom/reference/run17.html) data can be found in the [**cherryblossom**](http://openintrostat.github.io/cherryblossom) R package.\n:::\n\n\\vspace{-3mm}\n\n::: {.guidedpractice data-latex=\"\"}\nWhat are appropriate hypotheses for this context?[^19-inference-one-mean-9]\n:::\n\n[^19-inference-one-mean-9]: $H_0:$ The average 10-mile run time was the same for 2006 and 2017.\n $\\mu = 93.29$ minutes.\n $H_A:$ The average 10-mile run time for 2017 was *different* than that of 2006.\n $\\mu \\neq 93.29$ minutes.\n\n\\vspace{-3mm}\n\n::: {.guidedpractice data-latex=\"\"}\nThe data come from a simple random sample of all participants, so the observations are independent.\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](19-inference-one-mean_files/figure-html/unnamed-chunk-28-1.png){width=70%}\n:::\n:::\n\n\nA histogram of the race times is given to evaluate if we can move forward with a t-test.\nIs the normality condition met?[^19-inference-one-mean-10]\n:::\n\n[^19-inference-one-mean-10]: With a sample of 100, we should only be concerned if there is are particularly extreme outliers.\n The histogram of the data does not show any outliers of concern (and arguably, no outliers at all).\n\nWhen completing a hypothesis test for the one-sample mean, the process is nearly identical to completing a hypothesis test for a single proportion.\nFirst, we find the Z score using the observed value, null value, and standard error; however, we call it a **T score** since we use a $t$-distribution for calculating the tail area.\nThen we find the p-value using the same ideas we used previously: find the one-tail area under the sampling distribution, and double it.\n\n\n\n\n\n::: {.workedexample data-latex=\"\"}\nWith both the independence and normality conditions satisfied, we can proceed with a hypothesis test using the $t$-distribution.\nThe sample mean and sample standard deviation of the sample of 100 runners from the 2017 Cherry Blossom Race are 98.78 and 16.59 minutes, respectively.\nRecall that the average run time in 2006 was 93.29 minutes.\nFind the test statistic and p-value.\nWhat is your conclusion?\n\n------------------------------------------------------------------------\n\nTo find the test statistic (T score), we first must determine the standard error:\n\n$$ SE = 16.6 / \\sqrt{100} = 1.66 $$\n\nNow we can compute the **T score** using the sample mean (98.78), null value (93.29), and $SE:$\n\n$$ T = \\frac{98.8 - 93.29}{1.66} = 3.32 $$\n\nFor $df = 100 - 1 = 99,$ we can determine using statistical software (or a $t$-table) that the one-tail area is 0.000631, which we double to get the p-value: 0.00126.\n\nBecause the p-value is smaller than 0.05, we reject the null hypothesis.\nThat is, the data provide convincing evidence that the average run time for the Cherry Blossom Run in 2017 is different than the 2006 average.\n:::\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# using pt() to find the left tail and multiply by 2 to get both tails\n(1 - pt(3.32, df = 99)) * 2\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.00126\n```\n\n\n:::\n:::\n\n\n::: {.important data-latex=\"\"}\n**When using a** $t$**-distribution, we use a T score (similar to a Z score).**\n\nTo help us remember to use the $t$-distribution, we use a $T$ to represent the test statistic, and we often call this a **T score**.\nThe Z score and T score are computed in the exact same way and are conceptually identical: each represents how many standard errors the observed value is from the null value.\n:::\n\n\\clearpage\n\n## Chapter review {#sec-chp19-review}\n\n### Summary\n\nIn this chapter we extended the randomization / bootstrap / mathematical model paradigm to questions involving quantitative variables of interest.\nWhen there is only one variable of interest, we are often hypothesizing or finding confidence intervals about the population mean.\nNote, however, the bootstrap method can be used for other statistics like the population median or the population IQR.\nWhen comparing a quantitative variable across two groups, the question often focuses on the difference in population means (or sometimes a paired difference in means).\nThe questions revolving around one, two, and paired samples of means are addressed using the t-distribution; they are therefore called \"t-tests\" and \"t-intervals.\" When considering a quantitative variable across 3 or more groups, a method called ANOVA is applied.\nAgain, almost all the research questions can be approached using computational methods (e.g., randomization tests or bootstrapping) or using mathematical models.\nWe continue to emphasize the importance of experimental design in making conclusions about research claims.\nIn particular, recall that variability can come from different sources (e.g., random sampling vs. random allocation, see @fig-randsampValloc).\n\n### Terms\n\nWe introduced the following terms in the chapter.\nIf you're not sure what some of these terms mean, we recommend you go back in the text and review their definitions.\nWe are purposefully presenting them in alphabetical order, instead of in order of appearance, so they will be a little more challenging to locate.\nHowever, you should be able to easily spot them as **bolded text**.\n\n\n::: {.cell}\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Central Limit Theorem point estimate T score single mean
degrees of freedom SD single mean t-distribution
numerical data SE single mean
\n\n`````\n:::\n:::\n\n\n\\clearpage\n\n## Exercises {#sec-chp19-exercises}\n\nAnswers to odd-numbered exercises can be found in [Appendix -@sec-exercise-solutions-19].\n\n::: {.exercises data-latex=\"\"}\n1. **Statistics vs. parameters: one mean.** Each of the following scenarios were set up to assess an average value.\n For each one, identify, in words: the statistic and the parameter.\n\n a. A sample of 25 New Yorkers were asked how much sleep they get per night.\n\n b. Researchers at two different universities in California collected information on undergraduates' heights.\n\n2. **Statistics vs. parameters: one mean.** Each of the following scenarios were set up to assess an average value.\n For each one, identify, in words: the statistic and the parameter.\n\n a. Georgianna samples 20 children from a particular city and measures how many years they have each been playing piano.\n\n b. Traffic police officers (who are regularly exposed to lead from automobile exhaust) had their lead levels measured in their blood.\n\n3. **Heights of adults.** Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals.\n Summary statistics for the distribution of heights (measured in centimeters), along with a histogram, are provided below.[^_19-ex-inference-one-mean-1]\n [@Heinz:2003]\n\n ::: {.cell}\n ::: {.cell-output-display}\n `````{=html}\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Min Q1 Median Mean Q3 Max SD IQR
147 164 170 171 178 198 9.4 14
\n \n `````\n :::\n \n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-32-1.png){width=90%}\n :::\n :::\n\n a. What is the point estimate for the average height of active individuals?\n What about the median?\n\n b. What is the point estimate for the standard deviation of the heights of active individuals?\n What about the IQR?\n\n c. Is a person who is 1m 80cm (180 cm) tall considered unusually tall?\n And is a person who is 1m 55cm (155cm) considered unusually short?\n Explain your reasoning.\n\n d. The researchers take another random sample of physically active individuals.\n Would you expect the mean and the standard deviation of this new sample to be the ones given above?\n Explain your reasoning.\n\n e. The sample means obtained are point estimates for the mean height of all active individuals, if the sample of individuals is equivalent to a simple random sample.\n What measure do we use to quantify the variability of such an estimate?\n Compute this quantity using the data from the original sample under the condition that the data are a simple random sample.\n\n4. **Heights of adults, standard error.** Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters.\n Provide an estimate for the standard error of the mean for samples of following sizes.[^_19-ex-inference-one-mean-2]\n [@Heinz:2003]\n\n a. n = 10\n\n b. n = 50\n\n c. n = 100\n\n d. n = 1000\n\n e. The standard error of the mean is a number which describes what?\n\n5. **Heights of adults vs. kindergartners.** Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters.[^_19-ex-inference-one-mean-3]\n [@Heinz:2003]\n\n a. Would the standard deviation of the heights of a few hundred kindergartners be bigger or smaller than 9.4cm?\n Explain your reasoning.\n\n b. Suppose many samples of size 100 adults is taken and, separately, many samples of size 100 kindergarteners are taken.\n For each of the many samples, the average height is computed.\n Which set of sample averages would have a larger standard error of the mean, the adult sample averages or the kindergartner sample averages?\n\n6. **Heights of adults, bootstrap interval.** Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals.\n The histogram below shows the sample distribution of bootstrapped means from 1,000 different bootstrap samples.[^_19-ex-inference-one-mean-4]\n [@Heinz:2003]\n\n ::: {.cell}\n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-33-1.png){width=90%}\n :::\n :::\n\n a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean.\n\n b. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap percentile confidence interval for the true average adult height in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n c. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap SE confidence interval for the true average adult height in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n7. **Identify the critical** $t$.\n A random sample is selected from an approximately normal population with unknown standard deviation.\n Find the degrees of freedom and the critical $t$-value (t$^\\star$) for the given sample size and confidence level.\n\n a. $n = 6$, CL = 90%\n\n b. $n = 21$, CL = 98%\n\n c. $n = 29$, CL = 95%\n\n d. $n = 12$, CL = 99%\n\n8. $t$-distribution.\n The figure below shows three unimodal and symmetric curves: the standard normal (z) distribution, the $t$-distribution with 5 degrees of freedom, and the $t$-distribution with 1 degree of freedom.\n Determine which is which, and explain your reasoning.\n\n ::: {.cell}\n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-34-1.png){width=90%}\n :::\n :::\n\n9. **Find the p-value, I.** A random sample is selected from an approximately normal population with an unknown standard deviation.\n Find the p-value for the given sample size and test statistic.\n Also determine if the null hypothesis would be rejected at $\\alpha = 0.05$.\n\n a. $n = 11$, $T = 1.91$\n\n b. $n = 17$, $T = -3.45$\n\n c. $n = 7$, $T = 0.83$\n\n d. $n = 28$, $T = 2.13$\n\n10. **Find the p-value, II.** A random sample is selected from an approximately normal population with an unknown standard deviation.\n Find the p-value for the given sample size and test statistic.\n Also determine if the null hypothesis would be rejected at $\\alpha = 0.01$.\n\n a. $n = 26$, $T = 2.485$\n\n b. $n = 18$, $T = 0.5$\n\n11. **Length of gestation, confidence interval.** Every year, the United States Department of Health and Human Services releases to the public a large dataset containing information on births recorded in the country.\n This dataset has been of interest to medical researchers who are studying the relation between habits and practices of expectant mothers and the birth of their children.\n In this exercise we work with a random sample of 1,000 cases from the dataset released in 2014.\n The length of pregnancy, measured in weeks, is commonly referred to as gestation.\n The histograms below show the distribution of lengths of gestation from the random sample of 1,000 births (on the left) and the distribution of bootstrapped means of gestation from 1,500 different bootstrap samples (on the right).[^_19-ex-inference-one-mean-5]\n\n ::: {.cell}\n ::: {.cell-output-display}\n ![](19-inference-one-mean_files/figure-html/unnamed-chunk-35-1.png){width=100%}\n :::\n :::\n\n a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean.\n\n b. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap percentile confidence interval for the true average gestation length in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n c. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap SE confidence interval for the true average gestation length in the population from which the data were randomly sampled.\n Provide the interval as well as a one-sentence interpretation of the interval.\n\n12. **Length of gestation, hypothesis test.** In this exercise we work with a random sample of 1,000 cases from the dataset released by the United States Department of Health and Human Services in 2014.\n Provided below are sample statistics for gestation (length of pregnancy, measured in weeks) of births in this sample.[^_19-ex-inference-one-mean-6]\n\n ::: {.cell}\n ::: {.cell-output-display}\n `````{=html}\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Min Q1 Median Mean Q3 Max SD IQR
21 38 39 38.7 40 46 2.6 2
\n \n `````\n :::\n :::\n\n a. What is the point estimate for the average length of pregnancy for all women?\n What about the median?\n\n b. You might have heard that human gestation is typically 40 weeks.\n Using the data, perform a complete hypothesis test, using mathematical models, to assess the 40 week claim.\n State the null and alternative hypotheses, find the T score, find the p-value, and provide a conclusion in context of the data.\n\n c. A quick internet search validates the claim of \"40 weeks gestation\" for humans.\n A friend of yours claims that there are different ways to measure gestation (starting at first day of last period, ovulation, or conception) which will result in estimates that are a week or two different.\n Another friend mentions that recent increases in cesarean births is likely to have decreased length of gestation.\n Do the data provide a mechanism to distinguish between your two friends' claims?\n\n13. **Interpreting confidence intervals for population mean.** For each of the following statements, indicate if they are a true or false interpretation of the confidence interval.\n If false, provide a reason or correction to the misinterpretation.\n You collect a large sample and calculate a 95% confidence interval for the average number of cans of sodas consumed annually per adult in the US to be (440 cans, 520 cans), i.e., on average, adults in the US consume just under two cans of soda per day.\n\n a. 95% of adults in the US consume between 440 and 520 cans of soda per year.\n\n b. There is a 95% probability that the true population average per adult yearly soda consumption is between 440 and 520 cans.\n\n c. The true population average per adult yearly soda consumption is between 440 and 520 cans, with 95% confidence.\n\n d. The average soda consumption of the people who were sampled is between 440 and 520 cans of soda per year, with 95% confidence.\n\n14. **Interpreting p-values for population mean.** For each of the following statements, indicate if they are a true or false interpretation of the p-value.\n If false, provide a reason or correction to the misinterpretation.\n You are wondering if the average amount of cereal in a 10oz cereal box is greater than 10oz.\n You collect 50 boxes of cereal, weigh them carefully, find a T score, and a p-value of 0.23.\n\n a. The probability that the average weight of all cereal boxes is 10 oz is 0.23.\n\n b. The probability that the average weight of all cereal boxes is greater than 10 oz is 0.23.\n\n c. Because the p-value is 0.23, the average weight of all cereal boxes is 10 oz.\n\n d. Because the p-value is small, the population average must be just barely above 10 oz (small effect).\n\n e. If $H_0$ is true, the probability of observing another sample with an average as or more extreme as the data is 0.23.\n\n15. **Working backwards, I.** A 95% confidence interval for a population mean, $\\mu$, is given as (18.985, 21.015).\n The population distribution is approximately normal and the population standard deviation is unknown.\n This confidence interval is based on a simple random sample of 36 observations.\n Calculate the sample mean, the margin of error, and the sample standard deviation.\n Assume that all conditions necessary for inference are satisfied.\n Use the $t$-distribution in any calculations.\n\n16. **Working backwards, II.** A 90% confidence interval for a population mean is (65, 77).\n The population distribution is approximately normal and the population standard deviation is unknown.\n This confidence interval is based on a simple random sample of 25 observations.\n Calculate the sample mean, the margin of error, and the sample standard deviation.\n Assume that all conditions necessary for inference are satisfied.\n Use the $t$-distribution in any calculations.\n\n17. **Sleep habits of New Yorkers.** New York is known as \"the city that never sleeps\".\n A random sample of 25 New Yorkers were asked how much sleep they get per night.\n Statistical summaries of these data are shown below.\n The point estimate suggests New Yorkers sleep less than 8 hours a night on average.\n Evaluate the claim that New York is the city that never sleeps keeping in mind that, despite this claim, the true average number of hours New Yorkers sleep could be less than 8 hours or more than 8 hours.\n\n ::: {.cell}\n ::: {.cell-output-display}\n `````{=html}\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
n Mean SD Min Max
25 7.73 0.77 6.17 9.78
\n \n `````\n :::\n :::\n\n a. Write the hypotheses in symbols and in words.\n\n b. Check conditions, then calculate the test statistic, $T$, and the associated degrees of freedom.\n\n c. Find and interpret the p-value in this context.\n Drawing a picture may be helpful.\n\n d. What is the conclusion of the hypothesis test?\n\n e. If you were to construct a 90% confidence interval that corresponded to this hypothesis test, would you expect 8 hours to be in the interval?\n\n18. **Find the mean.** You are given the hypotheses shown below.\n We know that the sample standard deviation is 8 and the sample size is 20.\n For what sample mean would the p-value be equal to 0.05?\n Assume that all conditions necessary for inference are satisfied.\n\n $$H_0: \\mu = 60 \\quad \\quad H_A: \\mu \\neq 60$$\n\n19. $t^\\star$ for the correct confidence level.\n As you've seen, the tails of a $t-$distribution are longer than the standard normal which results in $t^{\\star}_{df}$ being larger than $z^{\\star}$ for any given confidence level.\n When finding a CI for a population mean, explain how mistakenly using $z^{\\star}$ (instead of the correct $t^{*}_{df}$) would affect the confidence level.\n\n20. **Possible bootstrap samples.** Consider a simple random sample of the following observations: 47, 4, 92, 47, 12, 8.\n Which of the following could be a possible bootstrap samples from the observed data above?\n If the set of values could not be a bootstrap sample, indicate why not.\n\n a. 47, 47, 47, 47, 47, 47\n\n b. 92, 4, 13, 8, 47, 4\n\n c. 92, 47, 12\n\n d. 8, 47, 12, 12, 8, 4, 92\n\n e. 12, 4, 8, 8, 92, 12\n\n21. **Play the piano.** Georgianna claims that in a small city renowned for its music school, the average child takes less than 5 years of piano lessons.\n We have a random sample of 20 children from the city, with a mean of 4.6 years of piano lessons and a standard deviation of 2.2 years.\n\n a. Evaluate Georgianna's claim (or that the opposite might be true) using a hypothesis test.\n\n b. Construct a 95% confidence interval for the number of years students in this city take piano lessons, and interpret it in context of the data.\n\n c. Do your results from the hypothesis test and the confidence interval agree?\n Explain your reasoning.\n\n22. **Auto exhaust and lead exposure.** Researchers interested in lead exposure due to car exhaust sampled the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes while working traffic enforcement in a primarily urban environment.\n The blood samples of these officers had an average lead concentration of 124.32 $\\mu$g/l and a SD of 37.74 $\\mu$g/l; a previous study of individuals from a nearby suburb, with no history of exposure, found an average blood level concentration of 35 $\\mu$g/l.\n [@Mortada:2000]\n\n a. Write down the hypotheses that would be appropriate for testing if the police officers appear to have been exposed to a different concentration of lead.\n\n b. Explicitly state and check all conditions necessary for inference on these data.\n\n c. Test the hypothesis that the downtown police officers have a higher lead exposure than the group in the previous study.\n Interpret your results in context.\n\n[^_19-ex-inference-one-mean-1]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-2]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-3]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-4]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-5]: The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n[^_19-ex-inference-one-mean-6]: The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.\n\n\n:::\n", "supporting": [ "19-inference-one-mean_files" ], diff --git a/_freeze/19-inference-one-mean/figure-html/fig-tDistCompareToNormalDist-1.png b/_freeze/19-inference-one-mean/figure-html/fig-tDistCompareToNormalDist-1.png index ac2fda550e9469f18716a57647e150f94c23dcdb..3792b37334e99bf6ec00f8eb472b24543620616c 100644 GIT binary patch literal 138840 zcmeFYg_dY)77$^u>h)Q`B1xW=2q!ASaDJf|cknS8};E0HTNQ30i9n#IHNOyO4 z3j+)_!}pol!~6cO&vpI&gV%F;7-sLM)>`+y?zQ&TM?p@Kob)Cs3V{p3|!?zooH*&%aG)oNN6YL|_RlgnHHRxA=WMmZ6c%XIj6{$I=`QuQf@N4UT zy=t#sd(3`ySVww_zS(AE-0I2`51#Ww)R$w%WU87f@3sW9w*<3k78HMZKaUHFyZG5~ z^>-X547u-$>k$e_K_0txV5&k|-xr<-8zcVtrE(c_@)`Ujm3e?aAoS-V|4-(V&oHsc z(@FpN1@`ZiFZg3ae@@H&ZxF!}|1-q@BI1A0AjZJ|4Dmlh{NJp>>gPf*$`7w8Nt#_l zuAzr2RQ5^FUtWKdXwmz*>rV3w{TciXR;t8gV>p-psXy-D-WAas!ilc+Wy?!5nG3yN zbspruA07;9(&x&B6DEY8d;S;xLpxh^+b#tKw%%J9oAIf3jNH3Y7n`41WrzD6mC{qs z9w~ruSWCaWNyuvt%uYtF_P!B_ZktE-L`Yj2uMKw(he@r{sHoT2ykE;yw~u(qpsTKW zvkjl&VIEp1TkAhu(S7dDi$Mi8|86^lzrRr)N{&|V zg)O2T27Nw%SJy&^zM(H#oul9{DUI?rw6x7q2+bqHA|p;+q zs4IM;&CgKFy{k8fDz1l+u+Kz*{BLcEUjycJ#rZ&q(##xDmXK1BxEhVJeP;ZE>x1aQ zpWX0d^wByRXPVV4W2qrDBP?V1C6i5b14WA;H~9$K zwG5Wr9qC=da5Th9B8PQOdTe@>o|mglSI7E%;#Rbj9r7lBXJ2J0_IKRwmCBI-q(CX6 zsG`7ZZEI+w%E=jS+_Zm_plklHK&s_Iw!sx2Lrlq7Il^7i^4OSj6oK9XF(6sB?9Vl1 zrYG6aFVVnTYPW7Ahzn<^?)RtP%x9(MKh^N&>Ho3D;&U0#wm7aH6=!tJ)PYe({_f2Chr%423{?<9mwyb-(> z3OL%>o3s_CSe&F|QCu5$YhI4FuS6%oSZ_@T&9~-q>?VVf^Me;h#PUL87tJ?fLlEiPpgX}Zp_RqSy zCX2er3AEpscLxsnB`5QB<-1+4FyESSFo%z}H)2=1XS3$G^|>VqzTa&;Gowvd{-ZPm zfZt{tT~{WYY+PLAC)CFo6m9A!6HYiFiMw{^-{wVQutf}IReVj!S*7S6GjVx{4d1y2$)Axy`Uw77otf+;)!ts6l zus5$SL5|p5q?5v;IdAgPtqQdqqL=HBrl`o4SL(0YQQ_|s3v8aI$A5rbO#%+h6Rp`X zl0P2O%4OlKHdn!t`=#CsX?j9QV2E?UL`w|!xKOw|j^!!~*z!iGwa5Gc@z}4bcFh@@ z@&`mbVs_n;t8|=eZdM~d3(JKH5?3knUR$YP_4B9*hT)fl(0S`N6Nz`t=4=TFNkdzB zQ?E6$%t6t7=kt?10uwNwCEiDB&U8?7&^RyAARoK=-uT5W07RFz)&{WbLSD#YccPCMo zU=#%*qVcX)$We?UCJx#|PURh2wZ-`0jbfl~tVKM+N1`vJY}Ga*HYPeFq)`Vm!&HT$ zWj1nLkzX7kS3JB3MM2k4_wY`bB(Gtik7&(7Vkzgh%NPPhdc6AwI>POp*71_4OH?3- zFkk|wyCbA03iCHTBib|ASp8kd@Ta|a3JOKB$+Mrj-4FlF)0vO8r1~F^lDDulOHb>Z z#^3a`O-~&E(<3mYJ2FqW#9mU<@pjN4SiZQS1Q2JLB!Q|FiFMg&Q|6F;?}kzf^EKzS z5cV8xU3asr_XGg@`a?&&^>XRuE;4SoX7kO0r7KQaW`QqmG_GA=Pn}?~-%lWXU5tOp zd$^WHqhluIJlqpONsHa(7A#P2BM{nEGUC=f=m(vx0P(;%vPVXCs|_7l3Hdl)ikM;l zwyRAvCcD=+i$d?U_Y3NdQ@0V|aZ87o?_ern5s1xHnQJeFB)AV4qA8DDM}8XJBOK}> zk^DYpWLB;E@#%88Pk%caz+t_FQKKW*+8FV6xy3=8=na_2Z7OvRguonX7lj!&`@mMd3Ke|a4nvNZn`&bs`E*;8V8@e0t#I|8 zf9}C_TT51R%hsszlF0r}Ln(y;S5OWimJ^Bb!hEf;KH%WUzol6QEqud*-*xq{W4--( z2_dz8CPrucXDuOvRb;iBHP=QglOx^1e*gUEvjkfO5hL?zL|@?w;@F&QYodInu9_xF zFmZ^$Hc!PMzbe>SXb53JVxKP$lw|}wu{)nT-Uu1|%v~sWnV&Q02ybjXwuf_ExR8R{ z9RyNLSs$|HFCr15jG04>f$dz*c!j;ZCkkJiKJd{42i#aX)Ri}rF)Sb+kn}0E?oq0{ z3!)=pUGw;NyM#4m!gmnkB965M=aZh#mKUyd<_qc!(+m-O8ZQQc_D3GvW*`CN%vA0n zclA>AVaM8*L(_NvoXouqJ`Ng1ov4L&&k+id!Zh}R7kEdD{R27LLwCq=`!@zTh8+$F z;4Q-Kct*=@r@f1Ln$Siox~wz+m?s3je$-MCD;p~uBuj8ayCCHKKS*#Z4!3D85!t#T zI@;Bb^>Wd*SYGuvrMmR`anddz$t^9Z6mIw9y^`_2mLA~O)k-I_%ygJ_%7v z%LF5<5ldx3VL`IDIRJr*xQ$I~8T?rtR&+;?t0b|u+|eP#bqvu?SBn!~&NCoK`=c?j zK@95L?o-K8jrT6)`K5h19P2}m@9pnU%VJkFIiiJ9Sq=#9`B8pS2V6{Js423vJoFKw z&do(0wfm(>mUvH1j>#CV3l5`4ad+}?uhmr#B-PlfDiAhR1djHwg`nawU7S!p^V6IJ zt@RBEXa?=#Kij(Ua%I6jzmZyQineN&GMFY~y)01|Z19p^7O}F33DM_`_IDvb;i4zV z0?6Yf8F9$5@wTG@n4oKHGD?bBrBSjOdc-GnRR{l{A@sQXpY!Ie{1A*C}d%zX^fC)6uW?^$hhy$?%XrIWCCgWH&9f@FRq%c;F?%v z;T)}5H0Y_m9mO^RcH@aHHU%x9>D|!O174Y11@hXZWmUbk68K$sSUJrT(#A8! zXerl?A#LC~u#2N8Kfo`(W|#5zz%D^7Aa-egF0N!@m#)cn>cB5GCzAVNfiU5QrxFkv z>k>f>l60&!+r9pd(_VM*BWJk0WVPE$m^CSC$@4!TY(SX5p8=Un)CNk%o8_Vk-7{Lr!5(gSC_3jYhXDruBX~`ZKqqC`SPOt!oev z&h=}rVCV!8ECT>J`%R{txgbm1KsL=M+Vq=4iM?pq+M77C4NZ|O#Pqk5v)qA*-W%I)^UN{8)3wN@Vsa>7CKiN^SboBotC&?_&prU=BAe4e(lM(`IWXc6ld?+fAM zT!j0z26^dMkJc+n5qZ~r9C<7g$uu;su2HR<;1`A0pe6+76t1ei8!eR` zrGla6WAk?*5Z2Y$f-(}qR2K`>C>#(NLKx@a_O|{_TA{Sl;x&B&fjxeZn6jBagIW?~ z4orocBw_~5AXI9)*=wybmy(~2->%2>Eb9{C%>2hdsT_>i3%ZS8x!k1d>Fv$V-Eb_Oup$Aq9=DmG%r|+Y`6$a`XSG5rZOCl5a>e1j z>zQl#4L^Mb0Y^;y2sd)=3o~b%eFZ9MVUx}~ag=cEx|b(6^s1_XGNMX|dR+^(;WY6^ zpJ2iGZxC0*m_r?Pgv{4Jc9qM?lT(asc8@a?I`Lv%M7g8De79+qLDyc9E3(yoDpJ@S zG&7Q72x_qI1#ywT+9Dqu%-8h*P~ZwHyCcnri}0T;l1-^2U^v?7tChw+#>6m;c+gBB z0ELf4?_O0^fe%S?Adw5dglT93VsCzdpnLTnD4JnsFeUJi@RxKED@B}PICsu9e;Wd} zuhN{{5CQViNEn%nOmI1eP+_ULp{8RfK_kSc6P@?@S8r5MDO+sh!Y>SRB(`1u4g}q2 zC&ql*pZiT)Q#*2{2*`Jz*#Fp)$WmfYSz4q;3*IB*$V7*~qa1HhLC|KVhhPg!wB3*K zkxBj9Vm~YxSm7d}7Yf<>M1Fpj;|kjIWW5#|&So&0%xn;7U`>--K^Y*~fZf%2(g}}`@0#%-igCO)N4`gag+*sdu z4>jf@f5&sx&@oU&0{1&vTe8IZKz2P%YzNg2oEnK@80k6~a?zrEKBH{`T$} zrFpsQu`AnB@)Hsxn#7=b3(5K)5A0Wae^lqu0)dcWH$UD+B4UprlV2AIZF)a5er7?E zEAq&*l)ce*DlPhE0EYZ|2?1ok?m=Asb~$(FkmOT$9@eSK@{b^DbRREi_+8oRRjlaQ zzbV_QU}v?`+%mSuXm%yb2}A!T4xKV`m+atlU_i_)$i`M5qZguUcI+g!L*g%5XgFlE+8YPTqlvuOdn;V>~O}1}`2bUY`#l-tm)o{B7>g95UL#xMb)|R}@ z;&@zLWQM}&g5U}z?O0cT>`D>n2s&~`UYet4PS*@?%g)JdwXY~HUJ3JzC4%)96y$H5 zZZzv7_PT3?s1c6#Ztx5ymybyW+1nCX^K<1^0|#z8Tm-?s(5PpCU+TIJ{e<=6pG~E5 zIcm8~b#BLZp)R-nR%?q^2JBfRX*&P%Xmv*>Sn zvo4&I2i9JU+INQ^e;RP-2Q^86mWcb$8S~IU?16@?$U`6b)^f6>!4@-vGVUr{yHKd5vH8m0DCk zVIkPTYqFdMzs?0Rpn6w!OXdXVxD$`6TMVC-le|l~hF5nUe{U`llGZ0LAka9Y54Tad zF`6pthad0*VNQO~4lklWWvQuAX%j1#b7TLjU+QxxYCL{Gpt|)Qkmpxw%zXKu1Qj%p zmO*O-j=m)X;r8=T;o(=>#bv;uZ(g-!4%tJFh5hHc5=(5kX)O*o*3!N@!Vm8dnAKO} z;%N28F&C?>}`1 zez7M@lgqeqgc>k zr4!@*=Q{d{UOQ)!JmY1C3Ns6?rJY2=@ECWZW81ws^NxSXMzqF0IPjOGmZf)T`ZB!8 zMDV`Cga7p}!%Xf{iDF zfPJP^KQCaux(H?>2IlpWlO6u(=Rn53oOktG1S!8zF&FO@k11k5^~V`A@MHzFpF>yd z0O#L>HUT3hd+Lhf7Q+SCI-}dx9jX8KTFDXTjWJMg&xf}|vHIfyBT-I$D0O&N6Y&M7 zp9F1KVfAD)e^UK(YHnj>o;#K@On^o-l)2xO5!(wFKX6y++bQYUDdCOxX74{=gOZLD z$^CG^xOQqCJm?{>sS(;?_9ookN@wwEO>Pu5-UzHxC=C>mRmoRJL0&xKsHXTwvDYB92_5ZV}az?16rc$IM+5jS7=KIo>aK-@jc@sRMwwJh{jG( z=P_9Q_2N;v+`yW!4e&TL_#(0Lh9$hXciB{}wcS3d>HWrt^Q~Wx@iw|BN*w-Ig}(FJ z==mhuSdrotE60g9kZDg^ZcZyvmCk@aMp-?2r0!h?#f;#9F?c!!+REn^@Dqu(LO%L) zZD%{p0%ci?Jf2N4+$~DsE>OJgpxPGoz|G7)w?~pj1C*;Eci_jogBVqay5f&K#*n579TC<6W6+zIl90h~3n%J=xxr-MwjSXAou=M0Ly6_@bJ@tY8TDO2``oXpfgQ{d=Mk_(vFTH~(B5K-; zst!5c>g;IHw))JpMtC8NvSdwGhGp_fLE*17|8rXUc9tq@M`0=dXW-2o-kXPq!IYkv z`{hH`f>%?xC=~+EdsdXPHj-tEl^mGGN6Bh zlDj@!_<)ls{a~+hWyac%z#5&uZa~7Y9lRb zz7<^SZ1+v5VBMA&FLvpju>7rf8y45^?n{k zJE--aR*|RcVxpx;GDGK$G}12eYF z8T={iyJhn#l0XTtsCww+r!x)VUD;N9Ed-|##u{-E*DYmtVb#?weUvVcJ7HK+)J{YJ z?7ugpO&mU;4t8)pi8OBj9Y5;2@8=K6x%bJ@rL37r!WuGf{#)dKktVx=ek{7nSc@%Jjbg^D#7&rBwYwXoyUP3FM<66D74e zVah99JX`Bu*(_SIxhLU*K$Cg)d?SGCzjpTZe&WZs?zCJ@zF{$XiPURd=+IVpm?~9} z@cakH69omsAj)5`B_ee7sQbIl5~0?G!DQb;F-|yQyjP2~BjFSDzo-akAmKNUYweJM z2)~Ju84?HXa?%H&irr9z#eBOCBZJhg$hUKR z#(Y)4S*+Aj{(9890{(I*Kjc*ABIs&V&b?{sc;h z&$sD@WG{?M&YZ_#z)yxccVu_TfI2aM58c8SXZsXYbQ*6ykJP4JucCW$5j__99nfXi0;6Ybi=vm`1=#71p} z8Uy}-9$)@*IgpA1$pd)P9{aU`D%t^1Jbv<%P=xia0d#20=|jVnKjBT{@f3m(%%g&8 ze(vS2y>+M?>7%e=ja~c7_kw}{oNe^gNlN=Zf0{KoGOinP#Ew8pUjQ2FeiJyvwl_C?X7{eJ!2GvzfR_p zAQ6|l+0UA;tV0Kfx6KpRKH*XrIah&U!}=PjXJ!Y-*mZdWLh3TQKwP==)|Ay=a>BoU zUveiDOKf^_iJA0-$YJF6t??FT%7?`J+}T(`ronsCi2r1?!kO~N4Hs7FmEGLN!egoW zh-^#_g@T9Y6Lov@iaRj&-{*f;c1!AQ!dazXLD}FYkzCkyLC_A}$-}NLm4d*%>0j4F zN5cPo$4r;M%CI4RxoWO1=rvmy;T@;=e@jM7RJRc#4Xp{k|qm9k@*(t?VGKrNH zbw2VxvtcO>#E(Zf2z@J~j`(F?*-GA3W@2_3{k**@{l&nJVn)X7NP~JSAdd z8Dbufa5G$U_plLLy7P3WPR4~(MGu%L$VbC!1TMQ7s~AJcN(>8yd*{2l>CJ@*Y7!L^ zNArPFy%peijc+*Z;oXgH-t>b+=%`#i#3N@r@~saRlyaq;z!h&<+jDRY7t8+Kmn1L4 z&30vU5ZGD#Kh9|p4L85QQq0;&<02IS;!z{H1G93_Frd1TlS}UPWJdz%X2B8vVhJ z2`_LwDxf42ZxB_Q$Vjh1>RsDFH+(0>*du&pThXmU`XRM$!lNWE!IABivmoQ_Zt*i z0ANwBbp3OZj@O81=*}L|DKSB>$1iVs?_Th(Jy9tqqr>O-=V&~o;g8j?oOO_gPz7r| z4FTFnk;Q~SQ0WI=2yH)&xsznBPt+(y%z(Z!1TK?j#yu!fI}stDAhr=}xkTv|r>R4$ zOxKxWj%qhQ5g}YB;rlf#+QEEOonBcO_uq3x)C9j$wrk483{WLb!c7eP)0_hKQZ4bpgkRC) zB}C{Rr^efTm-+fF$uj8$lO-Kg`5~f!-6AToNe@g%SW3QARr@P`S`i1UfUD4pZU3D> z6I2RspS@79x7(1@)>t@^i~2-uLpwOWZ*>SL0(eq_jT4d?kem2_2&1a_(|a?R-9b2? z#7ATkWJi+kTTzYO-P+=PFC?7xz5Wvck@x>A1EO+4Vew`s72X2G3d`}{n)=kAYF(_W z_b=5YQb;rZ$1UPQS2c>^7(j=4xnr+r{Jowem)S9bQVZ@$HjhCIg~*;wlt9+!ZiQji7-)aB=ruUyIj_|7)?{M zmYMwmO5zkOCwqN%k7D@}h4%{EGrdh}wXjrvg6tuoJemD=tgnXu`q=&SgO0Gfn@&Pd ztnxdZEYSPdLMkA>dtNw9M#eFPxVQg|7D#foUw+-ol78^3IT*sh|L0gtf~-Ps6@b9_ zRSXnkA5or=oIhFnRRex+%+KECyXTCDcJtt^OiN32tC+OCafm1(-IB3NPiMTu`~JsI zVm!f;hm-#i{vb``7=}W@9U;20dT^p`G8}*yG)LQdW^!h;y@05U;_Qh{`fLgczTOxV zPCr;C(FDGPh)~QgA_OWlVKhP<2Y=yzjVk~y(=OK=))EpUAR3ron0*a-6L|v-3z3Op!0a56^xcaqW zW~m)-AXwn-P2YmXV7}Xa)X&G=*i~O)roZ|J_Z3>UHzwIUM{pPpUYh!q_?yN?LH)aP zk1!_(S*Dz*t=Yua93?{K=W&gwT06JuSes3B-Sc-RI-Y@z)qTpaGd_mxw}DBokhx! zYdx;r)lt+zx9Vmw94l3s$yXG9e3GD0W`3v|!r3Uev}z^(wxTdFAs1oS1uDN4HuAOc zsrnGfGzb(Y``}VE=LrvqHQ=_qc~?h89X+d?i9E9X^u-sURc1dzm})L-N_Bs!{YgFC zLVa^XSN(=E7HL~=Z*Cf-fp^hmsP6Z8xxL_(HG#7_1cK@dLuZaG!lGg(aC168iW-@V zLks8AY4*^ih^WVkgt+4zZ30B@Uu~Cmyv8L3mz_l&A8ia9Ww$TiNTS$p4#K{o#lLIj z5#9hr)(xhce!2pOb7NtT5)_!3SXUZrVgu+#^_)5=)ZfZ{edWE_To+dO{^9AOn!bN(!M7A>&T^U!4q|^?5p~;?~2R-gB}YoZqC=G}Unu zQm)}U>{OhhC0o2q>h&Z?bFO9^VH}&1IlSo6QM59i`=BleZzrR-W-j;#=VJBy3%{D;BMeUP0-~&M0IsmU8lkn9oHPcod5IiQO|T;77Oe8o^>C?`nhL!mfE|8 zZWo6YTIB8Rke8&1exnmCb5Y1}QmZ@EbRbp{>@Ve@-1_4<5|zoA-kYD^*Qi6MbmLR& zCDt(o>yfZ7a?@_Q1A4Bf`kTLem(&0Ub<;6EOI%S61IC+D zDP5p-cnVNzGNeAGchinV4$R34-93|bCkfR1GfNm=`k_)ZfbWHkp`Y=D7E=@GP~D=s z#;&pL#p#-W)6;R?tm|;cp);D$GYrRjyCar)g*>+Nt$A*1rWrneW#rq;HBZ%g52!oO z21(wNkBgZW%24j8OG`|=&186deAV^OPZG|G#Y6!aPSnxXw}*O{nr?OT1CyQftG=*-|p(_6b7IExVO?{f+W4#tNC?G(j2DzijNT-TkF3Rs?_gE zW-&xkO_XE+_jnf+Mkk3zHWd+6VcX9%Iap+3QPK8%v}Mg^JxvcC;DKAh^LZ@fETC2X zML1c8r8ZD!Giup)B=2k0{>Ho!y~V)8jgQ=0a{R1WJ%*Rf`zp-G^V8<&Tr|u^Qls3D za_09XXIvca-JNadYdv?q*`FS1%)bT+Ns6;>%0S2^rr z5Slh{X|^n5ELdHeEg>&8*R|U0GhcUO+ep6ORwid?p)(%QZj6p@AgzI`l*v}k?tZPp zJm2?^_}zlJSIUk*h}9nepg{F;ry2jDLc=scpxDJStFKovxNT58!&Vf@8eH$b3tVwj zFO$TOE%m-y;b8X7wtlCZodpqSk=${LZe-seUxe$ zO?XI3Xnu;-M+(?4ua8ys#Qq&WCx~w4M*rR0+nX#%M{d!mFqni;&WGHG5v)JDyH2_6btNB z^>gDw#~j}jXgnWa%i61>obFR;GC7Bzp7sLQ+VutN@0i*T@8?)zB~&{kg8LraFL1$_3S)n&rnx>+C%@A&k?{?o z!aSWssFvarfS}e-@9yr_v?#wjcHhHutjM@$`mg#gH$v9!Na*Ax{TA+@rO-gDo#o&h zuDNBYp9ktjiOgq7RE|f?1x{~YMR}pg$ns+1j&~Rst&cJK&2246hi7<9pvi)}Ik$FM zsZbRnSN-m$5Z+(uoCdSKqDDVl4nXqJu2M^^)wh|?F~r#D)N zv6UN@cf%{970^m!HBA!lJHMM`*_BBjr;hGm3hrhx{5{xTDiYYYQut!2f3)Cm+tO|1 z)MIbDpiqlP9oU=$OLr-0R=nxs4Zstk!1rzk+mEL||6sVpu2p8$9s`!7I z&S9Hp!1)oG*z7N#Ozq zL0}JdD%UGkK4hw>s6^;E8xxdFa=pxkB`HgBa})i*1~>3<^HaX;j52JL0$aFIl2zH{ zw5dic)?a}?=8M+SMT!Nai}g=F#J7*CT}E}=ta>y9_Yw&I45RZ2-u~wXblu%bEyg}% z78-UScKXx^wMBe6Xck9&z$A$-7iyE*Q2uyyX9&3$7fZ#bdo3?hsz}knVTuwF=hz*p z|53WIDg^av4~zU%a2cD<3v@dIZLnGGaG%gjS$+?a?48-UxjxiGth!;Wil%0C0Y3e< znHw+Vf=U_kb`TyDm0Tq$j9nr_kG<67I_TWrad8=Z9M!AQa;nQoSY17R_?y=}y9}GD z@SB7HG%>pD9$4W0`Tzz|gXYk3+l790c6Rpaxo}O3vZ+s3)1-Z)qM}r?RI3lyEAvpe zgQ!QQ{n_eD8X6iZDt(zMS@goruDgXuIxhXj!F)Z*ue6Vy{!FfZbQcQ0T3lSri9H^7 z*{CikC~zy?7_Y93kH4jEI8V&xe=9gRm|e33a653EJ=mFAo(=%j z5a!uKv%&A{W17R0QYN{)=UF&75a>2OT_Bw9%7kaX&VM&jVy>>PPABL<`{2!wAOD_e z@TYP7eM#~Hod6G010OZXw^N(s0+)TVHHw#u2XtIOys60n@BV87Uz;C_t5 z9%4k7)067I(h1rvcHXP{_wNkMyFXir;HePhTE9rxTPZK6sx8OT=i#UjBjjq#udLJs zP^aFA|c7^x)~ZOQFsD_6Hfn)h%s8*#ANP0^O0Z8!(L;;6;Br z!IJjw&IE}F4sB2%RXVIK16#_<$|@l3SNeC>M))>`2DEJ3%uB~q4VN&eV=Um@%c9_! zn(x!w==rwj$F}nmxZTpT<97uG4?%(lpHbNT4tEjOskXhS)T*kZ1rRWFj-!eTR}>W$ zgZ9p;@!WJ<&PdCxSk4S%Ra?hQ=DE(XmX14{O2lEDgm8K8*p;t>>rO|T4K$Z$K3Z|hH>zwG+GEKd?&?tKn8V271`0JXKQuJ70OHvoLYvp5H{H{G zQm~pc`5wR6MEnE**#vgo5i{nfD}4OwKuT4$e}4h#zCRZcK>L{M%#cTFM!L@tMi-}j z#ivhQ`0!7M+~cFd`(K~hX2DJ5<~9r&hf}=d{1C~zJNs1Jxi75V^IRpR(sGp@f1wn7 z8DDF|j2@c3pbQirF0~W|6yQw350VbWXYpge55Sa_N@;Ss2i*}jMZSO{H?eCm=CLgx zl?lKo-t^AQmwg!N-_JFN!T)-fFORc2@L`Hu94=k~fF2Hf8yX~li{QGBz zFh(m+ryA4-qk+a<3d}r)?J*J*kM);(GYpx)V%B7-^~HkYiee+93sU2bQoI-0*G z#D0_1%O)V|^`0m4ZVkT?h>fRer*TMfT8=i=J=6fE#dF(fG^mk=VGN>d*Zka8G$*2j;9F^uLKxPY z{=BnSA3b`s5a+TE!lDdFfcm)Ue@W;8GmFLQy#i?@Lfc^oWEUF#-ktN7D69h@H^Yv& zv5$xS_iy^+)*VqRoe8y+?t8Vswf6?iTf*4^))WVFwUJKKKFPmZ^uePIAYsNT>?@CP zhtd60O-#tuuB3(!XUKxTW&X>#@yP{{2}laAfQa3lKNTpB!xv&7>ea^}4we|!rgTtJ zjNR$p7q@?`L=JbvWXXO|&DDZ0CV1;0_UB|xD?v?bJyS0mCsh8gylm{UYfbQ>6wRLN zBgWUl4Sc&^z1i~C&#T2rguCUxB!VhZ2l%%36S)g^XCT@kky^(oK^`eWQX74a_VYZ+ zhNS!J0180Tpc&D|UZN*cx7PIf5qe}`;j19;{U9#&b!s{0vRO$V2cPH7mME4Q?k1EX z!8x>@cx@YQ#V_QzKI%;Ijn`b`wk>^IW@_qtfE}h-yH^GM{G$a1Ex&!PbN~{|%*;&Y zxp3M4c?bW@mx-f!zBWf+VV7N6kaz(LT7?LLn)~bZhwmD`(lMa&v$M@c%dAlceR-F^ zI0Ews1IV7|J@55I&|#JT=ua(Y`E2lW_NX#lLC5tN;9DS5!bVGO+`Z|q143UHyR1f2 zd2@vcP$WHoZscQidjIG6LSISl@m(L?t^iTo-ap>7-9L7mxy4CAT8sko01i~m(}{h9 zWQuc21U8ZhXL}*da@o$KMtlRr14#II%KzX7=w`Ml1doq;vb^aW22W861#Y(k$w$v?_8Ps$L<3AI zgl>JW?P3PR4j`qc)1FFz9R#O7UJ<#;JPPjoeCf{3$|T1?e1ekIL75}{Y4~3+e4U6OZ~R;|rL>|`AuqK>1pEnZyme=h%cE)Xp)00yLe`0i=v_)2o?Uk7KgKS>xa08A}) zr!<)Wmr&Picgr*_pJn8rCG{6hZs}wCveyRJEt^dLt6Jcyn=(sd8$Eb9%=7-v5(~qg z3TT&{=QVz0ppm6i6BQ~%;tN{8M)vhy=Xrf{ol2JzDuaUwT{xq^@KKn!l836%EVU5t z1I087B;SnILS68?@ap&4sFJ(R68Jt3P$=@#y^WGUZ+TJc3}&M>=jP`08otW9me;tA z11#zu9}FZYq=NuH+S@c8$d#2Iag!6-pKWe#P91XuHrA{EG6b~aWwh%s=nLUl?)1Q9 zD-U?{WYo4Jmd{ehW<)NM%V6r4SJT=MV1c75bi2#$kYRL&ySe#VkR<&+C_8wSj+3Q; z=`MlmIFM9=q>B|E( zw>H2#kMCpbd)d()x=VNvWfhMvy?nN|ww5OAl0T9;eT3Vyo zh8dZeH$j@&nrjIe*;NB@)WvN@%$O3yKvFG=F%2%0@Xmc_*lxvDCSo04ofn)6+IRJH2|)TTG#AryFXs#ALJSP zWaZ?<@)*BjylmWG$e383$9uj4WJlDdza@_n`idO?KjjhPHy2@Up5s+;G)OefEiEB^ zf9|+o*3G|W7~Q)6D?tG~-%fQybZ)dCPQ&#M(gZ19Tmel~_(sPSvtZEV`e3O|P3j$T zc?ougbqc{f|r(C^zn=@%IBQGnnb8xf=MwUx4a#>IR z2Ab)Bl9i3E>S(KFp)FeN)vH%P<@?pW%YV&y83bPks95IPV_klpq1HE8ThPuZDcQ9} z9*zQm5KM&_Dloun{DO+Ur7zs=PC!bFy17_btcR)Tl)w4;AxE?H`EBrWi>jt(rQ6{y zC?A)8kzr5^lR)fxKEF^{P{2{W-Mx=qpr)oC=vUk8@EB!gFtgIuLbd2zyu}VkF!S8QzNBj8N$os;L zf{7kH@c{lXHEV1w0=pTps5D1;Q&CZATh~!>f`!A`HGzV}VEa^*m9y0g=kbl#GV7V; zDm7WzHWfAPu+>KY5+K0=ZzbdOILanJ07u(_H0ZLs>hnB_p_QN=*E1fXu3nwapK4{vYx$b;03qke;z z{{1O*2_7Q1^6(7B@IWI4UfgZ~f`;O|`bP=FQTkr^2gooA1$>YUv_^6RN&O*{Z`7(5RB=j?X>y_mT>;~W!!>7$ zy;egJ^kP!L`cUCQ1nOum`9%l-vW|knMGEiQDJusD2Y?PR$`Q1kfO3)m)f8sJ-Tm#` zx58sUN^%=_C+n|C;dGC8bnVA=l$Gs<3?kZ)qNwELBFu$bhy4V6p&_gGB&Wu!V<+ zqdib#&d$%TyEts2(ST>%@Ws^bpdLsru>$rc*c@pY8Pws}M(RD@L)v)DPM{gof!We5 zMM1@-maA0`>IX~L8Jb#e%HzGPhkSgc0I&GUCC+VkC`Bd$|C9lzbhMM_F8hEHMy|Z$ zEeM{*-0l8nG*@pbVEqF1`oh4tMwOLfbRxsp4T~O*pnF}9T38v5>(Q)m=ZSG_pmTir?Lh)KF{t%PnJiaolLAC4K&wA`;^;kSo(OyI ztdAY~^Nr(WbFE+i4PS0q*`DCUz8qHKJs45}k}x&fYlV)7KqoWYM2ssi7XjD205I3wWri_!ezZ2Uu$L$t@gw4Jlm^5jhFd89VTGNvfD`4$6OT3TE{)Z;*HPYIedC=yD5gZ-^J;OM-C zZ+Ly%Bts$=53=pR(Tw{Qlb{eyyPYrD9AhD&i$B8qiVeYIJnsSwnzHbqPY65E7=0|K zN=QGGV&GlLTS>9*xcwx_0E)~S+`)>m)?HAz^o#P_^vLp!fsNrCFv=spe*FRkFa8vvy$69myKdJrnN(Y5~ag z@8`|AC5?@j@F~EVq6{=V=@ENVpN`kOYNtSF;|-8Nz((PKye56gFa%dEgK43m!@N9zneQRTz`S0<(kbANkRZiAeP88^Q@K4!A zGHY`t-(p`PuK{VtPX_~2r=-1 zq(x4{ds>CFW^ekyP#XUtk7dPDD#Otv39xnu@+jH3%@b72YxxcItSlzE)fD(U@fvdH z0+rh^Xr$qZ1WWJGt0;+`<8(J(9aP7p<)l-un{ee}g+U?u@Pyr%_i=RaI3BM`d=CIglkbzs@s(&P}C*IdF7{ zV49e%uK8uaWINzdT%29^3)!*_AR3VH`AATjiMrze>qdS1a@O>rWhdZ8_(nAbk7G)ecqo2BD>ywS37ult`G zL$$i&(d)hpe?}fD1hl!ZGQdsO!mGoe*X70T;k)2VU~;vNH|l`d??z|^HwzttLJR@Q zaMDZ)TK)%{vc`shT|r+mez_VmUI}v3Y5C0{pDRqDY%WyniSg$G?b1}NmzG`EvqRze z%?1X`U%tU$;~9oOOPi0P7^wv_qXh2PfrVD_?3DiqY zQyVBIqyM4dXn2P+VVZMe)hK5d^)=>(S0$$3T+%qw8Fs`fn|JZu#sI0c{ zd-yRy1wkbg5K$>nx#kJm>*@;{GODD1kJJ;!E59p681AYg8od_1<%B7v{IG}dw#D)KV*{^1 znbu&%&7ZPT=GRHhr z_tg;S^SC32$_;>%Z?FCO0fYe<*B&6=uucH~Yytlgx%n=^S)qY&9a0dxjahrb8`F31 z5=25R0F&&Nw+F1FeRYo&h4x`4WK!mxL(mIXga=M9cr>AUg)i&fWk)N$UaV%AN!?|8 zCgWH{p*11V>xv_bmGxB;5NkMnu5&kvXP(m~4|!nph8e0eUSbBUa+9k?U+ z^rCy!7|hS;9(p7!@Ks4|MXLSr=lUKKR%8`(j0#(Z``&KS=Kk<>p2pzr2N1rLqSrgcirO zv;x%9S24zGd?Fa%3W?`JCDEm5BqINHY;257_$+=rfMWvJn`N3yepkcdq$!8KKH|3D zRRUPy5^K^hoYL-zJv?08PO01M#;^Uh<^X|JE;74Bg^Q2RmLUl2Mp%A60DVAMh`4P$ zpfw_c-U$C<>QN8~E57qDUj-EY+I<1iI2k`+?Jfim1143uhv1@rij=G;1Kileig1(+ zuCG_zIb@Jm&1;VrNlDn<9`~V`q_I=*u>KGZ*Jo&Gc<=U;sFo;KVgl)1z*TSPU*!!; zJ~FfXZl!$h_T{oa6$^(?{csY<>WP_4Ue8UsnSD-ERc6`ChuBbLMx`s$eDNZE>2S;N z1w_7kEae<=dI(|`i2IRqm}~E#S z>eEX%ShB8!=De(S3)2;ZC^?ss!=acESt7dpajrMO3d$o){kC$)BMyp9=ra6XR*~66(25ND@)Cee7ovnUUSN`EN#xEbq9_o61R~zo)!?W|oBV#ii1%5T{FI zq@;Jx`@ZBU=h;@iWBX9+MU!2E#?;2X@LDkVx0{eZV&7>1D7eTllY;uD)WxsFx5%l) zT9`12bQb<(P*A^;YqtExO+$sX|0HmdTX3Tz*_M8CFnjSt+>H7GvOeist*x!lzgw(1 zwZ=TZ@+kVCY@iaGJCeM96*|t&WGLG=j1K_qwk>#X3(?Ti!(&b30^6PwEMdD}z*~7) zYWY-IFqB$6x?$HRqtJ|p+VJ|z9OKiLF&^bj1`^Js&cn-U5V~Gz{GVk*p z`>Yb-2|_uHR}dMBzXq)e(N)(UdZThbO+FaHMw6EIpW0NN-LT2MW>-A8WLn5sejYU< zCo~(D72M7#&xb$EZr7$tx^X1aqMUtTjw4YB;0zA4nMm0|sKKErDh>OonY}n%uA0j6`Uh%M&MfC^JRSd_ANR(+Em!4vv37 zw+Fw=GdW+8m4!P9r8P}gDr^HN0=sv*8I8w)li6Y4D)S0Apt^?1j~)?uKTv5Ih~(-G z-Xr!RV3DNWnPOr^VRO(7HyKY(>n>m0bwHFw$L|PW3%NJ6FMjn#Ubn;NFZYxAU+#!A zCLi*Q+ZV2;$xk`nW4LZdPe)bqc2GNaZgXwF>R1;6k|8wclf(mlX8~7g%7%55$Dt(O za-qJVL7JLHx8rxC#n+I+U@K~1qiH+K2!#OcW7(1w2a1tXi7!E_RK9q)>>+wXDBCjh zL93RRe~N~4CdoqK|7GQVJ-{dTEPe|8_tqME5kulHVPS(%)Dtr>KkAwXilzd%BBn~xD=VKZ(-Pz1O_f$1 z#O35LKYnZr95j&F1Z;-i%Ev$Fznd1#ZG!@Vbl()PoEv4DaV4vD)LZrq(2Pp~7Y=8_ zs5h(1@7fCQ)Q1RGV%^@XxD}SYt>tvtBC}cFmHNBdhAk#0CUBp^+c?~)k$nHQ$8RG_ zmuoLqryacX!MG7XaX$E>H>26YWbI}6hxAwP*Oo``Mk}_z%8uGE-=y@-8GpZ-FLHXD zb{L0OQPN}=ONrjBwpw~Egx0_CRoNW8BSgQq;DbAXKraBqr8K^wQOMDT!wXS=qpcJ0 z{8ZVw-t2@Rx<1&4>+9>L!q81#x^$^85SQIII$njV)1I4Ci$QvHub@+xmWHOGwifUM z4#&fN_&6VUaH|u7Z~~XLhs;Nu=BBuSW53~07)#1y)X@Pn2cRmcN`zVR4z9N1j{wU?Mn}!<%KXZy_suSZ8_FRag3Xji2GNW7 zX*@$^mxk3()~6ulGFAwxY)gD?7mFo*c^T(@u3P#>W4p71DBaQ<#^69Y<+&-Rao{+{ z;KU2Wv=YkkSS);15FELcwWZw_>(<9v*BHviLa)afiX4HBxz5u30wsQj6a`sX3+Qkg z8X6EH4xltZNTI-{e(>OrCEXFb-FAjT60E{6dVKVE?f^+H0@UW=?oPG64bVHV4o6Eo zP*J>@`28RJ-EqVj?cTk6C4sH;b}Q}GH^BRsFuU;2pFg^BzkWR#4SEXk09J02?;grY z?2-3k_JP@v&&4F)$(8Qmpp#4ZLrY`YIz{%f%^h&2vvJEZPq4y2SZ=zZ% z;d7h9Lp@`yDfjDfad2_XS4Mt9NvF$hc=#K7XK$iHaOmvMzXSBuGLV)N6B=Qn6dduE z7q+ePgEpUddwI!F1B6*YD2HJJ`{F7VRyP3}YDCIC?)!q{VZ9%2gAY%mOEl#t3+2YA z)vvng+De}E;vdNvRIBykv_zP_59!*_t9}-8Md&~5FxC=o3 z{B&9!wK87~NS8jmk4r+RNKQ@;^lMk+Yk7WzhXywEDS!|6@86FATx)&Z%(db!)tk?2 zZK63Wx`|78)mLMNu$kFruuII(^5VW#UX7#P3YoI7AJ=>%Rz|{r^{Y*#mE~p2z*1dp z9$hFc1D2g2Mg0Ro^UmaArgw{?LG;IZa7Y2K5k~+S88fr>h2ABHAST@oN`8q-m5xc% zUi~~%VUDn-MpTNcr$CHCtzo|HZ1fZ9LVIkkQPV=r=5XZ{*;IU0yN47MHNz%n|J!qx z_`tW{wLJ7nD)bX3VK`t-02poAJ%GRoIO&Fu=|H37@QV7s^9 zNqG@P&q5ENW^PMb_oyeKE8;X6b4lzx%O@`%9Gc9g(s0K7y3MOsJ@Cka|NHNuS|$43 zD}DNT(7MF}ZHKV(a8f^hzZFul{-L8W%Q@p?>`Jrrwj9G?15H+tCkHko&y<%s*)1TiaXuLFroE0^P*~DFyH!|xda~&hlT?Mf1tej_#N-otsSWG zl?zSZ{u!%sb8~yrg@G-a&|V{l@#DXO%F4>O^??w$5vjw&hYz204HTK{0j^3e5>k10 zqt8kwMU#!*3hdInsAb(lA1laIViKT6gu7Tgz6IqhKh@Fh9r_kR&VY3oX5GVXZ%Wv> z*woP8wIO_d%9(ycP;yXXeJ0?S;#>W-V4}kheU0)^MqIoFphlrwmyaI-yWfJA`YXWjfPrRbXV=%&f%FZZPH7uh6bcFo+gY;( z-q(zUd#R~x)!hRx7cQI)6YT~%4%%G}O-(#JJVOv4LD~)Xybinv1wgN;Eg4MXM~_q< zg|{^l=|b8pHK`IRv|fuZzyJC8x!re{WYsHDYd^ep`&}P(kqzbr@?S=?W1%iw8_`o1 zRg#*)YneYdSAuml)oZGgYuFbGek84*+~aGQ<4@-HtIaW+m1M(0c!+11(YL$=a(%1R z{tW#ogH}X}`k~L5D#TzKP#P{*Kv}~HO%ae!10~kkpfdm%9D#h8nmOB{{)b5L>Ep*8 z5?zwdpFbN*m7327u22X1`=hJ23+r}$-vK)3a9;JOuCcKcL>TbhK+=(6YIPk!JE-b- zkjr-cV&;5zx~+Qe{=QwVB*_AUg1Gp|GWtD}4;N9}Fiyc*6BQQHk4f7fisps)6-~Dx zNoRKgjXA%6>u`bnD;VgC+3_WRso~l23ZO`Mht>D}F_8=s%4iuk}k|bYr+aSL5kJS(G#VFTFfJ ztUXLZPW5ubF)UAYrS5sv$>S6MxPnKEI`0Nis_@aG4b-hc^s0EKQPAe61i-%gs5C|l z6qjg%RBG~@b5B060*zKB!a`0y1@H&}86u*hoAR+JEoOqj22T}e@3(Pb&wfmwRfmET zVGE(r7Zw(V>f@-I&}hI?SOMOJ0_@Qqxk`(1HesSBtf4G*VPU|wXJ~du3Z-ES3T2e- zuoaiWyQlT-7lgu2JyHg&fp!*c0#;qvjNM*D^I7s|*M6|Aa}>%+!m(=doEHrmt3Mu3 zL7~u@L65-u<+Hapq{qBaG*4nK1&QE*L38#Ud1N$o*7z(`rGkDpCV>hRFBoCgH+$-;X;n{-_Rux>K^@C*335NN-%`nDPW67xXh8Pt&aaAB>< zZpM_wT1)0`eC^q_$gy?7)P@fc9Ro}3Wy56&`(kJAzOMD{D3<5SopV+-^zYj?J~4CQ zok7fb-U~f>@(W0c&SX4~Nq}KiSFRgQNkF8QgCH}yyY;)a)+Bpb83c`$Dpzsyfo#rg z(@QTUpQD0`=31__(@a~ON9Y`+;0r4AplLcQcZC-U{7_EoECrcupO}$6op$ofwK@RA zJ}5k3Vd?Y>=$sO#ehc((IQ@0)0={$TMEI-j={Nz~k1x1L2npAf1xFPs%jG*;udl)F zWHpG1v{iL=4;TioiB(BbK{O*FdmtJ(X)0`yptnrMt#tB0u#1kP*&2Y3-KmOlsYReS zfTqAU%K_@sWV!S-SzL$sywJh==$IH_OsFx?N-NYEr{x3pRUgOwr>Puoex1+7WEwdKO{s1i(0i8( zpFwpOe+H+8sH|wj{#`XICwmwMUCgYl|G*rYzL!P)`*t6&EVlFt9cmESA#? z2a7bL<`wcFHJ@QiXp1OR@wY5)_?NKQx4Ae_=cD}n{Q+A|l!1(r_4?;ou`V%TVJYgj zT3S~)r?*x{D|&mA%l#43f?pY(0G)_alF9MV?yi;?8Ufo4WxAmG`SdFNp|!~%)gq-s zqWTx2qI6sHaDy4IXrj}`G|O1Y$pt!Oo>W401E>0~MiQvnjCA984w9Y}D^}Iiqyzw$ zA5Yd^9?aud=1P5@215MVpWdEF*(PD_aYS`Z5t)+{SFTvn4MfbQOSim`sGG8*(K&cr zNF+hKAAE!ziXQTjYY*)a=M(kpc8SeJj3|>4^Dx5ht4zt^hW~*zay?9kAz$do@I0?E z=zjuhHCEfkfLwYF(3gVwFPBTv)g6Z*e@G4p0ptv#++8_m*38UIT{5w}i~|`7iB{_L zlCd3*Gl?MDzjiITJjouk%ACU*>!4OQD%}Wl^{`3=afEIh$aXx6+(Uc$E()*!?aRig zIsw`&psA%&xPcPIm9K34F$1+hZso3OTwI(~{L4QYA9<@W37m!>xci1n917Nuu|7{~ z93AIe`Eu~OXnaPcaq*2#`tR2L02=Wb-KtMs*08O|;a@&ylvh`vHC(jMk54}8FB^a2 z-OY3E#O}h$2`Tx{CqSHD4iiZ2o(BamWI~WL0NZn=IXw$9Gt43+%J6KDobxW;NOy5L zpDSr&Q{?LLn8+L8&fY}}tnN!M1!DdHXW@Yq+y%jv$>{tNAT7RCZq(EV&|z*HaC!7| zQ~)Fx6sr2TyC+M;e4?PA{vGz-gGU|IPcn2}M|}Vv1OJn|p*y~Zf1OPmb(lN;WT)Rl$QK76cZjAb z#^>FSn(y<01*UX*`hk-x_=hyLC4X+dHY-B@sB@t0I{?x{uaDlv|9st& z$Np@#J3T@nDKe6G4bQi*un_jJYN2Udmy*m=kTD=jGj-;}MNGiNGd>02!)Px^+4LI8 zdZ1|iE=#~^wE`m-obvln5(1%~sIUQAp|s!k1Y#so*Fg_NDMU%!_DWj11MrKnF*VH6 zP&OlrwOFiMjFpXL*;}8zyv)}YUIsHx!l?-GvV;or%(;uwc`5hK&K+-xJH13{T=;7p z$)$dCSx3gW(KxuTf^>MYf35f22w%{+wA{+3XE4Vj{jPYUm_9)9Bb0tA8uCkFu|>5r zOCE(53H3oIuiHamqaWwAz%O4I%;%)(X}Mv-34Upc3>2V>Iog>3jn&bG`uVlPLxOH3 zkt_14>s468lHjp^JWE+)1kChd_~1ty+n(@?o5Z)9mK$ zEt>)$2gEcw#k}uhSE$@qTc6)K02K=Uf1;l7&2t;Orow>c8+LsUp0XE!$~OWca72Wv zVJ;jzV8xPtb0DE74o)jFHvsKx8D|+M?>8t{;rBzolp@^?f)N;qy2gf;*pU~RMFXXe zLh77pp$*i3Nq5cyv!mag7FHE)Ba}sPcJX)_%ZVDwBsAr?(l|b@&7|PeN7LhYREGvB zl?wEH4XT`S=0$=`XLQa6RUBF1a@qAzG?mFIt@OsxI;xWKedwZ&$Gfe~Y~ZB(EM1lo}kWJYjulSbaVM-y?|v9quMS)OK? z_hWy5t(kgT>fWPAy&~oy=%7`|`RwWG|F-uv!`GL9Z%#~=Y`pdbasYBwISh1s{J1sD zHwW<>?#rS)Wgcz{8y{aT2?MlE??ZJ#fTyN52JvI5SQG|q07itFj~O$LY|4@#6;IP5pV_y9S6^H)R^vKChg4MAhf#rqUme+fsPEg{wDkv59VCtyIu>nXe*u$-W zb3=nd{KzymG4c24_EG=U2ksz&^$iF>2Et&3K{`ct5kx`Rd)7Y@tpP4i>&+pH;dj%B z77Xwkka&OuG&>_>rJJH#H+Kq@bwj0lFy>?nT{yH3+X;}k2Nt(rW|v z)6G?gJF=&>)>-CV2EmIpC}#(GG=Uxiq#E>Ii-@Wg;4$EfRb7YlS^J?oh9}<(-5tat z;Bxlz7lBCCY5f)9>Wm1g3|S=uNOhp{MTAs68Ka;%&4-w~u&@A(nCg+Ido*ZiCMPEJ zfh>iP0kszNIZDMAsi7C(E;wN5@N%^+AlOvfFA~~y^7|JpY{kQ+?hq0xE)fUA(AKcJ zni|aPmBH16!V+|4sz=*+9%R(idLRKtIDwADR#?)(@52!P0A9_`N`l0Nhda51-vj+F zAgVJk&jO_>U}|<-3C^T~?$HAfH=vz``mKVB>ydeJpr>1H@*?j+gMMVYh zaq#0lMUFj?6kzF~oXT-LiWW^s+4j!1yyaC5M^V)VsopcGX1IZ7gZekjLu?`4G#k*fuVC{fD*G4~%I-v+dfbK#=+hXab1hm3rR z`Qs~wHLYBqHV3Ody$@P{@wvWGrmtAOG(I;aoA4AausVm2dh!dz)DR!oWLa-w@Eq;G z1DLubbGsZ+m|@@$o8|MJH6aQD+_+wiFf$oj6`7~#}ew(nZk96f# zsq;S*5FqBX%CNPhH>6tyEt0`NLF?<0?uIiIjEtsmZaKn6$|W!eSz!;TTZ+Yadw5W9 zWh_KqBPK2b_yDrtWu;hBuU)?Ov}0I(m0&d3iB~2GS$+>;a3C{pGCZk@?3h z{nfdZ>_$aOHl>Fk=Q@OOkR$t^KVpu% zeqXB2$y!-$BeNJ@1Y{byE-o$r(c0)t%Nf8kfzS975;7OJAwu2`s(d(_QBnE8Z~|hE zOPu6xgJ@}O=4tN=Lq-hawpXY?U*=L%R|knI=^P#?5Z*ydgI`~Kq?_IALPLFF<@k<= zUzA4{m1=J=sPBEs1*Jg9gE&hX;qtZtL*kupM7QrVV3ml-QFraTR7=g031-pk+&S*> zPXYz%4uTau`AAa_^31KFU8wEXnt6@@sZv*SIq=Q^q8lCuObS{)nqmC`GpajKWIzC3 zGY*5iPNeit!&5l7(pGS3!+tU7$PoXVjdB}q{nY|Q zBS#*_#qFVf{lUx&kp3?COC*z)VR^odQzi zC-=Bkew>30Vb~Js>^cv#N+V-c9>52eJMee>w=Vg*{0qPxE3EtyZA_+}$y_(aFrt?a zSFX?3Sqqu`m#3m!`e}+!%)Rm49R@6s_NvbAt`r{cW4vcNXAS?VoQE65y8Gv?R@|;2}{CjFC{BKZq4Z;{W z%;6ZN0EOINU=pKsCIuxQ2*J?`Q1rV`KWS_G`1lM1_zo%LMn>^LZPq^6W2lrn*h4aW zf~VgaT?HU$0fbmnRaRU%2rSTtPiR1-mWV{5Lg+6azqrRM3L|B!oh=2PwErX<* znwo$>^_{~NG=oLBIKWjG0q6#O$Kk>JS)bUTvxmnu-`2M>6=`ubiIjNean9Z3pE6&x zlw<6->Gk&=UsR(G6e$NDhWx57O)KorvnexWQhiNyx>bhAsolqxF;Gq<8u|S&>U0DX zWClYeg=5OV^)z$uEkNztTV`*|N}Cd$rc%lQbL^n4jlSpi3i7%m_vyMHAM_utXs{fg%uEqx*JiqRWM#Pyvj! z97d8r22i&N!F3G)qnk{cAm=rxjHjZa0^B?TIvHDFaY2;^SnK@8Zck6oMNEPm0BXs| z;t(llC@bcF5u)zVfILk%vJJz)oftnc4@|#9V%u8m?@mdF`t=voOCY&U*xA7)5Sam~ zI`A=Epr`rpbEH&y3w`CdP5Wh^Io^=B_GmJ2uKV-$^l!ucj>PMAnuiIC(=2^9m>y4kAmA`CF){*8 z{WUaHFTWqI1(gur%u42?~%RtbH`mkH*ZD<B zdcaGOdI@S4*x9$QK8L&op9Ei!y=>qEq3D6Sap!T8g=`876Vn=mdFVipUjxH2pr|u6 zOsi6Boi+RKzyIK&L5pVya4i`B9Q-(k1ylX;qG23-o6pb+;Le~XT80^Kh!YTJ8td!f zH4ZSm4;l`r7oqK$1c>V;tw&G15|x8JKZ<>d}khi3_xaYK#`FdzlypIB$XBcrv@nmW{*e~>%Z z(8@I@jkWfcSX*i}zt+2=ICmq2n3&+OtzT{J$5tJ;b$6aYX`YJu^w2fO!-RjCrX;rR zo8n(gChPuqkwOyap5pma&etSWge34!W~^j9q<3pPSI&@7N)y`9XS0ZA!QM=K<6n#l z`g<`>Ld7zgk1gWFQ=vvtR{i8G;I0;YV^42w`IdkRE>Rom$=8WaxDNaX8MZj~vKiJrUd+}*_+Rp5A z#L+}#PSp2+^^|@^86nBz_$wd}kS2vB^_af@$Uo3m@Lox1&l+KB9GrUSr}6G9Tn7Ck zntKaL_$>K~cn$tabk3*UH_GbViM<;NmG~`%KMsG*C`Crfm))oAa)yEObkVLyo{IfA zsnjsvlkp!%FR|k02$(y&<{O%F5{z*EEr&5wC&!l&X=yjzu9<}kI&qkTeR6kS>9@EK(@X`#Go#YT+vTyYO zS$XrP_Jyv^oC}wf)m1+9n%YDzB8!Fr>+EM5S1()TclmF7yWM3rTu(m$RsPrB92GF4 zY1?YUa__o&3}keIo-SHhcO%_-mUxU7HUm1i2zTzJfJ|FQgHj<0X9GZf{w^mv0`VPx zQPnM(Efyx)_*7}tfV&Cl%+gl>Gwc)}6k z?|=94*R&KxHR0XqK>1iTwQe)oxw&Xeu}ZhKOHW9|FGkO;@q<%bicAgj_5*`b_qdKC z-SB^B%;n$K#LWUwygklev2A{0=~5@<>qVB-BDX{ZCH+Hc6G&W2xF8(p(V!pPbzm zwb8m!d#=vyqxkoPY5Vi}6kK$VZWGv;=gvv**#+n`UJ?6AyhwT0_3cvm zw_6Fh8=t&v2fqvm=o3p{%KAx3D1wAA=HhR@gN6$|Qf8++3DuWbar#H>2BktdqjE+i zQx2B(xv{a7=6#hmLYIUmov-r;9jptekBS0SN~3o1Q_OPb-J4G2TPWW9Vda1K_{zQc zt#>&h2)4P|;Q^i&%rUk56Ke#vVOQt3hS5b%zwgKWzegIyS07;8nP(mbfuQ2NdU{Re z6kmY)9McQAawzBer#cBNDNZ68YUINI`60hW{zkDf%2}%;hKbpYH!-R$J@w=zq<;KMnQ#vM1w_$&8zJ&$=1-;1zYJ5e4P^;lw%}&IR(VGg98JYs96pIB@M6;G*3D?QRL?L;oXRarnN9*H%u8X7Jg+rs2QiH>D$>@dS{uy zPbNr}{rIYC)0WZkyH9}i_!lOy^_3uuDR%45cd{Aj&9o@%6Q4f=32V1fw$H{ORId2) z8iE7fG2;F+%oD-sAGU1vV9URaDQ%DJIG~GFTY$HvO3v27%O&|HJ;Q5QBv1ZHaBzDZl%i6D7Wqw7i47Qw zbP6Tyr1XhD`}#`DrJ8Npw0ia9sh${@qn!R_VAOf6`Q#nn!T94JbR^biOnyb%#d4*p z+L;oI)!mKZR!8zD*n7X<&u|HH#z_D-F zFevRZhmTI`;lz%X8Jzk0B3prl>wfoNf^Y=$-y!??1LT`=>)vn?68iM+bzk1Dy+{r9 z9C`p=H!Au>=y&T)o1b-x2w1+ID#B?xCG`{g{yp(zP7nzx7r#(UFVlJVv_=K;!OX4V z%}zFeQJgL&|EKR1t&$((~6`AF= zhW9%D;CnDJP-tl>0BW&ZC@So=3I(|!^5*)-lK zf5B*U{mG3mI{nJ?2B{Fq^VUVw#(6)7yP4?5F&2*-TR8vS{ZKMoIq`=_B{K%q7nz3V z$toWRR4-w9czyVywy^P)F0Cw2W!~M0?BgQUInglPH?(sCDKhPk0*>b(QIS;tTZmr^ zws{4nSx|zy^4y=ba>XWYnQyG9*3&arF4PzAfPEnuzpusHtlE-zk2;|FYt=h86T5|`RtwxuN}n%Bd*q6EcRZX5jt%QVnt{M+6C zj(J-v^#wUY#sew1-^TVXO4pB}Xj~6iF-Qb`tyiRcTVvy-B)+HMfA&5nmYXJ*El@Cb zqloE))XDp!QOWdP@0?QEsIR)_IFO+Vd=2j4#tv zp6V0x`jQq3(6(3j=*{OIl*kqa)3ai6#&*|o-H>6sH5hEI{O9D&GmzJi`5WYmH}Ubi zgRa55t>1q=zOtoNQexGev+>-4+cLFsZpD(>zd6q$YNBI(VFok4gSpkj>8N>s`;}mN zciU`+VmB?`ZM5*YIBo`;@w`d9CE9;0IsJD-p_@ba1Xmj>Uo(#Bsi0Y{2-Sjjhh-R! zaqkHxMKc#`aAAoLF3zi|RZX37h)a=b_GjdULayBuLK7^p_>-{2B8gGmPTQpuO%4j( z?(b7_VJ>dZ-I7!(By+8oY1CgaAsz^VAFPs$kCO^)^x>i9xVqx_)zz!LE73o&$3X#> zo|9BqGCj6Pw-e~cZ*>2nn$W+?)u~CtDSBj6=DKTLxq=1R2MS(U^?Zk-U9ZaOGfPo= zUtcc_D8dCUs@1;14@Dz3eMfa*;Bipd`Q+ctyZ-Of44ZI7y;HBrDQ_^SZGSZAw~2c( z?hT)b(>YDWo1Zk!T;n9E7*T)`KXkJCHAiY>9UIf zm7CFL1We?+Xf_yMFWdjyf#dT3$%E?EER>o?uJ^rhrx+(YIHo8g@azzjHs8E`3h$z z*WF`95gmV_zhi&RX~z;7{I60PVVk{`Jl&daAf6&nP#g5dShY*$T`tR9C@WjeJQXX( z$fwbt;kyEEO$#qEAvC|k#M;Cmz7*2w$-pIEKINA35g@?8$-F--wq#w41F@n763aFE z$2%02i1RnkKj{Fr#Z8Z`Gr9EoBOmSzXsa#5xzdg=IyQ@sWCS-$pO`gmU3FPo+x#2H zLIZoMm@XM74)c7#O-swyIr93_>6Jx;H`I2XofHndGJhim@8`aE55*+>O@+xnq`e#G zfY`Y8T@O!NucNAq&0?9J6~kDyTE%A$&ta;rxw8c_9LX4#BR<@MxsGH)WMv=qLpnOD zfnoWRYmN+S`ddSe+~egTn$h;YJKR;nTm$JLW-!TvuVP|PUP?3SjCMoyzj!8A(A$6fcU(O_u#|S~J1vB@|HX^n5~Mm>pXPpO=f`JWyuD0t0lPnb(!DV` zu3ek)$k2a=otNyZBbx%_O%`UVK*oL_YL}C@y`WG}ZW$e%BpjD--`_u$^AG|B0H6ij zUwRC>Fokn-Lv|DDBv`7d&rtEF$@h0yeu3<{OXgbvJ@e_E)csqEN5zckDFJHt8fnLL zA@&Yr8w^JdP<6CDsGqu9j(;01kr}dwfmdClUB9=N+G)Xxit;?oQcf+=lyzw@JJ)7x z$*XI#7V0^TpCgB=qe~ZRe7W?f9(JdTMcd@nO{KXTeO+|^IQ;r2SsO*7ar%Zt6t+Us z)DRVAX0nVec^8OV3Z~h!y3Hqjk<66|zcVB_$B=QZq0Sgdo2TR+cGkaJpnc3FosVyT zeY=-EJ_KlFuKAD)eFPh{eY1Z3pE1vAYijrM!SPm1pISZvNKmM)zsZHfgfdzq?Yy8QenZzs9mSyQw|w_PoZ=~QtDPr-3?5hQZ%&w}Wf9QUeg z%suJ`pzI7joPm`jx&_mhd}Y;fMqQ8cG0zU zC8l(@^c4C)lyLPNBu1o%U3#6nr6-RFH8Ol_A3`GdgOJg!c1|kRY5VQs}q)laKMn2m9?$o=vhlv-C zw(>30F_}nSSvX-(bFe_k>=YCynfQyuVN+ezoK(EsWGb9RV=49-0%D@Xcf5XbuW^(3 zGxq@m>)~|5HhtwX+d2wIgNMd%f%Pxi;Us?g(k4iyJxLD4_My8hF%=@9U1D44XQQ-q z&ov|PoN|tNR&&PX;elaJY`31aw7XHCg+5OB-v{&HUrKZ7m)*;xzM$I)1t)xjB~Fm} z;yr`Z_@Q%?GdD9$P|ju#Ga(G=K%iG7ec=8V>fn8WAklUj+bg5wxU7WFlcVfP^hwUs zlY+}ZcbTxYsN7DrtUzg+upbiGSiJAsD$6+n5<|c!ppD1NncXFq#6(?TGUn8Cib(Lj zc(@Iw?=J8ruQ&Pq2VrMrFz5-HW&feaBuFUHS-E@pOi}yHBdrj*=R$P8Bu=% z1af8({hL388_BiX;-5ewRx(aB#urZPT*oOGW#& zbu0HXsKg?RPu}C-pPmLaoaZwVP z3IIM{I(cOqtn%5v3GThp;_r;^J2sJ!fi4b~E??+GXM@_Xoj%E!-gR)dLK3z@jlgg6 zYzR+spooRa8n%MLwx}rw)K4dO`Na8uNm&_^ne7w(Etj6_q3TEUYyhzG1W3hFx|0e* zH$G?nO`RBfp_q-DZS7>2-si75Q_{3v+zLG~v!_GR>bu3gJOW$J1uyB759h`H+p~~J zKMTP)@SWcfPLq???0@&rNNZ{%{M++8Bsf(?7MXdnQg!M8V#9@E&8Vq)aS`Vw7_~v( z%>Q4bkj3tM5>rVgp1Foz%rjh3O$zf>*V}%41(bx}rbXGA#PsG_FmK(5`hf}JdUw|h zr|m#+)E~vurUzaA@5wdOM7TqPUh2YB_Bc>Z?)GDf&Zk}4beEh;i=-U6q zZq&9P;9d61&3!h|fy;!+&+GM+?NP{$VrITMxmBkT%@uf^7B6l*r4VR=z>yYo66T;) z0tFO^Xh0G6`}c2PbP-V?Ruep?I+Dz%dN0HGz+@EO!9zWM#$pNOP|fI5;4Z zfd|V2t`=lttUNrb3GIk)HSi`NL_~-f;BkN+!nk-iB~{gqO>HpD_8MMObL=U}qXJ^`cUAf9E z44CE3?qwvXtUo!$AxYS4-J`eRl@Bg1V4V$QXP{!1LMn*0YOFcUfMf+$-UeJc*o=n0 z{~iY)+8xAr7D(bPy8}pFz$-n-uQJTv0~_YpSPdY>B7o~dBzr?LaB<*z_VOG1!v_y) z*Dwz4dqIb{zi8yR2kz23*}V>mFlvs=%@E?}Cj~MUQ(@4Q=>TDC#6$y=rC`fj0^$>U z{O8<)K8WO`!37Dr~C-Md@2x2z~9*ns9t@9h8DYOFzX4`deK-;1D8h34l3ERr zHG9yj%ZWQU9A-Cj6W+OV1ma9-V?=+FUbagG#4b#N!A{W+2dAaLJ=JCnMlkE(?GFK( z5!^{tW1^#x$-yKY2|-`5S_58w2xKuJu_Xd=#+VnkRqwaQmZFR00rPCdw_vD*oQ`hk z1I3}+9vq}&UjQub#NRXh=_P;6{Od=JVRq?02gfdW^`!jHNhB2n0U_)lM3W6;sz5x> zzj1=6lXxKb&eW7sX+I6f+$7~OAP;qwhaB!&?>)%t)rYg<>E?C|EJdmiXQ<1iMnc3b=a>We`*d_b=@fQQlhVMe+jJ@8xvI@J-x2kFYiQ*Yq) zRN`^H?QFWCcmWmnJr6#iH=o-MPdXCsC5n%dcu=O(zZ0{) z&1C1wH|;KK%!`5F!U zR9Bbo+))8Se_S2GH_fF~FTb1TRnNTM*G0>^ahvpG&!g+k>5-L1(`rj;4FeuK`DB7c zCjGudauvf-C#&`2Y7ENB-Gn1d3{ggjam86HtkV?_4#A!R%lprl$-lJEf?4<2$WhIZ zJ({e{)Xp8A=|I1WcfWjbiXvYhiamc`=S(c+nW~>v5o4Y)-Uj?VttPbd3mjB2*?2^) zeBE@V7`I~uoo>#`kYJy6A;o_3D^cFkLlB7T?Ro352M zGZ}u{YLDho$kUgHun4jxay>rPcZEt2KygCxHhe&%21ZZtRFwQpS%$UP-gF%`j7|@K1h3Y)2%6i7O zJJ|1DSaPyg*uBSBu^HZ|FXQQ%g>g)A7Ks_&M5j(N)@Qd_iVG+{TAADwvkWWXrcH(( zMC!uTZZECS(`7tDx&!IPQDYcl+l52zmpfwQuoenRo>~Qw%R%)lFmM4%B=Oxk;LpK> zKgE@)@`G#rBv>LU!f1Wuhp#rE)mSQ76O~Uv_;q0KHMP?V9WAblc+_;TAP$t$>0u?9Jlu(uLzKjc!D*TW*~}c2~miCW#Y`8?8aq?nd`t#%TyMzoIa;U|M9jHiO%7~fJBghfb} zUy9=yDi}aNP^8&Na3>XBVh%b0KNvTQ*@$Dn7zZ;<%sw573I>pmvZ+^N%u@S+H8lt~ z+k*I6z&;V=1CtOexD|N7{_4>q`LS2i=3uo6*|XSgCu`s>OarJ&O5U>s&kF2@0qg18 z!v?tXoz)@%gcs2ZGEB;^>6tC`O_Y75V8b}yaV0xn_%myYAx~|@iI{_T1nKG$f5Av< zwnpuB)$exTpr=1n(u+^s-GRJC048K2hQOl};|}-0tl925-Ox5zsBVIr?s<-nNyr%k zL&TNVF*sSUcQ#tbRz^Vm2#J{o+_J@%B~?_0pm2bM@mqm`o<1GE2aawQ-abgH-RR?^ z&!Bi)+T@z$FkC)=ju_?@Dhy&&yKNiS2FdWs3(-WGaYa8e}8lIzegk zU|;EbyRaHwmqBbZbGNx0(c*xJ8V)TT9i2s?Qg=C@YlR7L= z7lMMgxMYM8CPB7AdwSXIvKW}!smmsVfF2Zqp#Kbsh)AE`-QWoWEmYW}cbXu>MZ7W1 zyY7IQHe6ImNn%L*ED?v9Hb_pU>+gY)0b)-{$O<(`8MveFMx?jT($LXygKiZ9AUKU_ zW=j7tQgE$k1t%qNtXNhD!I8}mr!yeA3y=k=(He|{FM;XBw2y#tH@#9p1_)h1swh)< z2s&?Z7}v8Gh0U?=xvIBY{Z_5CucsJSCLk0Iol^#r&^G^7N||A1)EblW$cEl+qg?63 zxe4RK^7^uw=~I9*SV7i)FUJI!E+K_ za8&qu`~_te<{j>R$PJI|wpVV5al$Oa#q3VRq!lKApdJ(xHAAc&!-dL;ad9_BK46K0 zcPI!+!EUCFSp+j)Rk)_A${swp$E&^eHY(^jIU#={M=OHi4WfBN4B}vn!TJ>y8`~E6 zDTY3_Oru{L!$(X~K|pL(K*G&^2xGhO+Le+{-O?zHTm?|aLRLEfD_n4#ErlQnbxtRE z^MFZ-W}X7nyf9kE#Kh!Ss^CS$ZXDT`4h}AxFxd`n>VxUR7R6j(lLJKp)KqLrjgmGkNy>t&QZvKpkn?Cd2`Jk)6j>oo!vRI*AAZEgS zyg#=u<5Jm+k8>$^G?xQ=w8fg@gi`v&rZ5fLE1QpBw1`5jyo1hwWrSn>Ah%G)DED(n zR^Fmg{Y3%l+s-hJJ^)9Py0omMgcCexYNDR)Pdgq?Pu2%C9-O@39|hXy6?gt6UOh%10oV2J5Lz z)u6L`8NIMqF;)LCTqYughxezBI=yFclPVp&tUyLT1j0bXPa~-Qtwk^FQ3e>AfZzGT zYt|@gb$1PxA702aPfS+;i;cViL|4<}^JnBQU`NRaI&653p~`t6%SB#<1HnDrM9GI) zM6tkl6e4BHJCg*_FnC{28#tS1|CHjFfDp@tw3>+r7*ADq0$!yAhQ#as+`dmb!o|WV zNoexCYPI>i%|?K#&eNLg9m5}(FGU#$Z*m!@WyB6h@RZEmnK%vc_lX3tP!40Gl@pPD zS%03xgb|pMMsO*ufOje4mdw!}-JO)o0aply2lV+{e)an9q7wdKMH?poNjZe^Z5_Os zp&{9*Y)5k==yFE|V*ftf9D#Vz8H;+r&SPka`EgF+pX}Ww_k{P zZF^u+s00NVF`d<)DtyEgyj`#h+A&D#W$=m@;xub;C4iDvFXy`!l)>NylQacM8wzK5 zY?rXG*osGBuLjY{9L~!?g{a4lrCDT}^^AiS&!9u2*Tjh=+N)4lf`2I2B5e1kwOPbE zXJQgJEn$CZz|p0mf$AnHM#p<6paQSRao&LY=9-Q|M0YS2A^*B#0X#uP#l*Jm1!+Xs ztqR7ec7rJgcuIc^g7(f-R~Kf1VBduCII38^<@pK|F3^iXIezwbtSL+x!xY{fE`WswI z7$N_K@|WS_;Jv2rMF$$;JQXJiX5=E$XH!Xti!&Gvac0lK;vqfG=<&1)?5a!o!V?z7 zYzBSOI^emQsS@6P0JH!9kF58O$MXOFz?F(ZR8|SSQz^SL$}S-**_)KT_r9${2&s@Q zd+(W@RI{5tFp<&~ z6e)!mlU^6JkYWZgxkfc*rcek( zoXTEr0w6pg-j$d>3x4h62DdCliS*ToJpXa%xtOF}T#6*|*o zJ3C1jf4jtAf%oc^0@<*nl2*wh%W13exa4_7iR$iv=JY6W49`y@h^#iV55d9O#fPy& zW^PbFo;a8Ug}MOt-sgYFU0t;*=l}y!p>+sp%eNWsT2D$YQG{g!Oa?P;9w+Cp3c#Gp zpiS_nERCI=JgF{V57|Xeq;tt2!2Bkpi(9AzD=}^~Bo*`7&VJzXhkpk^zNo-6{wCBN zu`@y?l0zA=eE6z?S;lWN>cJz~ys>M%37~9Lhn80)i+m2Zv?o^H+LtG#l1(_z@p=n6E4k`LTNxY^BDYwvOVQKH;jZvfkH>2y) zG-(Vk=#1uvLM{F65ve6++sAAxg@9gOC^B3kkI4uKa z*CTLL46q}_R<|r45ED;A4aEKEC%&6sg828Ag$mxSpSDs^0D%|Ff>}Q@##c&hMy{`55j@|;DSd(;!koQ|&gM)*xNW~=-Gm0S5{`?Zzg$td5A3Hyr=~=vJSNFIV{JiAjYvHhzY?|gC~t2DRco7=U6%l z9Ss1OA-%ke_Z1Uf;t?F2Z!z}wK$pu1dKiDLBK79CYAmcU;E&*zf>>*+REfHv~ z5c1~Do2Mg=>`Y8dZRdE~*_n9<*C~0lLAXmV>C3|wmJdKVqx7!(`c#a>K|zjQ67U%Q zS$(N8bhYdtnS9oIeo%*0Y7x3 zg)}jSlnxA_*`h_3Yb^K<5K}5hXDxQf)T*vp=P+jA=H>=;f2U)ef|3TQzW`&l01<(_ zygb-Wq?aO8OMMeYwra9EvM&Y*~5?oK7D)*yO+ICJZYeCk**K>g>HJL%h2b#ck^!YdXG z`+;)XEL>AZuSn^0u|Z8QpGfrEFkkt0q>Rm#SXaWyDX6&{Dm0ife%@p@!B zhr0P>6inBn^T%=i6WLN3<^4GGv*8`pDUOLT`5nfdb)hm(dI8La7bL{I5)EZhpGn8k zv_D5ZyZP`Q@beJ-#cfK2goU*N_J=wb2-Br`S0E~+uh1$8M0BF+^J!>YKWFd$4zvv) zSm4~PHp)|Gms)E_K>)7;^!)2A!@Ol_1Hi0zcZ_OH&n}?M@~#bD<02%nV&W>w-H<#t z*QLbz7T&9?@PW?Uz0Psnd)RcdnpRI;Nj&`1#Vn|+2g@#Ta=#uL*+|CGjk7(#g*Wa!fzD?GB6p(J;9mVf#L4a*daXicszG zC6O%dkF9k!$w8+)bJmutWwtEIZtkiN{&K;fmt_-Wox14uN`CTPt4+6zHmy!<5DiW zaTbR$^)#tFahW=cz{qWU(ckahzlVC~w~>*%uq=_zN5GG*x;6tt3gB%Y1fre5s=d^g z>ms>YaUoHkhGrRBzQCdkC>>f96n)!JS90Opxv}zHr`~&gDVry8YGUoC)LpE{YxRf{ zPTim{<>#YuAGO2% zHca2C3M@7e${tdq_hxn+tMpmJT%*G`w)Uu7SsK+H*-~;pxY?b;tINtc$6Iy9q)Fq9 zS|n~y8o6mx^z$sT42qkzn}%K7*Ety~gf4WhdHq{8u?U;D_o$PdSV8Mej^oE(f>Y%F zNkBBf3&Tm34%8xnZ$+HFxyWgIC~$(FsaFP-IDSk_PVPKcA+}DnwDcGmLNrr60@Yquf9J^^3aKgzsPkzTT8dFa@Gr|Jl$((84q$P+XtSsl`P~W17)`LV&6=a zg<_lxQBdv(x1tlx6&u648#nEwmsCGm#_}xiE=L0Z3-%B@t(Uaas-9_aYUaByCQdb? zg=qK6SHz)t6GFe9)f@^?;9IwtgR11mhju`kCgse~0plboCAGhFc(4Sr-_YLzj42;< z%mB#-4h?;PoJiX_m*8CTa*Huf*3e3am3Wm~ly;Prpnumz;RWXdW{M1~teY0kD#IYe z(o;lKqn`5U=xN!MGHgfwdivpoqtf%MkGwOk$ka!id>-&u?R$Fg#vkuv4Y z0A!#Wtpl|G0Hz&!%yiZ94iX(K`v`mhAIGk}Fz(-Mz}NKY20gt*wT6_}bV1#l^mMR1 zdI}@Wfsny1B`LYyE_DoNnVy(_`>z2x6`9_eKILEy)U$5ymjG)2SPrjhbZl(Oi|&R0 z?$xOnJlU7{S&dT3v3=w6P8ge4jpQFJUjVIMZM}6kHtbk(fEabgct-^)ETOII3dno{ zP=O*rUeL^mnKC02Zns6X#|t0$Dj7TU63O>M9eT4kM0X!t%Oh4TLY-c(F1r=w=C)DT zSAe2%qpnl_r<$|1fNdjxTYW#UPIe1Oz7`pCNO0KJ!z@oI6xZIJR8r*lZk<;!wE!Zf zg*K_gPK&v@t=qgcry>rs3ODDIGRV%lVY3NR3($l55Ik*@I0TVluH{Wlk~7Aq{F?R3 zp@|QmglcjM3O5ivpy8B*00JT-R{}*I9esTXEo)HV)k}KT>)at!K{7EmfzZ-brQ=9o zAr6y*HY~Sra1ILRYV$MYiyK)q?j{^dn z=C7Qjw6r~U^noPVEU)B&uVwiV$c1DUl2TJsU${WGX~!{PaSu=oZsdc{05Bp$KoJ0C z`5jKqB0``9b;_UTIL@d(P0R8^XS`+U&}=JPsmH+rH!y922}v>)l}jWL^Yqv9Kl^y8 z^Ko2zsqA#G3c-jc{(r#{S^CzU)--kq+(a&jA0TjZ{qOqq`b?x~(?@9XnD*yv5F$|d z?fKw3grI9@gSWT0T?ym};KWsV(G%WZ&nE=LPWmH5h(5`Qn!knffc>kr-|A|nK{s~H zpNB=gv@Mg}X8NhtATafApXF68*B=I}a9qDX9IL%-yn}40{#5q*pSi5hzUcLcJRvpC zQs&b#Bmea)M>?rQ^%p<$I1O$8ww90W>Bo={1DE?}Z#2+dhk{Wda1WK|mx|0s_H9b@afHN!bOwIIFZ^3qyjb$a6RK-%*&h5fI5#@x9dN<=4q zj51japPP2=nW2RkXJf^cf>u%=L!gJ^wc%8jw>&v}a8wl; z0`ej08p zRp$$X@?;t9WC3-|%hynBO&o(I0u%_u2+ipbt%Yz*Dyynq>h)*`MRZYJU_P&{ut3kS z+l(r&I3J}oB3+^zR1t~-j!Uu%KYaWM0s@^3N}$;lqjF1N#KtBe0<@bDy_$)u4<0LY z0dg71+=0W?OWu7fh8%j7-vFpKr+21ED=8>+Ly8*yYl8ZoC*-7&3T~)L*1d*O)l74; zy{Rb9Nfuy@RK=*QQI}2m9!}v zT14blWEWRKLjZihEeT&k=#!D81!p4;j*exSZKxwaD7lgu&)eY0Y$H7s+#Kcw2+3u`Jm0Ns#8r>SaO=s`0F^s~w&Z=uL z^ceuLj<1uQWq)NKIm!i4ROAE}##|9!4}i2^U?67(NPKH_ zU*4|XAE*uwfdb+os9e5fe+=h}dvPo~HRVDqsd-UunB6F)87gZuyax&U|31J=7gDGb zAuzk6n&;$kb;$y=c5to~BGJCblvUYr>M@FWyIr8;D9akTEx1km)^>vKS7LCCtSH{pIrO!yiK-I?y*?TjSL7T9Y_2PUKI@*h)BZBhXM zCIyEySI0<&Wj;Wae#36~{OsBqZi7(~LMZEXA;rnSEe(%MKruO}h9{_OfQ}l$R68!t zLyeY+j)E|W=5*ZmNH%NK?w!H1`@k3Jd_XN5Ahz?T>zp#j;Cfv)O=)Yi9nFrW(@`$z zHOyy?4gL{y1eS%y<-y)MIPK3Owz3*;&K0XA9xYX~j zr}OF=85lq*6+|C&3kcwhmO8TeMlrB@557G8V6*1YeoXB2d=jBJciS; zIYhryBBl$z0=L(upqFn~g74%HGo~NZXSB!w>USPt&^iQ^0r)IFjZUs@&g7n6T z*`e}H&yyUzJm1;g^uW0m^v??peiDc*8KWXaRfb!)3~GKZDtNnLty z5(hae+;gu6>%Ivf$s(`-fKlm6orBhR)FAxiLts?MoSL2vYGk)FJ`XJd(&#pz{{`|i zHsHMgwC*r>QJ4@Xg6;w2qKst1fm}Cm?to*vZ2Ev8gO>BKX1>pR0@FMUt$R2$$f1br zy~5KdC9CF4ZnkhJbQS|z+)0pB z@GUXOwc?dW^c)~x=#j8+S~}>OuuFBaH`mqnxsseamj`I2wFhbE1+>5c9L%PxFMz9} zWH)F7R@`jsbC*#-KmeKaO!V^dGMs7jWvXgw^6UI~3r!-&L3pc6y^ZY+&>_-rtO=)% zG{rSYA99Wo)R{7$fDvegkPHNn+fHXJBxPh&K)X$SXkHy-Z@b^9b@1-((}Ed4#23<} z1Hu470_XvdY84GyQ_w)e8qOdgeZyN8n2Ug`;irr7WE~tzr@|;8y#f>(Adg1DnyD1} zF2V+v0GbnKWOghcveF``dvI`y1f3MCRMNz39zk?1ty?n{bymaXgcKE@iWzxaVB0r* ze*1MO!3&f7w{o@+c;pHPJYhzfGgf7g!&EnhzvVFwySnj35Z~l>1k5+|v0%R5YE#arBu}-cT%%v^dyQi?->*Zeuy2{HRlx37GQ#`Fi6)LE zcatjp8~b?!8w&D!RTp^Wv9-?l8pVQm01tly#y)Fv;v5`LP6A>^i1zJ#T)eaL_jfmp zkyH;rA<%J{G2)3Q@UxI4nUb9BR5cHK4C&bm?VQ%vSXG(GTXBu5^-2a{ux0l7&I+w- z(+xo@Nu)(497B|K%tAwJL~Uo>t$V%oI*2a;Sq&_9avF%Kfe@B09O*h%A?~VfY(ozu zsCj{t0ePQ_@MpsYgVaa1F~n(G0aW&^ZLeVTN+Q!! zXh|SuLfKxAJ)VBnR6as>%`NaakllHGMZp&s$@hff6toK3fX-fjgxTSOY%hFdaF*W# z41|Np6Wqc9Dp}ni)NDW3Ew%F#lJOwn(va;kF`w0+$9a~85l{RX{PF>dLM)+lxI=>K z-FgU%u?o61&#J2=2vGRfzY7kQ>8zV}V+WfDw&?YS(^EL01b?QM)lJLwYhBiY|1Eqp zteVa=IeM)T1E85ebmWY;63Adygt>OuIJc7r%yRhquIf|nMKRJhIy#g*PU%VyC>651 z9Cx-|B>7hQkMhBm{fmoh`iVycC!QApE{_Tz`J{1lFj232%dGWb^Cj<95bxY4!+y|I<^bpIU!PIUgS5+oq^J{Ja6AtoEwti5#CO9+ zMstWj9SY1CkXjdviD!HQSS!HUELH7hhxxyu=HY}kdO$+SUWKMV6L1_2gS}=I4aBd$ zt}Xz%{Vg&T(GJGieZl+zM21iW+A)}zWM*>k*i7fb&{1eQc)XuJhEpWw6guO$ZhA?S z{#Vd4vbbK%T^d&nhsf9QU6!0QptsN8x)<~$I?0a*h#305*yWzV7Qea2)gz8j0pvu1 z_4$kR({6k4C^dbjd}MzSj2|LmWFRdmiL@JqCa908y4ahwfFmV}!GjK?c$?cU{g$P{}{Eq;13kQ7R8w?z$G~_lzZd~49$Ra0W zRLoQ@0$P4&N-NCaTIKn5;zYoKF_6IxMiXG;a3-MINXUtx;kHQyQ<0y442Oj9GRr0; z9qK6*QxILNBjFF?H~FRG)mnlxEXUlRD)v01u(3)7|qm+b%|PCzNj zM9)Dx%D*5jz6YRqV`e-TvT%T&as*xvs4wN{Irum=ciN)Byns&| z0NqHK3TO@heTo2PAX)RU%>eEqWdvaSH7iLDhzx{<>oK}j@R5126Cq0udRfAiQ&BPa zJP%+M2eeg%WGg_q(*Om4(?&G%OD$hacI~CXkuOMb0WJV2KLWkwU0tiPk$4Ar6ihrE z4#~;Ng5Q{*s0!hDPWcTol_1*OTqqf#fs7jPpHLD2AR!_daAYPBui21MHnhIR;Y24GI%YoHVH<+Gv=4i1oh3)Kk_kPO2jg<}?IvAviaY4+O@4<~i# zU^h}oPqf3{7I+%mHgazL@ea$s$I2B zhn_fHi)*opzUN}wU3okpom}yd7Q{YxI_NMgFi!0aoxoEVi+igY!AA+>|$OWANNjPt$uFRu>CWqI~Qmj;e!BP$4N>$mQ8%pF$92W}kFD zvfj$N@f$L-r_EW@i6Y~AIm)z=hkJV&3w`&6JlzD$E$$@9xju3UE*qVvzJ2AEW`V*g z&6C#2yx@rD!{E4^e&uWcc$%H^5ED{UhCWYI>W;SVd`e%PKM8{9zHAR(hb~@AbTIJ#aFN~ZEo1F4uNiu z%6YZE&+C>nO_`P{jcMlUmpBbS6F)qf8_%PP%x4s4C1=H-P=1Jdsyf#6gXOV6xIJ%m zsgi%M;8c2sItyxFHct`KvtX151p#jBJd>AMx0U#EV>m_mUI=!uix9RHef>wr(8O7& z(fMg1B9up6o6|UM{Fh8%lj-6Y7Y`8$lZwh#=8iR-t^3Z^YF!_d6Q*UQsD@6K!C6%C z@Jp9qtkM?#DHl~t>Clz+R|DbXM3kt7hj}8Ve;(EUq`f@)LNSta^=w|ZABShF8RoH= zI1&B7<->Nrs7wtn^}F7iZPKDeYRy1b-(t@VFXeEMjL-Df*`SjmkG zH!Hh3Qu7Aca2Rxbjh`>k+2mJfPg8~d48-ywCkXy`hvoFnw~6Oj{nHIr1vtxsRM)rO zbaF8%s6T-vfxiBa#>!LXz~~Xmdg0>%p~=mr8oQ5MackaWiMmPbNr8Wp`2-CAI`48v zUwlUb#Uo8u%p{?6DKS6Q6`!MVtvfX!A~Ch%9Nt!NeSA`~Z_ycn&i^ztSBkDXOSh^= z-F`8a9b|Wz7+YrP{#KvB26H#gl@lOx5#_V_+NPhwblL%8O8Ey={Gaw3s|li5mj+|U z_}#u)$q{HJKD1S5$m$Ia35yAF%a7ao&KgrC|IRrn)9~dFoKu)Fz_&Fq!TzkgltbqO z=b!jRuDI~c@?xfKKY*=P&Vlp-VDYNBxM*DdG%mz0a<8lzw$F7Gtm2-BLPogax{nHK zaZ){HT$}S8la$SSQyZ-6a8hqbt@ow46{tgwQe9lc^Q-Iy9e#f@;?=u5%E zM9chx1{tJknHZanD8Qoc(w_U(*^yZ!m;eW!!Br2OXyir3tvpp`)MX5xeEK1A8*^v& zQ8gVrzRK>CassE(yZChE=`4_v%psOp^nBrJnaWeCh2IG;62AN|MQW7jX#R1e)#-yu zpIjz4kgubgfB79|G;U{J$V{$?%|oQ89hE(Qp<^vhJUu=6T7BgI#7Alf{=I(8^c*>o z4HzUtmjEX{Pw9**4R+&Xo>zWpML8J8ZKtg}Uhm02PqnP-S)igSP{o?81_I#%Z*6R*X$Wq*zO$eZ2#U_E-)(t&PtC5blYiwt|DxN zxa3SzZePBO0miz4<~?GqFB#JOe$UA7Wb)RHs$&nC&{^*2fx7|utL0BK6(n?>Wv<*y zP3LsVhwN>;;6bL;WYRUc83GB$z)6i2eGGZyuKG^~D$XjK_H1dsG(LN}%*Fz)C>-Dl zzS$3zF?uy~Zi=S#35{hmFB2be`Y)y%>B0$4kaCpC`|r$%199@`iy)_8(@%Oa zpo(Fe13z5rl$-Hyr1r65-Nhy;3N9QK-s3zyjan10|3tvv&%K$?ZVdSxIOfWbI8(fI zqs>7615a^wXbhf$`0K#OW|vJBr34y|QoA_5VO;>uGNbo@E@z8Exy8)Labyh=PQ*s; z^b7md9-BTk3TX^)I!`_+892&YGCFoNUG7x(gXZC=mANfdd=*C*?TL{7mH*|-!lJwd7uAM;C zB5=&Vig?)?oPVJ>6cYmB5oUyo{&~$BR?7M?YMv@sWFnFu;NC~7>CkGiuJ%l3T?VJ`Ui-{#!92*>7HSGyT19RI_qJ~yIcv+%s0?T`0^ zkV}sYG|Y_*6s1~!!lCK^@97t&JS6SS0tFK;T`-0S4-A7<-|kSlNaWcoPNV$x{f;_8 zaCY6{p6F1}v3NHu`+n2`A;!9qbo?7QSFFt~)yV6IMRO%qqtiQx!kEkz<<7NJ7I z5pJ_|(ujTbvXNKa(HeS4apaCY@>Zs|-86Eo4>ncw{l#&kPx{5*^c(BuVmfEsB_j1M z@}#@8VVY;F3To)Qm!Vtr+)#erkm`2MU3D|MaT|}=HO%L{x_PuHkH2tM)Lab77j}Nq zs$4oZBV10t#E1H{r5Y#HW!Qo$hYFyRmzeWb{%YbPuge4Z&0Un8axHuoQ!#)=KE&X~ z2=``Hs(lSt=qy-0vTavv{(U-5m^fpg#?74-0c#d?D#cewrC{1$jKyn_zbE`e*e7hg z$p7mlAW=Y&1IRuQtTLoCL*^yRo$J)cSaG-Iy$Qx1o1?9OFLPuDPSmu>ZHLepM%m`+ zw8wOkD{R=uakpwHk8YV|JWi>9PC?CsOCs3+!`H9PKkG%$jfB*vPBaeP1&$`Am8J~|8jlP|M$K#^lMGxC^e2^HOJ0xBbTYdZkd$`CIHR}6-nM5K8CLfGiS<&_uA&O z`VLp4?)L{|aAF5p?T~Z)uYnTBayeF%z^#$7%q~8z7wF;pwXxa&6n{h3aoFo3qqO&b z^p1^kL7a%%KVMIB@wN}wsR;Po^@r_A9ajH7SNQ02w<3K4+Gc$Qc(_cbTiKqH)|b%_ zq1tU)m57;ExcZ#d;n2$6t=F0O{J?*`(e^E6tU}1wW~n5kvPG(dNMXTm`jJwLd$r@e zAXmXThYaBjeM-Q*Xj2?eA(Xd#mWm`lQ*rkP&sSA1Ev_p~dU@-{y4<7XLwifu{*3D1 z2l_B8$<;PHmA!m9UBy=L{8amHG^qQzw z-Q*+Yl}MYHcWTy~8R2$)9;E1fh>L+ouSh#P)i6IgN-#62Kgs!qaIP)UL!eGjh7>h^ zr``f=_U>7k7tfJ}C>`4C;2irPaH+Vvv~!`Gi-kCncL?v(vvj#mZ=$P(uwaBidZI{w zt@lIXt6}EfUlzIrMX`wI*uNnS8r$aGNp$f4>9~F{VRgTomCU$HmcF6+_?0V#zu1F4 zWQ5y$SWiooOXpd<4Lek3o`sYuIHJP4K|eT{Zz)e%J&t+d)MLYvSdbTc*Gs8Y>(Nn~Q}T;w!=oAInPI z)c92~zjMVqh#&L1TR}bx!c;xP(t$yLF%yMA$D}8+^22JlMkoD+sqV`_-X#6jrQ_O? z{unHUKQ3j8c{73Aq`JU$1Z$*5^Aqw zc3~h1dq}e^aAY0!{^+<`J`gKY;eg&K`%gx4A-Y0!6kuOJ{TXEwL5w2EsC6X6hkuW*642qDZxs_vd^b4`AoX@&=Z*UZ(%| z)&C8-IJbue%wGTY2;Le@VDzq?pH2UKe-?VoNDIdoYyTd8 zADBuhXX6I zvbs!UX--<539>Ux=m3L3B9DnI=fW6R!XU6gU+(JvR&(KbC8y;$V{a31>`r}w}zK@^HB{NjzC?odVbQJI3$3OMz3<*cIV~*nX8)w?MSSVmacOv6f_$qcO zFrbk%OycN7N$`J9HP{T7AZz*Q zf}J>lCJ=pX zT{?2=RaVVogYT^yG9$h?CKL-ob`3@s0BllAv*ltd2@K%h|3F+D_ev_1lreIa3no}E zowYx3{I~9xj{Mgs7;mUn~j8Cw8)} z6G`YEZP{x_5nPQ@hjc`Y=tu&ne0^+=)t=?{$%gO^f`sU6Tm|y0*xDpE0KJ=KyC(ssI(pf(B0&Om!lV5>wwnCd}RLoBy_* zZw6TletA)cY|fXdui-n+ichfI~YYa0!BuoxD7$T)+3f!1S!)Yj97H5p=^HMVJ zwIJo6=q+owS$4I}z_hQszZi%IoQHsSq$LWvfdVt?Hy|bBzEg~E_7qFTY~fT#VLo~} zHkC~+CHc0;6PXeSUVS-?5;`!$JT0TZY>Svj#pMmGg;+j$v`3#Bmm%pF{Se1^dkx?P z1;^kC-s~{Lj_Uy-AoU{>(w*{uH_c$e<0MSZCQ1A+r*;T_ASvBD2_kjO_2p zHlz+okKA#hSHO7}skUmBPxq+*{q^&If4%UhH?O@^l?ldRsHH#oJu(JiMJO)gwQK0= zq8B}SeU?`sS>c_PH>A$MB^doLoHL>yTbnNWCFYm@lL+@pVOn}<#0}V|swY%hG+Fj{ zb~EXxmbO|soB?d3-}1^^6Ax@oDbA0nmIf=DVLBKJ(Oz_QfcsN@TC0H~>0#N+PEu6S zcvaR@F?sB!WB&5XqYqb#)-x-h{N{d`gxlV8fZfSNS8+dLCguv#CK>$zLFPmxOfsNl z7Y}#?$?<~Baozsir;=tP4{o((gsX;l>(AI<1tB9B zFl*+-$-qR+#0i?dm?nEJq~RA2fvR-$si$+kvEtQ+UNzl`B%vA(MIDAR!ZO9NO?UUO zPUwmOl1zhK?)~3_t7>m%xyb*xYb=Wgj4tfrUuS`A$YOqX@>0O>tKVCsI@W5MY7$Qr zbd<$+M19Hl7kKgh`x?^(1X|v#KwWX?exLvY{XA>OskY}jz5x|2wG!)KX2kyqSZmQ7 z1L$K8qw0HYlZ~Gb8~Z5KKMxd^{XiMg^)vq3DPg|{Dp_qaQF(lnThB-RPv3KIrDWq} zGohsHmMjUntnb^_0<9GF(}0+QrFAv|01JxrmRiDBzTGuo2j_ z+m>_FkGv_o!{BpTj{-ud#7U{3r!6k&nsE$1L8zH3O~CZeV#2oP@xcia{-NHwe0TaK z2`*_RE%8|8+b;#{g(6c#d6fyxd$n zHXB`wvQYm89dl=0;j@ij?O)UGb4YVuuj%s*xyDfp!ICCwxOmpj`! zJ+;`^wIN5xI0h#}h>Sbm(;xTrB4A-``g~=LU(lGbsj`%9_lx^8r#%DRPXF-DPg+AS zM4F;`liPn`Mt4XVGmT^?MiMqFZjxN}`>p#a=uI~2>HtgBH)JIHs!~*QxC#*1Q8Sv4 z-Xk@+N^|>}-D_fkY_pdXR7=_6Sv)tHHEC?^PM$E1MLiwpd+$iQWBX#B|`=>XFF1*3I9NA>H8NR!FPdoH)3# ziC(Qtn6ag7>0np6;Lvw}%TUmL>1*Th>T3=C^aZ95>0XF_4U?iBfo)Ne6RwLq_f#iO=vFR34C7V%Q`9kac zF7jx?GXx3ff0br@$3r%ZzvLqWb~1KTZ(m^i{&fcZnt-;=5}z&r7BA3pQ7!ubD<%5 zBNA|nS@|6dW^@QSOTcFl7)-v{ZYTbR3Su|YM`;$#j_)r?acz7?R|6OFV@5<@|8PYv zc7cC=;jm)&M+5!H?r$yryose4m$e1~R37|awF}*f?>MAiog5!nYzX;n(uiZqGCR#Q zWTm9cxs|8W(*31uC_sdE364^AIxs7&Ssy)cqw^+qT7@=;pb(oLyOuASX&#ILrAV=PBh zbO0YwPIpTzN7>t;2$f`01x@GwlukRI$#&@D*tXWw8^(*XSd982taRc;ryMvG zbY_;xoXGoS?KTM+>+oZO83mYWA-AKw-&ek5kTB!MTx=JxDv~ z`s@CTT~B>xM=d`acNubVEBG#P+_<7Vu;OSs=M%m;mb3pSY9)bNJRms|vyD|F(EGx@ zAUAD=Z-;79(lV&({=3mBVe@J(CBFh@+~w$-i?7Wqd6*(IQFjLJtY>^|)e?JyWEu@Cus|hC7jc2{`J;!!=Hge z4jBLY<{h5*hm@ju^5mC)BB5>DPwbQiuNQ7kn@4q03oo`4R}{u%q8OMiu{z%zV8Pk< z3*#frXNzcr3fXfb+XYdvH*lF~g}GY7^A|gFa$ud*4lWwEM*dP^Ahd(J5FB?s?2Z#D zUgG%-OIM`R%X%om+YQ@h7p$1K*>pwmf5Or7gYwoX0 z*GptydabyZgqIz)@uSOH#BPfbNkfRMEX_tp6bq3jYZV5YAI}xg2bduP0+Yc+IpV67 z{p>crfuHQ<5j%5b*xHYZHKuz?&*hmSwmFUnvsSjW4I|8EO-tE6TRbV*t(AI9)34RH zD*pJ6-*2A9*3V}Jg;uDEU!7!()H>r3fj*^gd4*XOw120n>UM*|sH7-LMMp>*B;1<1 zjE>d*R^XaUk!-CX7NpxYoPtTAeV3{DPAR7OGa8BhvBKErmaoafd;ubNzXkEy@BPpV zHI&^XWKxc^7dOf(o&PsYUA46s9XTRc&vtpaA+h}z z-_GRY?o2|0Z}x++jHLOnnCs5eJ2arQ+jW{R^r8C;xkq8Y)F#4t-TFpA47c8+yN!h@ zJ5^Ob2dEytlc_5FbC5ZQ6BWD_h-W23N|ITzZRBL31xpYv18dBeK1q?yFu&i-=hW)Y zDZKi-v#gMYgh`|1o`9t|{9(%@*VV$`3Iq?|6{)Uv+*Rp8oLJltb|Xg&cTGkY11mo@c|aKdM^g&-g7d5dduOg2$2N5dkwc{g+;$LKd>dq3b#iY0rE1~mLX_dMCMx_)C9CCj&=D7x`>RFXV zFSHT>&ol>vxq;=hBFM7Tqg4~fK>C}92H*b%Jhm8p25;J8-h|wI$;p1|0DSopFtk*9 z<)Q+kvnVa4!@~R5RBnDP840tcb}vv=wbJTcb(&Zp+CY`xT|(kd!2t|FX>0rTZFAb~ z4r;IWoFy{Kqj-PCxdzDtA`uILvwd1lyl05?o#Y$>#!-E;eaXSNLvG8?28JG~jyG^K(r z6XH*%#41&+M*ygPbxYF{Rpsm?$i`P#y*fFE9VINhogOh?)UC}}>aU20oWf}WPBUw`;b zZ>sF-DCZVF6JvKWDb~etO*EK))j?F^rTd=4V?+oZjyOp;>o4`#nKV|Q&+|;{wak$>a2atcpZBZQa;r>^AGbB27 znty^F-9zjs;p>}zVJBU4-f=Km8%CH?Bd^f!gI-EF-hQ(wZt18#DnMv~EX?YFZQVVd zs#fsM&Y!{WE;i3X9av&b*##`9X800IQMs|0ns65;4ENflc7@LqEihvC=(IS@OtW1} z^dXk#tVF!~0Xy<{44QwRDYNzEa`M?-ga3xB@H7_oo^Ft6{bSVS{%oZqW9_b<{xIIN zQBu7atsCwG+jC8xY0M9#NKcW+{E98qt9c1@IAlATq%Fj7wsqnZZ=OiZBp-V zgqj}i7c3>d)IePN6-monw51Zv-bvw_b*?&%FY1IoX-d4iy02Tnga)yN)rl-gNW`oX4Tm z0c*%;ZjLV|B2%%R0zSatox=>ScJ0qlr8&I6dTQQFj-~_I0u@8MJp=J&>Sk+y`HDW5 zBcQQn85=4;2nDYn){W~~pF#cy56qrT8FRw=3h4*ia4k2jdy*^zUYOwY>I>5t7LL z!5^hr_!oyTVkfM!D`RA|Q zT@$2(3At*6W4KiuH_CEND)z=8WEC4sB`I0pEqBt{&I5|$2;jJEvqvdQ$(gpxG6=IJ~Ci#J4T0j zR!NxH)|C*uOg)istk|3gUxYe3No^4VkeX3H^GbRpKU~kEEZQz7{$_Y`xPY-$THB#k z@~_#MNUeEOD+D~bKf^x##Ds!Jt3MD&=WGLjAgPJ-7YPcWU?ysG(yDssuVP}qS09YpaTdCx4q`tm-O#2>%<3}MW0&sdPfa&q-y6HQlEoEs z09FFxVXQ~imTY{>xg@ovvyG?RH11yri@obAFPheFBexXu|GsZBZD~7s_3sX>to0P+ zMo;cg0a9`VQ=+Pi>OEwerp!MMEi>$Y!?FO{H5j_2`F*A{Ls&9E?+}3A(LjxW!me9O z=5O5|?`v}#Izw_QJ!1kq%?dlwc!4O}Wrw?s$QC+*fy9CZ^6zwpIuO&;$jDfKLAQL_K?Yu z%K@>ZB$C7npb!nLuQob$Thz+g7P_aBr5Xvp6Hl0}1WHXAa(m5x|% z;rDH<%=*9Cm1cGWW9Ivu6EUl}B^2$l;wnvMXLfaZKCy3{Q7-7J>Q&vHfB9DD6D4aI zEBFZ^RhRGkWiCHhmjP0#?IK*Ci*d`J+j8IE7_i%-RZ%E^V|JoxqN4O+-DK9`&bIyG z3@zur6PgBD2;h{;chUvZFb<}{7nz0Ms~3{NS6pYJ+N+$v1FF*VThJS`*_n)83M90v zA;BzH13Fri_41E2ah5P1i;BHLAD+X5nUaI;adY0kPnLRo0*UR4$irv^R2>(*{@D(K zTCHkeRFmkXf#z9aGOA#6nnrB15XQ(_C}Lk$N2qmiX}=-6jy}d=$=@x{s_}4Tmj0z| zn$)!%-mp;VlP3tKnwd3Sbitl@SHZkbwuWB>rYr`3xP1yQ`mWiZrqc;W`*5Ofd9`4gmC`DzmTvqrnX^jcj`n!OLj-IJ@6mTN^b%&^Q-+L zNhYdKZU0Xt80f5%0Td!ZVHrzqwsF{b#zb6k8Yc7m2YfqA>b$0VTiJo|c8m?_-@kZ* z;qnu)(N#P3jM5h{%TVD}n3lr30tTz8Ed-yxb4Hk1V5T`8J91+>Njr-z`vJ)*Wz3C1 z@*_P;j%%Rrg@7Zl-8`1l3OhfkSX1yebBr*(E|zE>&x?_vCXWOA|OX`vSklu}yP zE;ZR|`$hphSDEzg<8J<7iQU8My%{pr%FhuC!~*Ez2%Mcvi55lw>_;_-E{Za!*qB3F6hxO$scuEg(c zr6-KKOd6N7^5}jyCI=lh3S5+77`Cb{JT$8hIfT^VmT-2bTUIjUm6c0(Tpw_k7$9@@H=Y6w(3MyM6PsS$E>O>jJs(d+uYk)pm$w zQ62dfQzepMtp8+@i3}(-)UV>hvcFTr58rLORIGbIFhTfYB_GdP=Eu?+vb)iAwN;tA zl6u9=URtp*41l}#SF}NF`~8=OX9LKIfMkLx8?FLLH8Dj#a&jgOH)Gc?ACP%B-WHRS z=wUwFcq0Rs))~QwarGE?r8=1Wt<^v9jlWXU$F`ia|N(8GpCzdZset9nVSa8LjNyG|UW?3jn=$pxX*>~C;wtySyx(K$q`GQ& zab%CS9qNU&+gH=STO9#;Z)(g=W*q3S%CbJzDYtE{uSD;UZ*3yGr-akQh7d^>6ow99dP)zF8#*@;)h1GDv0{ z&{Rw)*!UW|(;_pSm@x32kOzBTSHaZdk@oiiKRvTVk8%N${Rb0hDL00+6h;O}Ll=}+ zEFdUVmAt$Y4X(@ywUiCx2p3xgcEr2AV}Pbb&N#w(lVJ~tf&pfc0wCL%-5kq94{w^4 z$TsKsyI#rrTBj30eN14<7KOcEjt{uwMMHKC_L2dP9gnx6($`t{Z!=NlI3U3W^Q|r8 zaPW^xVwgy*h7Cj38%WW*SpyT~ZG4+x2;MhjBcpR%6y^(fhBfmRfU$G8hAfQP&7LFi z>^%rxutP?H`Sk9>JfK(%y1&Xyy`k!Zm2y?;Jp~Pc|F=e(CbBbNJ`JSmWx9$GlZ6KwPss*Xa=q=fLWqm_#xa1A)<8M`1@ zHD=eiS5l6iq`wX7S>zD^m!(?NN`wDz>-VG3QuuhE6>Q&)xtRZls_%|#GHb$(Ye7Xt zR}qz_Yk>s;l`1XlDxe@B9jO+2i%2g?uot8#0s>M50Rbser8fcT9i;aXLhl4f?!0-~ z@7|k#vg?nWoO5Q*GtWFT?@2W(_mz2~fx9h#xx7#zsc-hHpRetwX^t(-SFQJ%D$itx z;hUkV>xj`cI#$m62j@wp_HVUq39x}M@4FMIB%Tp+P%4krJ6X)EbfR7j#G%*KV?m{d z*yN)tpgaSN8A@3Y3nou7AO6PqTd#A$vfU9rjyW-j;w;}N2)<=0Od=t<@>rQ_0m^U-LeELpFo*pXA(|3w4Tx12Q z8Nr~>K8-kw(Pd32R&0MC_xAVs+>Dl>Rl29#AymD+92PU{E$4JB<>Tdhw{>uxurc zYWE4@CY?nma37^&KCXuPeQQgonhdztP$yG7DbNzx<#S8{gj7n?nRvQ@$8`$SMA~2AFKCI2;NTQHc)ZUSxJEV3QBTRbuR@ zx*6*?lp2Gw%MgVm--MDYH?7s>nH(o*@XpAB(9sz}vlF(%VcT_AaZro1# z4wv{gGpFRAA=cL-Bj%LWx&k`ws|nPWf)65tzChCm%%@Dy5k@jKks~D~u-~shY>BMv zI-0Yz*0c?KyU^T!;M;it>9E9eJ4!rOua+mW07dd_b`%}wa%9-mvJemXBr1;<-`-9u z(lrv#e_r((X7(LfAe`TQ3A6vX%X%3CFY@-wZdr~K+EPkb%Gdy0;n~TRcj%B4QY?v_ zKE{xT%nws`YqYLoa)a{66DZ$;SOHr+pf~@1Lq&>0+m(+onBB--sDA-7ICz~G!fHs3 zO~13l0~I7HKjo^1$2zrC1cF5fsqToA{8#xl<8mEjx>o|b3k6d%y*-|@*B?}rdj)X` zV2}DK8M?HVPRRUrT>A-w9F)T69g0}1!4em}q-e&2&+VELyJ0Aq#Wf{*Tcg?Mtl`DU z%Gnnt!xBVfR|~lcdFK@MAf4Z;>9ekR2&zQ`CvkY*Ih%;n6AG#c`_|gG^{78G1JPHz z&;$Wf|L=mwz+x0whwqc9DB!<`3Z#zZUMUB*jaA|EO2F2`nNXHhh^Aj?7E~Op;LE09 zsK*@WJxg(gfHk2#XI~$n9j@rh4#?;=<|KLwDKZa_TB6yL4T`83GoCxE8p-c>?OODY z3rNoU8=}N!CaAAtT(|b^1>dczX)x}KtLwewu5gBPSt6mG47lGif`nfg3G~<&2ghsr zxB0%59cE@4UmzUa-FWQz{rsWNspbo%4|3e3y2Wj5jpgSP?70BH=yHINzflXFN6LX_ zoixkjx|i>b#L)Rw2os)iAkY5_81lS}Zx9X0Hf+dO3DpyFwv289r{EAXw54ky~%F#^}ROiYN zC05!U`(LQtj9g2Oc)2@~vp^kcidiOI`uepXbwYu&04;E)qY-=H<@pBMnTtC4Q(bV7 zkS}FmHZ{`8U#kWsQ8YqM**<{kwIyF9?T}B;3Out=CDxPEk3-zgT89;EM3n^_iCrr( z8i2z_dUvfe(83<7`dFvyJ?6QeE6+wF`zyHpeGKQUw8jzwJnw>(5Ach){;dyV{qG~h z&Y!z;^Sz^rsX<&4pp&=#DJt#$a8_YPFg;gw+Wy{_gma_9yk$}IZz4t)2s?IPx&dde z{47+8+N$-FLTtiBvVY8LQVOHFu>JNw&^fP+tS-YGFrSp6iG%ccCy+7w>)Yq9wj5$S zuWp09r@J0a!Z4>4!V%wa8TAGd3y3J=iQ?YD zn!pIA&A(-eVtuDW1mg$0yUFhQ^uCWh+ozDC-Jh4ZP{9i*m`8jEXZcC_=l+rESQbz- zjrC&d!p7b;K}MyQ+#YfVVc+JW=xis9(kAEib(zo-%;XD5sSd|FOb>aiF8LWJ1%A^F zb_~nPx?BI@Ysq$nN*%!vj7OgFK$|Yc>q?;;n~t;o>-$YWgTN zN@O{9bwWO=80U)<>P@wAM$hteg}@B5@Co_RwsATORPFfMoaBrgC(g5lTYX>Cc~5`j zkkWU>gJRd!IaHxd>ZeT>Ln#NvkpKE!s0z9Q*wqbCr$-7?!_Hy$D7OkHIOq+C5Epu8 z5#1@mNrc!wqV}0q6c!&xf{F;L5B{gf7p749#z17c_Fh%ma6TP~uHR#y#>Aye0e3`q zvI%x-XJ&z#wOTakg$>F>AER{k1P7AytoY#D-0-Ph8P694iw-g(CFR-haM=GV?;;3> z^C7bLItL;cm#mudXXK)j+z+j?O96F-mCJ0PFnE9|Wph20m_GBAM#*NS_P%J4?!|LE zvN{*HI<076T?B!IEY?6I^8*r+;;`K7y`16<77a7F`e5kS4@fwh=tr-(cze8^7W~qgE`K$POj0K%ljT{?_HP+4)7lsv^}^XcNZ4WBT|@P-6+rV7Tc5@iaz zwI@-Be3Oau1`6s_St!d*@01CIHnP7bs(Bk?Dt+LxqcFY@iOi;n&@wKl%y*%C5&GZU z$=TDkLOj}*&@lvE6kWhq$9T>#{%HEWZ$2spP~@~8Qay^U+=E1HklBJ)E%aDa*d^?Y z&A>nvv{3}357*Lt^HOWuBq_G9P_9LGF}J`XI9Nf=a9KwuWE*|VLw_GBpzB(bOL6}+15gJ*rAxyq) z&O`*#Vi{foq9UPsi4u;h7Y}atAE!0KPY#x2K3K}H8eLw@VvI8owSQz5f9baYGV9~x z=cM5Ml7r18Ns-n1az**3WBLV=9Xr!x7OQ*H(B9jgiu<$0tU3!R~^J}WWM}N0>nCISAc0R+I)?2z7W3e9G|3X$# zl)p-4p`N#RE^t;lPKXwmY7PHB(k#?MFB={>jZWb9l5780i@uBCBcYnpVlSAECg+lnlCEA23w^|X0BZK}}DfPIa zX~(6J>#CInkA3B|>F(wTp&ec)PH!KAacIJ1zWpnU z3G+1m_S;#?9i5DYX3mxe@@Yv3UKPu1!yg|M-XtVeg+us5$gWM+=MuGJZ(cop!qFQ^ zoq^^aNQSN#$enkTEVWkA(GP)v(`eU==Vy}|7I)rEx1wl|V|*ExLS7?yXRae;xFFLi ze5G3)b08NAEY0-1dz|K%s0H8*AD0>1ws;K%xalf(wrXY zCp^z2Bd(9Q3!+=v8K7nAUnu>!ySJ0L*$Q+QFeqF!6F#jKa-m`K!bRO&yPME$gCN@V zk+^#9I#BiXsKYoA)GX+g@hhmfdE#Fv(F*H|khqU0hhB}3x6##DRtdE-T6tk2F|(x! z%=3iWP~)t}v{zCaQ$G^3;MIxd%?HkqvzLWW89*IP{yQj$NeP>k#pAMGEJk<4Xw3)& zemN$P``4N}=jI}EG(E?*x0_kw5L>tFfKD`NXt6iCLB?jIeUbqO*^oN{Dw3ENpSbrE zZsk(?V!P_YVFmE=JG1TF->HkBpbg8>`&#K=d23)1w;nGDN>)_{Bj%ba=|%UV{~xq> zatpOM)WK!8o1U-z3-Z~LP`-STd0(r?G2wI-#e`XMqP5OZAW`E%Ir&ECcVs;N_srT& z(g;WnC3rNgKg~<1LBQd_K14By2U7agC?*4j{D_5b& zd7$Qkl~ydY#CFrguv=)r*<%!=)xS_4F4s~%uHxuTtyDDh5SKccQKEj)v1k1ToQf08 z(ES&V1Vg0dJSYO{oX8BY;picq3)sI-TQ4LN+}gfXfqvpP$${Tv**4PI|6F!BG*Et+ z3-njdGyKr6Wii+c_|n-wW|?VC2dKH>?MnVL`wGXcsgSF*jkBUua$btzqo$>IcJtlX zBIB;Lo6(fczec}lhx)=Rrj2Q)Y2JTXG;;W+V;!E#yl zA8Dg;L<2wv7TMrzWU$j8(Y12(FfS~cDP{46yawlLhwfakG7WKw;!DkT{rxZa-a=n) zJYmyzKF#V%3X+)1Ttb@^boJLsv=hfK*5*d8`IC_td`T^TvSJev&_4c{B_nT^m?b0CbsWz$ih@kL9nkpTg;HFD}*!qA82s2GUDcYnWT z5%8^0*fYGKzbK? zi++JpTBhUCAW$P9d1}tm(QU{DI$V4+g z0cN%j2woCC_Me6~Oh%M~+M$9!*aQs2A*)5)!3r8O6c}gs)?8@Vk_PpAy2Tbr5gIs% z!>?Bh*ZQ)|p;Bp>TnKLUj|GB6|LJ17w->7INrO9KlM9OwL6q`losXG*?Py#OpJDQNk_*ktlM<}y zd@Z)e>q-10(FFNSx7-|O6|{-I4DH|dY=0j+8b>WkHNQ7g4(-2HS%)xu(Jti&p9jPD zKP8IHCpCq|@S5GS7Q%1Yqn-4eDB?%PXkZE1E9;ezv2M^*`6p@1S1`Y1Rp-t|x2e!H zpvr7b&Ik>KM`QYP$LD6wa&0f%XM5ov2Do|_ddEN5{@{aio$(PIdHrVZz0L)78ZOqL zt6q3qY4VMicPu&E)fj1_UE8tk(DFzOSrvH>fn_69|FfSBCq`H4^NIeA#8mUqqz^WFz>Z#kOGDU|U%G+{rn-PM=z3KGq_Hu8=VXav`mgdTs4u4ZKzwjp2$67~?u zjqY#cjCb%HQUlpmsJACCPK|M00HFzyN}IH)Ub7#)j==((%SQOPRfTgPkoCu+qSzJA@SGg0v7)e?`U-zl{l|8iTLJA+T5 z5)H+C#f#s})nKh=Guy`(_uCuw>-Y2GR-97Y`?2&ug9$rrxT>{06Izy*^HiGo;K@L1 zPK>yYko9#!`@4Ic)nTILtnKH!;}WMjHZ>{U0bS}T$<`(an~N+!1I@&)(SCha?dmgC z4!IAPEN*t}h%954cGTs0^T!iA3-!?z@}ILUQWZ?>mmF*TOj}+W8n#!{bL(wYzj0-# zIkp-Hvhmo;RWT{2f79@o2^Z3Q_o%efU7akCZcV$K57rUMSM00TOrx>+S(XOzUFZm` z+xA-FaqeZ?%*PG3n4JUa$*(FVGRJ!(-&Sck+~~YsY~qxZ>#Yl0Gvfwi@3nWkYxH`M zKxvLvtT0{rNxC_s3#sNSXE_^gg#=o&V{)&XF1(#$SlwF_h|9UCnF8x~KfpiY)NiYi zPTIK`l$C~1n?|{9FVC)ink}l8vbRQDV1IGoUaEMri@nA2poBkPi>9eEdxv$#!%>Q8 zyY=?I8KC=SZe|zl(Gqj7skW8L7@Mk>=7^c#>13J>=)4yP(X_%#-R^9sbno!lZXY&{ zU&5i%V#GVV^b+ATnpnxOCQ1{C!`|AZY0p(6-o1&sPR2BvKpy|gd@J*LTR--bb=b^1 zr8um#>#cOsH30#y;U57=K=RB&t5=aW<#y{Yyvm|Tue--r#7|dU!8pY9^fAO#DuXPH z%NH|Ax!g)suMlNT>e3x0#@)(UboD5%30w=dUPCC-H98LP*%cgTt>;i+Dk z;}HjH#(brP18TS+49x`8u=q%xzo_dz)`y`-Dm7U42lhpys(!#UR2 zdkMIh*I(6^+spa)l=xtz2VS`#P2tK`bHrI4oW-$3GJ-D7xk%O65&#-3H=5uYc*cl zxCyf5bkclR>E!V0OOwS2$;*=`{mjAV42169rZx_jrM1b=T3mD$2HQWNjmgVJ5Fad0 zdXH|;`YK8fwU!2Ia9Eqntn3ByxY5=IYs6Yaw)AMbd8*pP^**vH5fbhHPw2Q+I@;QN#w;umC0%k!6BXW zbTMdsiw(vbP(jazUd`sHRZtSyMkK6rbGN2QibqXMyxiGy!Bxk6)~%Zz;a1vXK3Aof zcjISnrv%}0BuV1E_h}Zxq27i@>2^)k%SrTZ%q254drKO9yso73+?!43(`8#7-WrFu zYe@kC?gZw*x&}!}sp@ckjGm&~)X$#6m(NTRoqLa^7=&3z@PDs)Hdw|m5~{@cv16%6 z0_N9fvpqlA%sv-~!3EQnt=PBTe+e|dY7%*U{{-xi|pdVWyXOo+#b|4xF!O7zBa6W(m2qqrr4+pA#pP=c8-VZt+8WcOAAayc8^ zyMQ-Aml&Vy>AA-eZ%^f$k4ALZ$RFgX|0HfZ_Q7r#-+~aFO&YovReIfeu4Bt> zb+H?w*eB(tKMO*uvv(J^g>E&52mdXIOn8<@aI38IWL}#omfepJc8dC{;d*)aPd&%{ ztvDZ}j7Ru0q3gd7Jy?klv90)V51vAFM4G`Oi6~H?oBbRVBs{ccAm8ag8J6&|u#2d_ zy*|AR+XNsopPad)QT+LELjqpH_@0nqcI=}LrRUMgH}lmhyUiAUKYl)C=r6~T7F;-k z5YQ!cQXyTwa)<1inE!W2sOQV9P z<4m3VMLWeYbK0YTvQljA_lIwAE^mG3OJtTsmoz^n%!(H)hU407aBv_5^o!D!wU1C-50V~|EX%<;kn9P)c={(1mH5tN(it*xiuO&$r zTTUhv<)wdL%1pH${4J;+dn7oD&;=(XQ$7h1q#29^2fh@ z6?T;pVVB)-^QCSjN;?sUmqC^x77xX~v-h zIuRs+9jLl-Zn$J@T$W)hJr5_E5MUzy4_i<&qm+QS`3*pH#7#;TA|(Glb?MSYz1*4c z?X{y(+|N^v4SR`rC!HkiUpaP#uz#M~8jjDGrj@5!Q(yT%U44W(ZHEM*GL-{0?co;V z+)x+$Y(&3aVEe%r&s~y@n^Kh5WqWRM2!4Ti%S@NYP1=VatQlj%UOqL#$>vEtf9i@P zal-CiXBVSNo1xomZeJmf+_f3{BX2Z7HMxuTx*oaXV@tOkgkvTO7jKO zK$g?7b+MEFh=aj@pX4z35v7aEC&Ob=!Ri&6KUDG(>!{bJpU0J^tzYx;df{^ew)os% zQuiIGkt)wktQsV>B32P{2(MgkG+Zg#j7d?Ll-Q*2-~EhCf9*)7H9xV|?CA6#n43Io z?s7c-(2c-G@6r8z1&twmX%5q|t~DJZp)*)V4~QY2l%8?R25FAKI!*@%x1SS;wVyOc zSB#pmpA1ZrT7HNxncCiQW;FU9cfCtZGmQ?{ck-Q{7AVBVSY2y~L#R)~t+f3Z>)r4l z3Nbseq1+6_07NT58SwTW7bgcWUo-Y#j_Gh-%$9*$ zk4VneA;uc52#?f4bKC9pzHG3DaXcRiTy%wB&3cp`4|Yyz7G~LVp@jtD>3r92Ojh8~ ze1wXuDuBzhENnjf{R9WPC`t_aYz{bKrA#6kW`s?;2Y2?1bP*?i6t~>#P4Jj* z_`_c{_hHZYpRnZy=y1C{ILs9ySK=8?)cS@QinE*MF6lh zc$j0<1mk?jz>B^VK2%<=Vt`x(&!nuC;xD{ zT~7xc1nO0jM8gS=Z9{Ejl^%R$;Y_o#2!1^DF=Mo<(Aq}Fm+a+~gEFD>44|C(JLfiMmBm&_|B-sC{EflcpkJ%)wDUI$B+TYgm2$4y&0)^ z1Fe2X`Ua%rToTh0qb}|f+2N_h^XZ|}LuBjW|B$WUgJ!Z6HGEUg++vhF=SPV3V9iLA zD-y~L)0YJ=lK=nl1Z|8;#Ww$$ugPL4orH4*h6XU*I%57RY*#qtB`uySt*FvgK>xlxNGAAjd5(H2b*4| zj6kvUyI{)WDO=7IsjV9_S(M)e0F_rH#B#Q%KkYV$nuS*z^eAh*ygZo|oV2;7=e&nP zq(9@lkX_LWKvRc8)!Z%!X*Xij;)h<3Tkq99p%kMwY9+unmoy8>*3+b(+qt;DW`;2V zygi;|6TLCcmq~8{3#;=-9`C{6Bax${&h*m6-o3VVN=ynorSavJ7N;u0$S`=y@M;H3 zol=$xgS$m%2sy%VsothZgGU%w-gVweG_&we7@`ry0}Mrm6vFr<{kebr&D4FEC5CeU zQeU&6lzrH)UYnIqLb+T)79#k&ea$EV*F{T>GKp>DQbvq;mkwBlxSDAfLz(Ye>3JD^ ziDK0XN#nV-=`4GtNT@Ubd%=TLLR_g0HqFUK#iuvDX5=1tbGR-)dzziRQgY)eXM~e9U{%mw+97l44I~_4VLz5lTNUDGPJLd+p^g7H#S zIWAd1Q?HYr6Q4vyfh2YJ!PQI_0>WH#h^Cb!#O#Fgg3CKQdsp_=w1>NXTWJ2;_bK=oUgG4h33t2VjD2--tkrFCh6bIedclYi zzu%JyzP;K;LIM{)p^U$^FSendc2u-VzBRZwkIrJL*D23Ogq{JG4`} zbZqHsziWj`!Ksd#oQ2Vlj;2}@Xk{%&vsEAxWIV5R^0(h$V+%|Y2sgry%m7>df{%S$ z7u&xT9VO<&`DvDpT@J^#m#$uLoM0#v#t#^XEIjO(iZ~bZZi1g`F6D_vLAZ59z2FbO z?g!0ZVfV-Ry!ASf?v~%%R|;6m2DsyFF1kxy42^I!cH7KCwqN9ZxY*yKi>ayB!`|fq z35BwZF%WynIX*P5m-9EPM?F(FB7ZuV<+6$bA>fm;(#mflOc)oc!yN=Vv zK_~0`{hOmRdhe%OTp{hFwa(YY`ts{H=_R3OI(2#5hCD-Rxb+uCdtTVDm(H7=*JZ$T zX%0SXh`Z7WjFS>k8Sn@U*g$Ow;eQ)wwJguVk3+3MMiZk{O%2;Tal<_Ei+W;HYfG;# z)3+diLrR+X>-)XVib+vO5JQn|w7t>rcD@W*1{qz(c3sn1HMwoLaHg?+=peaT)aX>8 z_x^Gq1{aW-=neizSIhALVlZ4jAL|XrRx&+S$y_8P`~Ebm)#gr!6*63Cxh>x-FbS$JdhYJo4PoV5d_3i(fL2if02^fk949f@Xq8F3=eyCVg%Kv`sMh7xaQ zs!T$Z*b%bjS&u4AE_s#(^Nlq%LCL)iZT^gf9&Kl79^>{Z{DkzrhmV#D-gJCR*rX(+ zS_|F1JNU81AJP)`$cIxWRqbSSvL4lp&gTllY%c+vMpQk3^xeZX7`Gb&N#ss+-}`1( zy|it)wP|bp-eLqwTR?vvdEGvR(mU!~H1$vOYLvs4z|f<=FY2wennnL}4Iwn_rx8Ni zYF3&CnKP(tN0V9}i!AbNb@f&MPujd|wY?j?_{G5dMW&7wEn7Ubjk9m{K6xV}s3KI6 z*SY6#p!Xi8I?f|M_QRklpnL*Jhva6uLqsd-MwZIUU`f+oB4v9-Li6ET&s0@r$kQzhrx6C+E|1-wYb>a8!hZEO@ovRQioe` zsvSOV9^sO|CjZQY*SWt(hhhn4t0kycm^1@^4~Y?g(;lbyI=@E`)mplk&n%AGH^JdA z$HX(D+Zi|gAz2d3ELxgYepH%slo4^#Lr0n2k(~I1t&oB?Rj5fk%+y?kusSU#4C{8j znQp|3Fp+J^aG=3ZXQ4fmtXLPD9xIHG`Jln089}?hJik$zM!I}-0VF0Qj=$Ugk|T(N z*<~T0k|#m-8oSUPS616)@o#!lnqz@|V3Gy>?3}(sKfs>YyzF(?rlzNFI6qy=4>0Mv z#TLXbAs}WTw(b@Gjhuv;;}}_Zezakqau7ew?umhT!%Hro6Ve0ITn*9OT{d~DMCUn% zIPa5PTuCrd&+En;x$ur@G_vN_j_??*Gi})!>+Ku$H2~kGIGw{~DX=MhF|^OA5_mJ+ zT`ywEzZR5&gaQjs`6X?^&$N4~n1Px*lq7!b0z3O9n@y#L{Dn%|RXDic!Y)i<9eX6Q zZyQMclz&;>Fse3idcU4C5m0D3r&yO4$bqg%TbP zy;6PpCTXh0Fu}J^-RKfrOA{=4HhX->>-HU<^+6kJTvz;KpPP^u!&894fKyccJ|o2v zmNlz==;P%Fo0rCsJ2WEw(G#Z@uVD$Y93&Kt)@}pJM?r6>Yqg5uCH(n`KYS%X!}#P* zOkW&?qUD+rQZqAFxsAN99XY|VDZI$OR-q32MJ>LypsvB|5dVmD?$%c=c+3uDyf$!3 z9g(~m`E<@MLBtczr{zui2U7gyS)qTu`c+cGl4m=}S%aXgLo@4yHblO-B-$ z>^$5|vuX6dB8&4?4`2!2LVfzW)H>nEgVxCpo3A4FozdK^4N?n+vX=)rz+01dJEz0a zGXu|LEfAe*ak-arSA8D1J$g)LVNdaBQ&G>f1WobxK2VGhA2;BYvJKrVsoe7-F#w?I z9K;l48&T=QU^-q~J9#=uD3oJFigIDnYh0USO-V-tQ6H#u<%VBda(?RT?E^JhGdY>S zG|;?j=^Fj`Mke-308BLfytgyXhaKuVHeVb%UE{?-bOZQ1b>$-B2BT5;&MwMFoI2sd z8dF330BSj$A1W#&IHYK@DmLU7=5{U>hgHZYS+_`AHem0#Q{F*TvA$0Is*Wrf{H-)j z*>?{EHCYi7OsjO7ADTu|QQqm00<6$G^ix&smuOIet?VLJ4vQ)TQ7?%ZNDfYY6+2xb zjw$Ap-MQzu56$Bt{17+O(}tIbhL(X|z|a_T%Fd&|C#Eje-5Tp=u2KkaA-g=7H_2$Y zzb3X)xt4R2gshvWhQ#-;#r-bv4eo`M-}r5VYNG}Xasw$x%a&U>l;cOsGdLBjZ3?6} zoD6YZafI^$b?3o>*Hj*@m;ODzCr&XaA}FEb&u?@kFNJ^D6Ag8eM+9x>wx?<9bcLF9uHAHq1nqBJz>^_tt@Mjt{Kz|Z%SwIe8H>(0acwa%iOvV>zhF?x5z4d`b}u|xkDuIuAn)F@?fNY2{m z&Eeq+nNJa-?%Zjq$OgrMyMM06r7Snq+Nq;p`+OJYRTGS7r}#M!)>M%Dc=|nVZl5po z@`XmnA&tqtt4jTvh_nanO%G;*xOn08CBVp_Nhk9!FcZAC zp3&3H32_J(cha2H(@FodaAl<3%HuYe_t(h$GqA2sQZl^^$)GWz?}D$K&2E6u{X>o4 z$dRx;gPrsf-sm`EK`?ZHh?Z?5pP6<`@2h}IJY`@SIbbf;IdH%*)ZC$XqnjpaAS~mH zl8degzy`w$k3I+C5CkRD2VNnCY2sF0Yq!KLO(H}NSH>t7LZ0HW@MY7!NM~@ZsQE z1Cl4X_`cx^XJ0xJ1W) zM*EDANrTrh$=b24I@14h76AR0cy;X7BT__psK__k!ewB9_vUvPZ8+J|R4(Z4!?+aj ztZpW(R`wsNkt>rsM6FU%y*y{&4g+}-%3sPLvxC^joOZH13a4H;7*x_770m8bT_=eE ziHzswx3hxXpaE4_X$9bNg|=-~K8}14GaEHO*1V9CvfqcLVbhIg;VBDdf}xo-bkc}X zS=%<}+jmRZC-hcC%9{p0Wm)0poK2g^X!x17$d4XkI&JmmUlxMmVIwB$FXb8%qkZr$VgeFIPcer zBN8k;sWFsa2Fp1O&rPE5tIP`;DL@eQdsX_kQ8INV`G?w}U+tz?1N;!R$1wd*T-!;J zKr5z#{Hd9%xcrs&3J^_BM@SK}Zz2(#{*V*xHLBqh-A?+zFNF}Tu_g1hugKJH-t=Yj zr?py)lA-ZPz+mBN&&)<_T8^<^W~Nv`NS<|_lzpINt~u1))>i}gG5=fGue=u?Z~o}U@W zenf4!4e5Y}%4Hp5KIKrbZ}fh8RQJVpd>Q>`K_hh?NKNGg0GDT-kh5DD5fsPfM?6gqQ>^vA*Ku}AUYY}mi$>I@lsjlvS_$=9QkdT9`QFFL%gNq`X~-4FTV5;7wdDMFN(8l+qIFA!W|%PPWfrt0vdZEco15> z7b&B&-NxzaqQYFTAsxBqL6d|XHGe!*W%PE>fde%nf%&?HTe-$C3PfQ(W5K#u=LXm4 z0F(d6s1BJfbqNcOSVkWf<;{PET+E-~F`n(OUifgct*#HatcNfTJL1m&j>9jHq;1^d z=(eT|Y?_Sf7ND&Urf3dkkmOMAJKPM01-;>UnF>;CXuR_LtctR47$kOxVO=2^V%{DINExcdDLlvj7Z7?vZk(2j2wT;~GV z29sKggcaTIh1w*lIk{+~xevc4eyyJJ$!uqtYOYJWsG8~r^Rt-9(I|7p!q^T&7xMo=6csyhz)y#UbWQYIkKuMwX~mx4~EfqWFM9{Y32M z!UDQ3>h`?!ep+b-rQ{$co_e+f;v%@|1P&6uQ6}jNVurbsn=ZY2`&KOEyM0dx(Hpe# z#_~b2J_sjnjs<0yJ~nE1js%MtRlb$kAUfc#E|mnOsBWJT>w z2zJvG1JJZ$WKeLAx{!%>Z)~CwW8yHjkhtPJyL!K zl9DcBA|G78_QIwL_gZ77FsJaY6QFZbpTt}Cj}0KC2#cXzI>;tk!N#DFz8JFFA`4U@Y0n3&m zkL|gxuXQ8oq^&rR-ti8DZzF$ zx&XtE#hB~}mM#CmoeOAe} z&&kSewsyPWOx$CXJ5&kwe>`|AYkZLy`X(go=O5r$$C!)eR^uH8#{Zu0YKsA3-#U8b z(XaZWw55I$cb9$h1X0YRgY(ne_h{)Ky#x1?nUI2;3`;di0#EmZrT3eQoRau4e(mVX z?6g}&YD8D3(d5u4!vK>vRX%;tXU9Z(L#g%q!=F{7dMO7$S1sa)mJMLf3R#+YYrnFP zm5U6m9c|%agXHwcPDXt1Uf7}BAUXn?YvaCkt_?M3hbUpcFFyNf#bgZ4%q$*U2x(b* z)%5&my>iwOOk?|gt}u1iiR}51wlj!5OPm?-m$^R*jo`DM?7@ z&=PC!S~}7NHF3bXpmizVTqI2TZWm<6ByI3L9iurl(0ay1qlP>Yz@Fwmb?NK)+Z2XM zM9k`0OoTHMG=GiZ_i;p%rlMu|jF?AB1X{jHT`Xt!y(Pc<$pLtZuS?xz^C)(|kC}6) z6eNR)FNOq>Omg%_|bOYB&iXJ3LygTfW+WFb(Li!=t5xX|s|y zjw#=C`>ow3-o7?)JCm-(XD}Bw;2`9oG5FIS$>JQshs^4|UmRfaSv8ysgL=$edIfzI zO;IxcFa}PaaNP@auE?9V+Ed?q9RuIe{T{I*hf>m+QyEmcFida~`V92hc5@JwxA8O{%AgX)IAp%&?I1 zq#_}Z%b5>yp3Nd8E_f=st&~c zBP>5M9fUPrHal=1D4b`;5rek(1WnU2{LKuF3hv`^>7>tsx%2tv`du27&Z1qFEoUo_ zDN9Nq1Vxnl(`F1LJ_9bZ&uMHyipT^;%^dq?|pF;5W`uZf}Dc&H4 zO0Ni79wI0qL%iB^VCpJ4v}B&XSpo`RZg7z8)S;_lVY#3I+RZzcB1uQnNXZ*S%Cf9| zO|~I3TLYB2a|%omSD4_)!5^w8JoE*oq#e{@WZ;J`rH-8I`woVS#P@DBv)cKqioZD& z(ubdIf*TvgY1sH5M@}@1y4M3S;a12vifI&%`a1pz7jvbv*rlLvqlIrx87a~Y;8B@x z`m>rSV8%i7-;EKNcQk(80AZIv?zea2TLgf>1) zA!OJgead!YWJUUtm?02tXw|uiS||_Q6q~z(Qd_X zHymov7gE327{)PF+H*=gEbgZ%LSBjqc{A+Yziv9c z%CwudduQRwbPqM+Rw}(jQ;oW_I*EHS+@=Zom}9(XQeqs-2e`x82@{N%fvwk3;r4~h z%Ux(A8}Pwj3dRU zdt>oGw?~^)8yhq^i;5@{QYG_H;rP!vR-@*s{IB>sAM(-Wq}WWyzeIcvcpClY&xxWT zp!O_V_Ab(>@hz~J9T;6(uOcQ=!GHvaBfD5L z-55Hucv8Q5jINht|A0yvH8MIq&qD}t`Fm-3gp1iUuBXG^F)4wNkd;Vpb^3C;kn%Uo zit_LGO31I)8mK`}i4nqf#LmPRZ~{U`li$6PdB~YN zSZbA1Rf;nEKiJjDkrmtIk8igYY`2Ga5@K~bm!ffTLt<+J6YHh@@=sr!`@I))R}u28 zWsezL*`gi%S`IBNLDS!=RRwyNUwwb-9->6t7$Oh$pGGXOy{uS=y64`ahWh{?d$34f zF8Q;Va`QS;CC*By$`}Z7Dg;4z~TU>UVb)`wb!#f>cv8O&Z%!ncnlni@m z*gNk-8#`{?be})(;yErAa`9yhOQq5jtY9SWn14O)j7eC30c-BM9@H% zmGxptMB*=uaxp6YvkC6p%kdG5@gGO z6q+lX`|0&b+AWhSRlyLscrzg_iH z^;5O$*v1H=;)Q2YW@giyBw8WkN{WY%h!D22hCPlWXK;2Z7ZpZ(PqV_in zm&yUlOl1ZkJe8GnIrKcTsCUh*xXz`V6bCBBGE>O)-$vD&$*K)k?%%EnEMw>h?ZY}M z=R_|OZ^Ge~!EUQ`95zLidp7N%urgtfg0Y=U2$PW+7G`%axBUH8*~l<#UbnkW6wYtl zy7ksIxu9%q>OzHt_eI1d3c~2IDw0(ruCS515#dawT+$S?{MWDUdj^_f!L`q}ye zrKv6ZV0SVoT{Zi(CRMZ8bH*AUue-J68HO+m(-oy9^jA(i<-EES$`iSEslE+rn%&4; zs?fWjvkw!QXI$Z9)kUreD=O6DRSrKK&<&XM^x3^1mA`XezO8plSsuMQyS>qtC@jfY zZIriV=A?_`T`kw#>KNEV5R1*UEw!ChBexoOc^GAO;xcIqU2uN6Bf5-rq(hTM3pPgU zX_^SoZlR6jk)Op4U7|cX>cWcpY9^q=mCM?)p7ZLNb}!QGT9Hps#LZN-hIb97(mC^~ zZY^cXMA>VA%kSO>H56ejiO(G7>}m5`G?@lWZP$Kco3c80f%3Tau@ z{!Cmt@#DYk7mqB<#V9PRq}1COBhP*QH+Hn9Rg;uJ!=WdU8YEDM?#TCVW-HFR+g10J zt2(og)tZK6V>tB>bA7g;;l7A=Nyfu=N!@m9NeY!-Z4=uUL$3DtM&3F%6fOp<+v0~lTi8ojX4+1* zYes!t+FFc?@seQo;}DKrFTVDt^)5`KpfG+kwRLV893#V6mBhfZ2XE_s<-n7ItP^)| z;>0^7QZVBwdIP81Su~?JcP-yWNz_cd^-<6_|&)qDbW@u3n$?xVPiF0!9*)=IwXWy(^w*v)jcR%5t zK}oUS6#b2W54wTA6v?SJ;FEPf+nUB5%W0I#T$x*%z4-vSy*Bv!Gz7qUgEQpegCrcG zMZvNTU%LoS6mR3N?TkBVH1uW3GN8Wl|L2o}>G(OkQgQp=-0~%*)-$>$4I&H=%2c!= z@50}6Ja0&uhvrcZ_)lm71=o+?Iq>qD6_7ysqQLogylRbP%`*)AJxXiBbYYQ7jCA26 z{e0FeNFklESP`-Rnfi5=56Xch>DQiGh6fsYXQL)n;kDX;GpSg~)*hVeT;9SNIbTB# z{=AAq>jQ`K`VlCIE|=ui4E%$t%B~{YI)TUqv~I8UT6(^S1=FRfDOZLSpFJMYB@@F& z2#*$p<7o%ldWD{V<+s?#Z+9iBi~vO*|CR!vW)`1lr#ut zoJ)>FIjnv$ZopeqUAi1#bmPD!*K)n7A2t6=;kWH>>15FX_Yg>1wL4Z2(&h;qvo|jk zCtniq70Q*u2qv9uB{XgeCKTA{LQNi0XSp(HW3GCXuCAx~>&->7pSCfLD`FY?6lr32 z^Fw~2!9&vLR3^LL{~h{yK4AYw&nbpe%P!It9;*0p=l8sdCA40VrT=8<{4+OrH2+Y3lSQt`N`3asU zX2iT9P6P6rsU!4+Sl>p~<{%y3oi9fIO_UvG>z({9rO(4x6(b0fT*z^GbWOw*GxuKQ zWy$$N(uQAPfBz2Z$O5g()T^KQoT{c=1c|&ifxfPy?bh3HZ5yEV2D+g@>jj5)(At`_ ziEmf}_JQ+d6red@^`@^w8}ca}Jl}}J6_tj1k@Wev|2LnUhIB9Lp!jxH!YO^H znaW7+<9&zy)dXNY02{=W&eE)h$E7ot0xTCyCip)gZ}nExbWAKY zruh;CRkgR1&^K5oe3&XN-&OeF+EYOZRZdgmNcjc@9?pXbY*{&6|9ln zFzPno>UjSC#A@OM*^j0?%u3$Ax68ZaXKq%INsEi@#W%r%K~&qPN6Z)xGA2_U`$i8= z#4C+-Sqy|M53r=oY|P-Y8BpEm&IfwF4%0a&WKtelu^dYM)}#R<=Ja=&B$XVu3qmjf z5agGj6JJ}FbeieK(P_SaO-kks0#(PEN9vDmwxKd)YLkMa^ zK9Pmzo2a`Mo)`>mB^bnkHpo>^f}oAJ53z1LOTzxHOV`&dAfl5v2K)TSUhu>ZlgWnd zwsq=|V<3K8-r?#2mYevYJ%zvrLOk@pAOg?}4L1ozF&0BJ0w?n!k$wfCIWl>dw>Eo9|y%4xCWc&Go?N%480ai61s3t28LYw{+=n(i;hH;!DNm(AotDMLP{uS6Cq5cr#zr-5g)LIde1PSaA|; zrXW>}ngWc8+23gTchGd|56An8BgyIsViLIk+#ixwp`QXj&wTX9icoifn7(An!Dzq| z2uV$RxS3no&+J;dc|I6X7RsCdeg6e0%6Hg@_s3WPm{5MAp=VI<;`8b@4-JnM=cMXVryqL@4dfsLW)h=o$Fh=p=r~BBSHRtOFsfUgNqyu{>JQGXi9UjqTsr z%#WmN5O2fYJr*#vtq1IJb@p(negxgKBUT) zvat*4-uIIt$d!*=L923A_G=!bgRo?sFT==!?;hsP~B_ci(=;iDd>9BtUzwl_TmtyusYahH5#OT`4on z3fP$;NI)A(?K+VTKEmt2<>Sz(fnOt>6$AfrjlX^CEJ}lILzv7*xB04Ag(O9~D=p6+ z*>CPC0Zq@nmvTXOXkchqK~Vx6?v&u+p?d|l|AvU}$nYXmTH+$SjqQW8 zr-r z7(OSftPnDJHCGY5G3_dF(74&8ZB7(Ra7^MARMjoI>O7-oM%43inS>NWZ*Q-}&&#c_ zgbAFp0)Y9c%uaPHDH!~KNV-8Wiu@_jh0B0iHMMTmTUM^V1xhJn5utiFPK^wcKYI`<v;DpI zvy^|``&59vf6>deUt6rdh4e7`r7nDtL{0&`w4T@ZGv5dgfoyu=4{7A&9#!rID=SaZ z6`Q!L$2YK2eU-e2qV zSYyCRjPB$0!_0?LvrjaW&RJv*Up~i^KAS5)4kueZ@n^evs#z(ZzySVeJE>)0uJ~;P zgpY_fX~10i>=Bt(;jl`qk8Ht5sJ%PmuHo|>05lX%G9Et3V{pOL+40G^JrU7ad`V;q zK#fyN$aFkYj|9}F;zyyAI%fyxx&#dzpPiL+e6oR+5CJ3yq-){TTgMXS(7wh6A9?u< z9KBXBH77)@KU~Ylxlg`*-hfvZo=R${9;GL|^o21s&GmV!Zz&TiN3O1Eebpg(N1d7Y;RKp6{h1qD-SuGvFFJM7Pe9xE% zR|<}dfbzGxZ0@1shx`OD03B0)5%LZ0`#!8?inr+o!6EKcWmw8 z^mO+kJ=z-bW1U~%dfZzSjwdksM{@fsbtz~9m4D&i<^MHOFm!(xyl)U2LpacfW`r$V z!rGXhw*x+(I?-EI(X~#wR_Xw{tASJmPD4 zp%Qda=yPPmlt%|iEKDg6?EPub*z$qqrmchLfbYANvlCh_4y&h(%QDO@fqpM5t(x>< z`o7U$R+b9m12J}SkagzfhrP}aefMx<{VGMz^HgIL z{imgLL-NG*$F=qcD#YpQJ59fIfta-6i{_`USCw7|Fldia&E|{(q>z{!sGX7~$N8g1 zmv}OKMv6O_rjj)>1-FAj0t%CRh7zVIO`X;P*0i0oq$_tXTEo!yn+v(+o@_kY$% zQ+7!%POnxzGJnBPW|a<*!rwq_c0p$yMn{ghWxqZb?X;f8oZb?A-g?mAZNk<=Dj`>l zOx_eu`+W@xKU+$4UBc3x$CU0_o*N>zrXXg&??tKspePF#JG!YRI}#G9s`~)#(bgs- ze=Ao_KO?*YN~s(069kl$gbjcXU^MAwk6H-Ik!3GLBRo`H$6q+!Z_1i$YK!?Gkbg__ zB%l+nU%6Z2uyIR9l$9rAHhNxB%;1YgW>NY4#T(`L+MeHtUD7Fe=(3Dn9{QOL#5bSa zE*t~(tnf|bUK~Vp_JaVH%-ulY-j`JgzO2@`JG{Y#On9DBB+Q#~@b_2qqEdF3?tS1> z{!>r-RVT#8P}YXlDzt>ZW6@8J6wi@}g)3P7LofpSTbTgFVlTv<6Wbem-E#PO5*siMg+7 z-_iI{ve!*v`|QC#sK~|W0+EwSVfB>mlk%z;2Ce(5iN%Eg6#}M*hT%$#gLNjj;&)P1 zLQ@h@4ow_AFRN$cwC4rzU$yenD&HC`$?+VCc1jE%{BsTX>7#MBYK6eGe9LN@+9I1| zN=3QToxH(w({?Z3)Z}}k8*-_BDn5TGL27L=@mA(*q&BcA=^nZsYb}SeTDT2b^IuW& zwOB8!RD6F>kd{-ZQNOkan2p!B$MmKLUo?ZQ=Yy6M%~tQ$aXaQGiBr|Ck2K5}7S_I^ zfKq&Q=|~FJ+@--PQ>SjWJ#X6tF^hM?qSpp@Ft1=^HT310R8dAj!xa;10PW zCR|fMy7%d_8UUJ=hS>1uDW;iC4rpTF=St1I-Itzq^!@)Y*{5pUaWD8Au?8942v`4a zsr(#()*!6W8QwX}Wlu>-{{oGh@`XC=7$;B}e7PU7c{*BtRUt#AOzM$&5{lsgC?`mm zf!pZmZq|i<+G#C?@({OTT$4WKf-aQLR+n7$=nK8w6ICQ3Wd7WG^mo$<)?;{=>!1~X zLA^h&DTp;Qpom>K%cDzt2)xTTL-k#Mu0u+pmcwt*&Nc44{E=}7Q^bIPFuNZUy--a` z*a=-s66yw#r#ur6>MR3b_GutF2EO~fHRjfc=D9gWfmtCYhEp%|K!W4@@}a{kBN7Xs z;ioD`Hq;%WaP^VAFG0>yLYZ2WvqV^PecPW0apxTi-he=#$M~| z-__}Xaa-$ueV&%#(B}rK(5PB;{N8hFz$YUf*J+tnt4D-^q5c@ zX*rSGAlU%2XaNg7mJILS^1L3~NA)_vQsrZ7U-g)P#R4#he`ApbKBaewAY2E(zI`m@7*4l?uE*-tru#tTLe7xAcjKyRl7Lbi=GPgxY0B;pWg;btt6tLlIiOa-sqk|j zjA%R0+H@EB_X98ulV4E;s_y{-nf&|)nA#uT|HkszL%Cn9tQ<;Mt=a$WQ^~*~qT%^B z?4IFawj(muh2I3S4cJVbgEWA|smGm_{MChCoHmd!SDxtM(dMj!ML;O~dpmtBklR}e z5XsKMi%OegTQuS?C3*?a((8*s_hg}fyVubyW5eACM2g@M@mK->ZqiflOq|iQ(9CWO ze-41_p||vlZUE5!kq+-ns4CEa*B*?XI~-pYvRr;1H75LtHR-I2hH)my;72#1B;^%o zQ6#1V{Ize=9h9JUyUM`D$8NRYCdd~K9de~lE%l;YmDH|QgB8fQor5Dz7nI-c`yy93 z&%px1oN)HOjl3C*)CT>ex7f^m61C4C*m^4HtDwCkVZjnV^OTkf^3$o!cj!iOB#phz z7UO92k{bCfwf%I(u8{SLc7hm>xw3tXFQB+npx;Oj{DW;r827|p1EmHXp+{1DRXl1? z#cK~v^EwNJv}jJDc%|%}F>8&(OM}|^(M1m%K;`b9$$gVn91{l@*v3qdmmY6!nzn%A zn)yrDMaInh?vrUc&=-gNs5IWqkFpw6b+MjoVAFsH)NtLiZ@Ce^T6aDH9HZtr({s;6 zt@+tS<(db-O_^^44W)*6p%T5`STEGxGvPz}rUDWjQgkpc`s-;IM$&kRUF8EyN&~qL z*h250>uD=!s^@;Pu5rMJ!^bKU-OQ@T7a^_iL$aLFOUG64H#hmkimy~*2N4HK&=-de zQRvsq5K-CYg0VH0o(=eHQO-*97tX-7z5+S?I6_L?UJ(%Wo@&;63y|!;pUik>{|fv& z{L{f+E|`?Y|5q{kQQ1`Lr+0tEdg?Xd@h6*ot5zx7?V+s65IYLvL5|`f@0kLE5`P3> zWS|J36qGg-ZQ)i=dU+lYd|QtJ#-Pw5*E}*9cC$5JKUoO*WjPRxCZWmg$1go6N z-{{}~w()!}@P_;`2c7c?Qq=A0+rT~ew`yB7Mm&W~=<0Er*Xo7K$*d(osFR|e^;2$zc`WQ}h%A0StLFNfCsIu-P(BY6IbrtV!K znhDWgL`TfEun_QZmch)*!D^>_za6gI^ysr3`!eht`WZlAVV(y3uzx!Dv2Ro$U+KgC zxukpZ8Ddk{&0m5jI#VMr*Ac_5b`ngDC>|CJJ{H2X5cQU$nAYHDcA3MQVTE1E=Y)Ag zY&AM^V~&pLT?f(r?T~*>*4Ooz?0_?2aq3Ci=Ic$fAnHS3fy-NHJ+jist;qs^c)jj! zY#OLWaa4MJ1L9Hw#hbCc#R^uFUm%4+B|2&X-w&zepZ6!Vxh9={{dM^MJyx8f__1~^ zsUlTJDTBs<(chu5;GTB1+U! zOLD62?qF_y_9Z1KGE+}aHF7Z#P^$#kiT8i{g?y@k{PG1{-KKCE0()cZeKwn z&Jy48f(n^Rp;rChzwNV3EnN!Py1xt~K&o{Fa$V9$TB6{GSTP)V=FTR(1tRj)-Wd)d z*nn4egiPiYVW>>r@xkW3tzZN|`r*|%4TY{V(*P)ZjANdQ*WosZnQ~crssoJ$qa!{_ zsVFh7w3!`QZ|O?RFSJ02@m2onR0x|)#gW*X|2fPI?UVjZol4VvD~1vC9xza4!LZZR zHb|Ck_0zQUzvI1j*3RaFFtP;j$oHJp-Un9bZAF4o4t;<;QDpaqI+{hm;F2)Um5MpP zP54WoAI~8IdtpmDqwLMM3FuylG^R?eBe4ml>SWuVzpu-*~|J@9R>s014aFkT;mMn!b3m=Oh(#5 zg&P&?M{D78LP#M5c$`ZyfU^?-Cj9Ja0|~tu$xMcu9hS#DrB|{%myPvt8*V~Vod^H? z6DfuEy>vj*0AoE5r5U7EKl>qM&qn-HS{sv+=W>WAf8rUgK_~n_5*a=n zjKEeno6B#3kr%vF3%A~HGLK#CvaRu*9(9I5Q*U<004Rp^e8z|()b_tgycjXO^5F0H zsJo|xb88P$%UP?2CvE`&`q@vfL%p*urM!TeDSJ9q62~cA>9A-97y%eiR<9_CI$qh> zBC@xJ@d3KUj_Pe@;`R(wk|~PaXB%*F_@Q`rGQ^6i|5tImAP2c4K)uZJWCn!Ui#t2T z3jGWNA(NB$&M8ar&G^BRi1qYw>RLyoA^9$%`#{IyEhUnjDPPRj!U{hB4DupgMCH)pqpR<>FY~Mboi4B2Fn^|W23FJdNABoms^kd%%w}P zyp^maFu&kEasDchs_KiqshV>6u~Erjm^3g1<+X1$|0`(rAzGEdYPk{0uPv>_m*PRo z$BaC{KgHo}H8LG@rEYtyYFr{u9|K{vDf$_f z=LY*l2@?n(&;QAQtg(WBfZaA;8kp1;C;oKnMdiB3zvpJ;qwNzl0L21kR%-rYz(SPW z0A5?I(FpPfeH}2=AuWHJ=01PDKc)LZOj+?NZ<4(@?n~#W+QiAu3mSKPiqR>hEvrpLja7 zUQ_rCS03jzFku*5Q{T`}D+BrM;yyrm)bnTiKPFy`B(XnLCFPK+R60Qsk_4K$7Y_HE zh%#>aht5+j!tyqL%Hmz0WsFSlA_kEiX8jzhcA#5`KM`c_MwjfxeH^qW*=Q1EhOT71 z`VWX;cl5oLuTP|P8A?8`8i|>O;$cc3D0Ia)ZefnROUrraX$%0}`Hwmgps}Y$N4;`t zYcPzaxTN+Pivc7E)m>pulC7+d9;5KGD8a}kKofTHU(+yZlZiG5mpNApc>V?~Pr*vvpCrvBm+@}g1{(iW+bq!da zmJFZfLt-M-NO6_#lcKiD9oSyrku-`NcQkP(5HRX&M}HJ2dkK$80HpXmZ|x2gZ>35= z#We~j`*qbZCS;kzvbfBnq~~C-w;1s*(|eo36TWx;%>iw4&dU3Z*js0}g#i7q@KHu! zJ4>b8V|RQ1MPvg6eCz3luhxE4U>(&#ot!zS9W<@b=!Tcqt$+s%Gc6O~(N7#RZ++UN zh=rj6RT}h^tj~7}U4c2qzwe)r>~rJaDhLmLXP^npZ^~{_BG@qbz@XWFgi=SfJ6OjB zJvIBaGU(LbBEy|Po1_GdLlV|q34i_?AD{qoji~2?SUdF8ID3&~$`kQf(KQOf4fU5yE}sN zhxCzgAP!)3EkoZ%QKUVo0$2^3xpQ1sWe^wO6)qhCq&^p7CCLlD21;$fCyJeFergZG z^&tYiRM;?j1KwFjjUJOZ+o`MN^>#7w4MBiQ!~^wjm%f9!#RU{*i@cKne}3~$Ic~>) zpy+r)JhQ@KP#wC{X<8`Matj&+G(hzGwtG7 z`q(GrYlO|Ik4R`c{tFNbg?vNfIHvm7cic&vJmsvc1YfhAx{irqLub?z!N}31w44b+uB%EQ5n(o(sB#lTw7oj$iCcKURXt_YTDv^`K2OqP=OEJNt!74T9r!%t@+?=aVS5a}ouzu#?t$s{5qovO zZ>!wFdfWU@RVMs0tu?AvF;=J|(bE+)JDykI$GSS>$2Z^U2p|Sys@R!_!I| zymbPUtp4BL^>YYy>y2yWieW(e)5zsZ-a_SSf(D|E8}oHDb4O&>cFW~@s`+dMZ+-zi zX{4&VhEO2i%F^ZeqJ>yvYT;LAdbEgGeJ$6_z#@f$+EiOIH}r+NK6wJ5^8a_r_iI#p z75Z-ZRK@McDRAxUJ@`3P70STH7zbzi)wy5SIX7`p8Qnexwx@T9g6Ot1FSk3d02)mU z0Yxl_+ldu79Cahx)~>48OeCk&6iBY>@PXm~v&$`j-*yV4>nj{Vg{DaLcS~Cslx%Vi ztuLE6KB3$$Z*i-X1A1=M1a63)`wK#1P=@Pca?FgUynLo{Vz`KIyj0!(N0v}6n|98< zZ`%pN_=o#o_!2&PzS~h>Uf}{NZQEIZlsT{!;ZsIbxHvAo33PkuDXRP%23eB>F`D*_ zh^DzG)1TYo1f-&#>$JX5sZxIUK&SGi^6y67Fu}j~LAPJlOD}MKTZz&i>TQ3|>DD|z zG>4?seD(lVOpV#!R)=drOr{D*&(#(b+d$-C5~lg%pdN2I*N?xg-e(T|(^ zz-NOFI$AAYiyJQZdS^5Nyykh{r2PMS0hC5;t)@(tKVdhk`K+BSDnqGmD=YXU7Tp645}1sT>INNRH(NiNL$ROLv*YQ>M<(<7XF zKhCG;tgvcBRDojx8K!jL+pv!eJ=vsOPzZE5;1)X>@&fmyi*_qpHs9j;{EsUF334!O?%qM`s_zBX}{Nz=!o|i(Jd7xj(PSj`N zJ1H+)&MtEXyt_P^^5Xo^yQ{|`W@BK!@rwpnVlNH=rc~MHxhH_s<@urw+RiQ8y!U5? zpuj{MwkUj&)*D-L-}&nWg14DlgB3)tPZIN!FADe;yEc6bvI`C{qV&>`jx>C5Yrl9N z?QN}Q70ttCFL|(Lx!<4hKL|`Z()Xs%-fJdA=K>&|tGX8c?HbekoY$35?nA1|FK$SD zSq@%dG`U}c*-_yJ;li>S)IoW#I4g%M&UwB8>}N+S7gWfkZFV^QHPl;r#r5TTZI=nd z2}NW5TVq}F1;!fSlt@P_vK%yz-R~-^`Km6|fpDoZ1zP84|AqWBnO5=ABy*0p51FHf z9#Q@*>JFR-arls*DUCBu4g8e0Fdv3){9?G*@5cVXtUv$!(E6mIZqJ@Q=$*aZ0^BFA zGhdjCXh~Da-FC!YBvcd-oo80a2mPGeTLhQ-wWsuX(qHwt^(w4UoEqXD1Lj#Z=ND#I z-JSP0is~Z2wBHKa(w^#ooDP+^+1z=Ni{@1pPTbdB>Ak;xFzxqmP=;Kl@luVvHfN(m z!~>v0&p**p9IrG`$eKRH0ZXZu)&+EUVS_ zD}|4kq~?eKxD+}lS* z!8|{<(F%By-Cxx9cY7K%;cNlZBW|M(xD%?SsBMx-2h_Nv2#(d9uKpvRiweBOavV4! z>D+HiXTX2pw?&otNo1q@9$Q=RFq zs2s59ONXICqo~CI1H$rsw4OndRN;0M95g;AYoq{ZSOM71SfQJ=c{&&wNlzE#mrM9u z&;7o*r5#C51oAkPM5pDGaTZ}{t>84T0pBV%N#2xvu@#TGzTp9M?J=y%)?Y+-xO!zhfLUr`uYM+jK;1 zXW{DX?Io$zIfbzrap0nMF)BtK__S`Y&qA34pwr0`oWoMUL8{}~8bxRj$(07f?Me4D z^C&OVStur@xGj)CH|jXAqTFLN@=(-R&iYMmlVP^%cOBNK$`rk+oqVoiGMID)SnSQt`M0Y&9(K-&?p&<52@=9QCDsPR;&%bEM`C#XKn%Ob2x_%jP)@}bigpKTj%Lg*M{ z=IM3Tp<-u#kny1&fya3RTYag6V-KJ+HoiRoMPB1uo| zen_+c+Pm9BGFKu%AfH9K?t1x{C{1I1WdR&vg-SA&+$^yM$Vd>pGls8x(YOlcT0nov zyjLx&g^-t3w>N_wYz~GnfNJz|t@6RFw_MW!LCI)gki=OdLsKn7HPGO`KACP4Jf*~U zmtNZ%FcE#hcNPq%MeqA+P{RrBUId-|8tn>4v*h8gAA+XEk^x_!(6!c#Q&y6@3!v>b z^5iLJB~Z$0TdlT%hCcKvjBe)%Im0_k?BnppYd?N>ew|=duDN;V)bqQb;bI{&4fi6L zHEHx7F7AkM0@I@cJR<{xQS4i8@N*KwfA9vxNsxO(Jqve*57v7whCUSjJ$Jqn*b}i# zu?9-v`@ESyLkTKqiUU;vO%j>+ctH%o&hcfUbcBM2gS5s|4Ts?e<;xFJj`54En10Q)iZ?UMzTa_e{-39E z7cL}T(sa0JAtUqDbkw_Rce80TD$e%Ya7o~j*DV_=ncT?bGdsRiw~EA^FxzUI@HXX%JN$&VbG4w`%H^f0^65mw)~Z$QUvc2OI!&Mb8q_>e!VB(s*&>U_ zr)aetd)&D6>hWQ7Mll$rJ<4M0&Q~d7&D6Cz+x30P1{8?6ZyR`NZA(saHd-Q-#e$~D z^7en+`0*bE;N;wl;_x7WM z{%!7fSbmopAp(1NYkz0S+it{0-$GG!t4iK*%LD4a7!IUG2LV;Y@D|Df(Fjrru(&hg zmCbKrK5U;hO9bW8wSP;#$p)4qlO8SnzTbVPVVf8)tSo-ttK3=NN#Ek)9fNxW6wXW! z5}+2?5fL4?l{V53a6Oq#0>^}{a>!&&nhHOrb8bWT1E`5 z>({(9tEPBoJ70%&v2`~-XdK$1uQTXV@nft9#a)sAYqaCs1cw;8IaPgXadZ=gj8gt7 z1aA0LdNdgA2vM(gpXqaZLYdB0LQ4p>KZtfTugChGu`syehROIW3^spQ-Ks?*1pTmK zuV2_KF)k##cyeX5Rg8Tt1vYLoVSr^ry|@e=^Y8sdQ<7IUEyi>49p&zN`ct`W5hiSn z>oA%7np36VaZ5t&=JA451@JT+hxe}A0k#kR^7bj%1~H5Y<2yfvX@}lR>nAD;5q*9- zpR|fB>;D!ssc*JRRIYv~&I+SES>sAc2Fj+Pd%?_}q`nhC6(9^+i0yZ#xWgP>^JW7L zmnRCF{h0$=Or}nPNv++x0P&AGaWk8YY(kI9D~#V$B; zHfMQb1ZF#T7why&59ST<30-|R&o zjqzhN_mU^j{y>yGO(J#P#&NJ?9jng3s(F{k8|qEKGuv-@!S}}*(S|-oMxL!w;}*Rr za#(vyBp1mMyW)+s!zQ)Y0de?=O4CG^$JemmJ|5i7+pzBB*_!n%te9FX{O)NPeXKhv zHpE#WrvdJ0_r)*D31p+*`LAvZ>p!@VUZZ~y4Yg73P$pZLMAM0($Q1ERJQFPVz7p;V zTksHa+B;V^^aO=^`ZM?=0i6qG1d{w*o*{#3?q_x3pe^jNE5gOQMKWh?8x&d%KXb8d z3Ie0^V^XF0I=+pXEVMy<-F()D@@WZItG%hCLI22hNB}vc_McRFJnYfNlnyTVlyDo@ z^2XK=R6n_cSTrF2TCSJ#gf3_9&ASbGpjVEWnZfKrkJ5pRAz@h`1OR`#g!1%kg_J@b zzaqwtT*u6?3&prE^Xnf_2&*Y}i~XA;t*0Qd6CA+Qb?9E5j~`~^H2_DR7b&_;82xLI zzJy+%Eh%cGi7M~5wY4pArDnf1E85-Gq>NHr$1&ncINVrCP{t*J9&_oXOq#20`Rg2) zk4$LTd!Q+@4jjH}osG=T2i~PN(ziI%it-Q zL21hwHo{1%(ks4bcL$#Y#OZ9qvlBiY^huyz(KO@=uqx`$PD8;@WpNv4&eYlWuaOy< zB~ITVyasCYwP0=5jN}%u^&j^0Z4qt8nH0n?P}UW52O&#&u=FHW&mqE)eL;RG^67q6V$ut!%X7 zm@Xy0W;#qJS7Yi2aPnj^Wa8weA8nwg4WSGCjT#T<%J)!b6@CU;d`LrilW-7w#>vv*cyaEW+awIbuY}Qi! zD7Rz>G)cd&&uA*8B0yam%;HCI7V7Kov;p8Sj0CGKYNV}J2gN%ux)r#&DV!bU>oi*G zOxEsESQXEsi$awqioFYIzff^#y(sVo%YAts_3dn5ms<8h3jQpEUc31l)fNSGKk+H;=e?; zz@MZjUohh_Oxd3>lPP_*Gq#R6%+}~?P~eWG?`Hsg7FE3MN;S8fhcZLLAV^H$hAIW*2<`50p3_{$M46;m1$W3`5EQgifWH6m5^0KE+ci ztG=&*tldsa0?hO5({PbJk*u;ArkwwC?dP9!rwys9qpp#Pr$CyM+D_kvOZ$NYJL2ro zzIaU>SJKO&lpXTm!g{hA(D_%Ks!<6}F9r;SPHfba^_-D#&84<8MS646C8QBY+XE`M z4jD0!BG?IYf!_*fCE8Co5QS!R?X`oZ!7NwatPioWAzihs)@`CMC0`NGqP&0|mvAfk z3Hix9dK5<9?)1)CcZY>&HR=XU=N{%6Od?`{E}d@%mhZleFKr4kXO950>@*Z=!x%<{u`~ySZW~HU)a?EneF>=2_duM5vQ_O2DJK^U zq0XS3b3k%$A_maKkVX^3@sldu)1OwyuO= z@jkWsy7vV3UAqrk?4!S`{T=osap7)(@IC()Yz!VO3U;ug?ZV z$AXi<-?J~u)f^ChlW;S<3AsP_UiWk@q1}{?M~rBblCGiQv5Fgg<3n-zf?XI`soEy2 z+<6{2t|d&>lTEOHqi-{B6^j9vx1MRi_W%a6np*Wn7EzZ1+SEk9KszYy9g(svJwP=$ z+fW5${=#T)n9{mJ8X_E7_qa6&sp2tUtO3-nDJRXd(R}x$h8rx%+TDt$F2AAaf$dGm z7W^uObZXM@LaaEhWSwvO9gntRMHefmM3U+^n*}fvo%$JP6;Xqo^#1-^Eb%FjE(T`@ zCe>+LLI;D{X?`tLDL8HNy}MZvNwdOS(_gf6)M;;p%yfXicSDTO|LPl53yjhp9E`2m zn3*Iq^FM$s4`xz=u`fceFz*>(14{{}3)VdPs{l|sR(~GO!d{YQZYYw=Ve6fN1Q*P7 z;>6*qqFxA|@!fj^t2*7myynWsS6bu!PJhJwO8&1rCfxlpffD=-B&-sKP zfV_g9(Be6TDWZ=T-(Pl1DTbN>!mOge$CiHi#6+o`7e=*3YW!e4%dfQ6va7~Y9R|3B zcpEmg{O1C5w>Fwp>K>9h>uff;>ie^8AmDv#)}93*4@>4Wwbdf_1PUeLYD#`@!0Tcu zkT(n8bLctQ1$ns3v|v{VImkGEWHj<`V|(F8LbYzQSWn3I>O?HRo}^7*#eB>M8HXvO z_XpdHYBiZ)A{vHPZA&5OeaCfw|7hKaD~_+otjbJv_G&fI=9746%N{P!Xva7^&(&h( zLTva^*W>aImPZC=m5&=!y}m5GYvDIAX!Ii4>uOrx20s$f;4>psb8m*hj`;idi+(uG zv7}5fUraqAvoH=U-;a+5k}M0so=kvjJs50F4a+)*o88{8FcaSkvOsyqlls|(#3(zH zGierlRoADAk>nWUC2W=O@+QzmBDImXAGB`c7*68fx*HGSd^*Bg|9a}!nPw5W0G}Srp`jSGy9!?hhENWgvy95*q zL0J1EO(Xcvnz4cWSX^R#JoRL>Li@EajIFRP7@}QUPDPkYgeF_5GatN|rxv??Ly%#tuC_w+6 zV(>DB#^mxK7VdT@kUWGLLfPwABI@8APgN1WFc544QTgb=PiB0x@=Gpfo!8h`KLo%p zR^HQO%E%n;#55UQLlo<4XJNraPP*Fy=yF=Zy>J2YOFBvD$0Sn2l1CFbIKBSbgEB2! ziSN68{GH{Hw-Rz+6EP>r(#7nyq)M%!Dz7?!EQY!_Y-xbR?_$Q@%zzS-Vz%Cr&0l+K z*m;v!Ou7q_4Y?{Xa<8JcG~) zW^nOi!@jphvVmKrhKga5g3oXA*B%F&7DBV^oFv}%p16pb#s2;YxR#5`>ydD&b$)zl zD?{mPIaXj+z2<*UW(vbo8a!~1(390xt+m0SY+5NVNfY@k#%>$1GJqZ0&H31bhP^w8 z>gdQzkFOtZ{v-&bZYfNIAJ*x69`qB%I2j2j{@&SZfXs@LCvuR_??dt&!aZI=9bNsMpx}oP!V|=rUBA2($ z>ycMua**7uTGU*+f7S>I88#FhPU>$94joU|m0dJJvWbY8!}mboK_1C$M_AmqT?m&V z2IFPJn7(kOfbejLW|Vm!(@3(r=0!F2Tiv?R1}s>|5u#8E3rOn~As>?}`MSPr{quzR zeDIR3&zVW%Na5Dyi$&f~)}vYDDSN?ymgPT3Xf~D-8~qdi zpE~!!*Vny^-l4HL607Jf>eNK0li(heX~m-_aDuD z(L$rby21576iF39y?SGPhA-=%#Qt&qzg~dRqqBkbeTB_Doo`V0ox9-9yBO6~KQ30Q z;yza%-y4;0%0)oX@Y{Jxd(QPVO#(!8fpklz^fg|8eZ?&gP&%_9-s5RIpvymOj&@%v zK#eukp0OQknC%I>^yM>hBbpUTX32!3E!y$krdFQ7*~o?}a5=}rwSi=h&@9%B)l9fX zqPSzqOLK4#3~tog?aG4?aP5td>EwX2B#q&8a8>4ZMRvUSUHk7}c?j!q+wq!r=CUTg z)U56T@3-+mx2oiu2{A`qJ&=0`@Y07&Y$p0g*uOFOSbpph)NZTRR0B`zty1oFL<+1-V{>mc&>gLGuM z7e7GB-+jDk&TaVEXGFk+GZp;i`?ETu)s8Bub!%aU#_EwX3@elK1EC?q1?^LN*~|K3 zM>6{Z0(IeSMh982gKZD29ZdqMw`i=&=vly*2?PHG+e}X7BjlYw95{lU-Wt6)Vf!6@ zuvll)-DqO}O=CRMy$Zfu<-B_aUj`8>srt9Srg167@AgaN54&Ey97Z-K^)_N2+5TP= zGw25SM$@}7_Hzym{zlf=Qpm|K)p&{w16MgnbJyRqnH#DeI}aE-slypR`STS7Z?Ed^ z?h|eXem*6-Fr7N~WW8Ww{*J-e-VZK`tVqK#i`H+tb~?ilu~;DiZ@_x|vU4u;p8*OD z3`HpPQoQ0%QB$uAI15-T5! zq^sTOQ5kobVRaDP@9#dkb`-e485HCK?<=uOnKt<2YX_^D0Xn|owyft5aq>enU%A!> z2$LFx5py1Wc9EjOUyXNPhHx6XH)%H)VZ_WkZwLuA*b)c04$`IcC46iK1$A8s)%Tzb z%(4d@VzC`p4{NM1h!e(2zWokfb2BKy+UMONJVKTdvr~H&9VP;@X8a9h0}zo=N@75|yQC42?rubyp<`(H)*0^a zJAWXL&tdl7Yp;0MyVl-wE7dfy5(NrqKwzBSN(AUP3_Ho-@#R7(qZutVfWNF0BB)2> zM_;rk6&1~XLF;i&_S$o4M5a?YTX$ueeK08kPy`qc%02u)jq$7OA=Xqgej+M%6Pe=N zJ;oE!e??n$4;)^Nh17Cdv^bpMwiTz@-tPLYRViD9LhdY1CQ!{9RI7zUr3Jbsg)ETQ zq0VZR?)G3;7be=A-g`5dQ;5XTNQRcrVC8T_W`0Nl8uu7>|bxHJm*Ri-Z`J0X9(Pi>`>YOIFsv2GdQP=4MTq~c?Z|}bJ>MU8fUv-=6_S^5?F>%qS7c&H7ib1q-G`*w7?zU51)~uG~S?-_(&B(P;yUof6k{p&A!6U;h*SH@|u^`o>hA73) zEycK%=@GTk{E8<)LwXb!U8gyAJ<)_!*#jK8;w zCJ4Df0&)Lv7V;(?#X$!BP77LYFl5M5cKFrk7ci!pkfrqI2y@(gcmG}yiIoVgi~U6A zB2~vx`3k_#K+~ovwv+?CHO(++Jg|+9v6<~oDzgw3{r|8Ph+eq}L`8xxA7kFAVxANT ziJhQR1EsLo{g!z~7e+?3bRHJCu{r)jEaVwMw(~_1v#XkVH*#@57%>61%&^QR`vt65 z0@L1~$lCLLs~@8V@4wM0axYVI)1z+PTj>3LB{ID-owVA)ID&7^D`}rpjuQN*@)aaP z|DbA|w&+|+o%?rP-~vz*i?OEnJ(g%>|Ge13O_wQHVH6}_Thtd}}HH5(%#4sQD8-IRO~poSJ9XIhZv3oc&5 z&!;H_j;PA#VKt{s5dOz{`75~tQN6!u`qnnDB%7tiAT_py+sKSX&3hV2vfD@|z2f9T z_U==4q+drdKyo^sdCpi@3kD-yZ{i^^*F7MEum!lr~^G}{G$(IrHHD>R= ztd7U%{}^_m1hInDPCSUD$PRaEjeZ1yZQ@zqX=Ei+`R49?jJzEmOk=l*r2~B5AHio8J1**7`--T8;(P?ot?> zMwlRV!_OJz0i_G3+aa4L;-uL(YYK*#_WLtvA*fYmqA1sXclh3K#^`L%>9*``9u&`) zs%Fehz`9*27{RyEG^uRv0!yG^ZORjIo$EgDSb!qL>LLI_e?|$I##nfzke0PTP3}8) zP6I|O%vj2HFWCPM3CSC|QvALoDX%Rg(E!98YWdW!X9;$%!qlEJyr!Sj8}TnZ@P$C1 zQo_Y$G`jv#<}dfW@+4vE1QeiLo+$f$(+rWk3@_IXzK|b;JCRG2@Y<3_)`CmT#s7X75P8nlDr6PN##VZMhP} z9!kDi7$Rd)a9FB1Sv>LnCKN9hXPDzj!Y|yFkyE2O@yn2*C)}xa$T2H7{rLH$YCypF zITiJ0S!8F6o);P|j-ay(RFK+EL&`YXBsjuM#G+cD`;delUN}O0Y0|)+*e<03Ud=f8 z@U*f;wUZ3)&*Hi-)+=YfLEJNSMsJu;Z#FqzwQd=(3BaOAC|xx`yb!_dDTj0vH(G$s4`W2Te&#o%RQX^#$N7V=V~i9P zawN^+Ec0ZS+nT!iNK=UU@q8Y8-&R@1OE5z2F{$x^AyrQ8rJpF};v)D%cOO6|B2*5J zsm07L5PisF5lESP{kMX8-H5sPLDU1l@{`?~9ui1C1@HB>MKz@G{|%~DFEt-&Y`)PK zr4UR*gQBB8n?eCaRHA_|;2BIH6?@eSj8<|fcf`vD*8A35uU66=&w@utJVkJ)zr94< zYH1oJO5#DEH-bIRQ+0Z{aIi0a1c<&-;8IOyT7vl%KpSR%r8kbxdhBD=@b!-FMkE_E zmVkl^Bx@7*Rnhx6@%J}hp1Tpjx0mBN>`ok&@d4H_d9(% zXyfqL$nMH?j{UU_%zN~J4%XZotwD$e8vYo*y&?X=}uUm=%6|=w4Z0GblG;(BPE4c}ED1qe6w!)-l zGLRh*$v#8WaMQb=JKeJ1e-Q%hM7o+3UXMdsR8|ivmAFW9HIG$!M80G$VtI zs7v`1c^(LY&b}nMcCGpiJE9P|1_W7ogG49e#hZq$wV-Ahdg7CD2P-(1iJ28mdR2dD zw@`n$zdbgM7&vLUV(^#4y-!h2Mfq(J2&bF-Sc=0x%mKZKFAs*Yg+Ec2nv=AauPB5x zaM||}&vjIxP7DFRrMFac>#$-13JtGZ`*hKfeG;1=r1}Nh2UQki=-d$ z+v);meCDifFa0ye#)S@HZ0HcK;^qi_hPeymTfswzUAy9icWegds-p(GQJ^$LxeCAE zfI)?zGw7k`A?@~Eo54F!d!G1naWM&iZYTkr%Sr;`f}mirIiv!#iX@-vwH4=mgnQ)D zetsc;kyL6#HLMhu#L35PRIGTl2ZiL2xu#MN_%Sa4^Z|_|lX40HOEowAQGY&xMk*r# zRrv|Q?5=E&gBclEyc<=!UT0DWMIB>sfE z)-*n_O`R#n9;_eZ#$U^p^HtVUQis}?wrMf_Vc+@>8=BuWyXRlhScq9M7@dO-X7Oj)nXGdQv3Q2n!&zV7-?A{lWJod8}-93jl#i$&uES5jrq)1VMwfyKol04T{y3*o@wxbK%Nd>{cE@*yH z^i@kTr$u5;4`U-rkRtr1NwPYs`5m{c%ze?JCa z&T);Gk89_X;${T<7f|{xLSZMO)O{C&D%=pUfF4rQ<`aNA`1 zez>!$O9J^S-UGjc&f}T9BIHJ^2Zf8G<%!gRlb#zxJOEoDq*s~n8iav6Oe8^+^N$RD z;2B^3Z^fHEdnF$4r5R}+T)+D*$%*6@)j|JO&|o(UBC6MXNDdP$6Ja!Ur|Ho-7qhnX z4?8B(rDB0njvH=6u{aCX#nYeNl&3!Z{wBEjipoy=&7b9)Q}4iEw*?Wv3oZp1yu#hZ zI>|6a2U{g$|Bu+BSQ0*ZUi{BY!<0ia!a6>Ao>eQhv9S!!@4Yw9&ug>{C{LbIdJ?Lp z{>8gBLjh=jod#idp`)tnm&6fX5azsevI@1MFo7g#PPjtD87ShLj6c=o{#60st+PD zW0f*RldFT{7$gE;~m81jI2T%xv!RHKIdWqcu|dTf@u zt;QHU)al;3??upmV_)&Rn9 zlXxk+?PfFRr~&rgDVf>o2;x|hC%3a27t>w93XkH$DG|}&3F@D${QE6XM9gcsbV9(d z&wjHjs+QJc;Y#&*UJIx@QCG)MZ;(2VwZK~BTW9+TpBS6I5|MYw8H#oM9K77yJ5c`Z zL5aZ4n5n%}!1mqSq`89Yw>fNqGiKh%uDIeE8rY_23iX$#w7zc8-2dqd~QP6$AYz(iuz zw<=*b>kYyTQwcfgTbF2Q&9R}qYU9m@U3Fvks8zhXNbEmpn!`H_{9s*~Nc zWUwU5I8OEY5lhR1ciiAQ^IBG2{_gK2;Hkofc5iY*^U{A2##la}kz%R|v750K;rDN{ zddv?bq2CKaz+GXV)3~|+WG5b!Zi1TjDNJG6)@?aA)4AXD!B#vsCrm6_Ov|~3x3Jih zz6}2+EoaYV#m=H_1R9v`dn^J@%##2NcY@GYk}D7gYGA)jywt+)px)IrB*U3ZA0o2g zqyZbXvan06sfc3(@jXq+ecPXGN!!|bMYK7*f0{MS$+#RlIBrT4ow&7EIUf+VMk;y! zOmnwE$^)aB??X7(2|g{d;(6+i3n_JAt&HACT+Stzk_At=_rZ3WCRAE^MIxnsm#P1%7;_W)Q3Nf9IJ%ZYbMEtR<%I2ENH=Bf zz&=plz;!3|C_yN7LdY%G9(rg6UmU|gKiFk;$D$sk1MyUa$gX!}(lI2Y#Woq%K?9hH z$+%!~Opze{%7+g&!{#~Zc|NccM8*P_Pbl#2RPsu4Zf-R_I#p&_;mVuepKFk$oH|oF zS*TBDDPzhEEE4YF;eBY_F_`#OUrKro%JsO1;NX}L#^fmjS(-EdVP7uvzq%z%|I0Xc zI6b~Hk-0BTEb(%l4xegQ9Pq`nJ-?xjFc|7D*ppQ^e81mAwg5 zC3p!|y-Qhr{T}oAmP;mbqTSI#ga{r#5)s*%P5tEh$E<4CTlE)-X@Oz_@)psKqu})v zcY!^fvC00?W?LzAgcvK8capwWTw;`osZDs{eYV&xcBZ@}+i|1Ne_C(#aL1SYP1Za ziyHw~i%cQSAdG(!37${AD0D*4tm#gHfkqyh`L%YVTFOP^zhS8TP-f5GOb>r}lxiIs zqyxz#*6z_#Li0u~>2M3-8Uv#eAgK<;LN|MMy_>^ll_Pg%$36hC%1}=3xkXPN z5fKS6{~&9YaV1zn@WtIt)T76C&lRWnp*JbuNWGs+amYYx2lQpT6|%;t zU&{QYIwu2r@cB6;D0)NwK)(G=VeUdT3Il;&?dS9j<12A)fLkoikP76e%u8@m0?FDOn`>e*cUVx5f87YUkJ4Iv_!<=&S&=K@FdBaR{l3{Bhwe< zK^t9J?CiJaEaA)n$~JX?(3@wVSQM^;P%sSrQxUy)c`p;LWRnneZAdklx5Y~SUS$|>()V3cjML{<&`4sQaKTBBB_csAu8yuR~ z@7MkYHVXGJ?P-*3k=cZ(nsC;Q+(JDZd63%!$%|lYk z=_WcJ4#vZ3Edf3S+!LBRz+pnynnl-`Czkl6W@?YQvWN8LeVZLt-;$EtZLNgGe$yr< zv@9)w4&k(Aa@?O&^5WYQ88xA50mNN!QX$?bF;Uje!Fln()2%i>uiDETIEMId#Y-X3 z9b4`974igvb7u@i+^y^@IBEmwGqhhr+udpKU$xtI&`#$cLn28sI{M)nUm)G7gS|G( zP2SDZt%Khmnc>DgjL_JZh!mj0f@!b*H^XJQ6)7;R{TN2YlI3}KaXc6I-WFbJm5f9t zl9rPy$n&+&S`qq0pmyf2TGWd=503sh0?uA5#l?w2jr@wPI5W?tcANC!CO5RS7?i_K z)D$^5AAc@jHas7EpUEz5TPwzPXfO97w|jRzfrO9)m)K;7e|Kf%dY`TT5_KCt_ERrP z3N52tbocPj#L#hnQPXlI+(X=jnoHd0#m2HoL=s@hSxfpA|Y*PQTH4#R3 z<)DphY{iDSXjnKOQ~|$*W5Zp>4RdlCl}}Lb{@y)*iVdRN+YBViX=n-ci;dMQx%HDy zO}Bgkmd84Ls@isl5vUX-K0q(4bx^*>z?$g6leNOBR-*#_X&Ue0Qoh*(ZW!tZqZc4k zeiru4Kf|!NE|jQcWy|n4LE-!E3&DNHzK;Uat--Y=(j!*Y_Y@i=041HZq<+Z5#n7N* zNR_~q#fMJ7bKNa${SIwuc`Y3_h~X?z+r@8l%A&1sW{W=spqYVQ2f?k0dC(Rzr8k5P zGq;7_Gk7~3`lWy#yP9tbX=$eDrgAMnVFQF|b(OsH`Lk(>%6HZ~KxIISnn2^h=&a(V zIMBEvi4A zouVnB-E0ehfC7;)_0gB5M>n~wMkoBfW-;ck7(y5uc!aD}k<`r*fH7gMdI3R9N!Fo~ z7i?w%plW0hDR_yS^vs(q5 zlYcy7PpdP!hCNSW?ev?{ox2{3{#RL8vep&_D&ro5nXn@&lPS@@%dome^PmZ<1Rc)c zz94Q0d>5g0U-ZAhb-!>o0#TYL#y#UeJg#)Pxk)F5u!3MMNhx!MdP(F&5g^^xF=@HI zO**Y7QQsPJal#TAvC^Hy^Bv~C`xh~i0fzaZv>tO11`nb-e@2C*plSJxB~3$Xn3Chl zEQRx|Bfw@*)LaGNj6I`v!MB5)YIwJ&K0_^`?n;=UR}U>2KcCg6v4d6e(K6-l8W=o; zh|g&$GUh4#0RgIfuddbFHiBx+D)zeP)xM`v2nrO zQ}yJ%O+LE9X}VxdxlS3;kz$Po|K~`{22CR@pf~wJnPFZ4K;#UY=Hrl-u_3; zHwnZ35Tr?H$f1)A$F|UdjJG^OYw0#M5bdcrze{}n>d)Wz|65;8zyWfIlUgaLcY8m= z()8_Vp_f^2M>hikF!H)Oa@J|8!))GRX|pvv3;IR_x=kG4jWvvPn;yA7*0`!+l&RNL z@%<8jV+ zV?qj@kh3$r{`z{#+cZ}FP??%t*iuWl)v>~Q=T(1SO&=H_(T%5wiW0r9TNk-)x!>Fr z$jPFhrZDE$X`V0s5;vpY>(8t_t^R{{E_ESSDDJ{x6|pa0yL_o>65-Q{NKTWV)?q3M zaNft+=b%e9ue#r2Fih)|R8EM@mEd6-qCQ&2Q4h&$vw&<5Q=N3Rm+DSc)IarSh~@T4 zC?2F~>8VPV&7clTma}pS*A|&aK$s;EpTm zBIPUIP0a;sxX+ROPD8LBT$jJDaK^2;&Uf&ZSt6kX{`B2zFF5LSg++l`+oUAU-#lS_ z{-eGUZEG<|42s;(3tMN|e$wWB-OgiHyQV5qGWyT0YDwPFO)Fw!L^j}CoTA4YXF1hh zA;WEOp64F73a7ddVS$^l$4!v+B&}s<_sk;4H=cYUR8nvH&UT4RO~p0kdBM0{L$RIa zHZLv*E9ym9U|oKpcF*lfQz0Jpc6zSfEsZoL{mX?0^>%#m?FMg1pFX~{RISA?%>15WQ|HfuisF^}j{H=b0_gROw>9z!IdP3B z=N2C49+bn2pS%(f+=-q>5Q;iPdNbVt!!GwM$EByH?qRGd+8Sn`lfF8coSM`6vxV1? znxFRbXM$S6Xs)H-R3s1QuB3~-_~x$ZI9eY>gX+B%?(@;(2WJm!FOx2l6RXo~n1g-& z>=RPampP@iC>YYFXP)<-$gl)4=+#qdLW`&CevE>Q&0%*_S^+C3bN`)v_lDkYiJDh+ zF}~J|O1=FF&3HAz<#xgniJrbgiw~9`{AQ@~S}E4!8yZ{=NhrD(?7kW-kFUe7$C>Jm zICN7}nxUHS_;t+B=lEdre0X*7;g|0PAoSVt2*LC;OlP}3JJF&qIdPAQMn@<1q3lOc zyI(f?h_!zV5Vjmf>!YQ-wh`vyvVm7wSDlWWOWdxXc3^x!^~y~(wlb<|a8yKnM|WyK z=uYXFRk*Mpqc62n6KdzGKVcjug2rU-TCqgTmK%&Za9iRm)J!=e@1@M8)<)Q1od$Sp zg2bo)Q^T+?(&cO2lnM!zOWWNt;=dv>D~ee_>$zjh=^5C61vnldX~rQ*yn!=e-h=h-{7JipVOMBVm(8r=3-PNq_9@lcQ0OcF-d(?@Y7KPDWn=v!02%RF1y{@xZ^8SIl5g zhxy|@p0z?Dz5f%dS)ZfhM(|;0+=Ro zhODQK_k<)g<(mk;OgMfd;Xgzn%4*vi%xa$LCOmdZaS0PHJ1sKj`8E$?-?Qds3lnEI zOJSDdqt+bfLG#>iedyL5)d%VJV+M>&rvG^W%6jZbz>Hu;n602;7sgJP?lMd9gl`hG z15}k)tg!YCsQm!z)e>Y!5b^{b;@)SD8@=UL>;Z~S%Pgi@xL`hu?37SLagX;BHDDv! zOyv<}t3^H(m3>lGkDiD0&U5K+M6h5am9S3kDRr~Y;WPTg397VAZT0Y5p=I-8c@X@h zp5>hX(&=gAsjpO;kP0DGFM=hEyZ#&{ks}u-FziI`AP;%``cJ3n zP^W3-sTOv2PH^SJcX6R>kct5P6DG@uf5+g~o z{pah>{wufRLK*QaoJgdCwo~`eNE=j($+wMWWZ3Cg>xqv>Mmp2bR_5wRD24o4?nojB zIrEzFT22@7+6iXd4VTCb`#7kDwHrdLbt5))Y>tO8D3Q%CgMowLjNzY;b2bjfBcBZ8 zJ!=R0{!BfRS?feXItUuVf(*JTzL`0?$&i}Mgo;Zae%erx#SO(lhm0Q$!7bdlubi@- z)KqbPw}l<^$DNn!&D%+ZKgos)Av)TzEEBbC1gF36&n{DNPRB@58mt=~~FJS}C_;J40aR zB!rBL$n7aJv(8D=0YT1%Ut#z<%KqYCm({OiX#z_JvCj_L2O@6NtGKXQ?u+mC=#T6dQm<+QW2EuwZ@+jqmy%Rq*p9wpOfj9%VqquSdmg zxDn2#A|yfl%(>0|G5ISFVjcujnw57{wTu6^T0y{w zkV-!-F6{g*Yzyq^>r+Q|b`|VQ9}_!DU1sb%lrOwElNZn#g8%NPyL%Bga}C$0l(Up; z#(MP<>4U6@gHkYT-Ye|qVp8jNHkNqN>H^bO33HlH0lZ`CG`Umv#<4N5c5a`4_wQrL zEJGUUsGGBa&!_O@yMV6K8u5LuQZqC=UeX2q?S?k%fCqJjBUAMsod`5UJQktnu!2iD zr7e}WBQnin;Lg6oy)mo!Qd^f-xtjrWYbdHy_NMoXR?+H(Wf#ghD`MhH);Y_jQwu(l z5)x9PiZXzAE?XUGqGY1z^wboy!@suSe}WWvP}nbeI~gWH!o+7CR|$cIXA)oyG7Wsl zLTPr9&jEn*3JwC?>l0Q^al3{{rPSZ4r#@}^{N;Zhz>b1MQkK5-V?Mu%?h{gouXI`V zMyJd+6}N15?HtSsOBRaRBp;#lT@n5L=_?-Pc9sT>fs40sdg?qj(YG>5lgwVu1b!TL zVFwU0h1Y>0Uc0GNvo9|B+N_6C!89TW)7T|gOJ;DcbdHQIE($+Gg%v?z^~)8RU>oh% zzW@MVt239X%sesAVtm!bR%?}+iKKiql15UY3G%ZIe=C(oqh`Ovx6=q^8&hF&5+p zM{N@`?@nkLLlns8|4PskqD5PKi`mU`b3szWo@+ zVq$qH5qqy;Uw%|SXDOf?5W@n8Sm*3>I>)iVjl+eMUg6+NpcShDdo85l%+@Qd2#X9! ziv~~l-a>}T*^Jck(f6M_qDS}2a(-oh+ZS`IYRO+%dDpa%f(Imbz<{E*MztMSkcTu= z=?-4Z+5gn<@I2qf6ViU<`kHwfLJq_omFMHWkR^aIs-ULHtv%T_6kxvP9QDmw9N-!u zuuJ!FQod)*$#gkM@uqw?k20&^xko^h?V>V3?Y18KA+$dkhZ|MCCdTyX&jI;NoO8raJBNw{T>-XzqsRi4t0>^I%{7 z`wFbK=>uAD`imP|cdYWtBed^#V^w5Yd7?c9nQ3sUknS!a?u`i0j^nrdc=;0VyU(xO z!dO(lH074H4fL%Sf;bb$q3 ztYcWv-|>KFQUbY6%FYg%P{o+;pn**#ga}&q`78nU$FY^S5?HxjapWosOMK_0O^YDQ zj{1E;Ot1P~=6A*2;f&F%=z*PNt1O*^m@7Lid9n+F2(1Y-qAGkuu@j@P)60ras`9LWdFV(=YXr<`bu6dL$KqiP*#lDuNY$QKYI>%f#Iu<4z92x`V zM!u=d{Ca1uveDD`u8;L`2kh(yk|cvxpwrO!(*OJ(lf4rhY+2x>NYnsW|c-l9p40YIAW|vx0oj09DkPZ=%HfSQ35$RAJ z$b#53vG75{aW2V#-DYG^84lY}Mr?MHc)(9A3FPa3gdXwBe(UbM+)4L67V0mubG?x~ z2l1gZgyh5+9?%WI3iJBL26xr6 z;xQl{Z6FK{$j92?_v~}x_o+#oVca^F3H?L2!nm8$ZT5S z?ygS&LnXbF`%hQpV|}b2y@WjjoCEL*a87^Qn^Ut^_ce%53TBNS?ldnq>;y3|K5$u| zz0+#j`#;@)d?1dX2E)0;2>w~{)D&b$V5K@2{{V+>nj*Zs zu&NkJ^W(^CjOWNn66|4nnF#(FEYKAbLdDjpBEC67iXsH{=WN^gH1cSRlgV3iHJ1x5R~M)A1}jz3`{M< zs%79X1pltFy30#Uqx>EQ_jl;nY=mH)0LVZ}f4-XTr82I(lyAFVG{%6^B_iNw6OBv$ zrf2?~)2XAFOr%i`7Qkyjy7?ah-15`Z3vaQy`Rak;_2!x$6_?yBagKaX>4Hu$nTmG= z5^w%qTK8&nD76CXI3$3f*AzOn=(A_6Qja&WH3u=}#PrV3uygN%231*bVNds=+q=CF z$0rAS^=`u+{9)JyB`{q!Z%3NF;CXVRgAzaSiMPX)bTnUhXQ5sbG`hvgto~`9kx`&` znyz4q(c3_8;|}$DT^-m0CS)TtHe)&G3m>qvrpMPVgqX9lM(NgUC^vu_hUtewJQU98 zZ`T79!-$=~`9W}UPIk*zZNWFq#7J+YlZu^x$4b)Ei;Hj@I;=`Fa3r(VWB#i%CU=y2 zu^{2aj4$7JI_t)rU53~+UE@2EkZ+s4C4e!~d)z21-Dk}b$swmPx+={+DQ)4uGAPgu zi!7tHO(`(82;4qA~n6GQF!h88>%|wf@O#A$+@O4xK zTvv6lF?c&RHQoO_qplOI_Un1Z>@qijSO~k92;rc|%0Q@DJh}fB#sg$s2O>FTT@QfTbT!=>C?G@~ja>7}@m zdy|kG?Y&gLbIA4I*nR&hr^MM~j2>}2c2QHk7G0CjYvAl(n8$_cIQc7$-o}M$tLCI8 zvjR@j1|>ryt2cYnm#-WyW9e^TG7u3aYbj%3BI2fdZqNp$M9spOQ#fq25Cln0j|rd( zy9UT-CJMOM+FcIZ7&Z@$r4_~wz~va9&qi)PLLS%BXn%8zV;eP%Y|L>4bFdrqT}u$0 zyw&-QeIq-+KGihHT0A@bRS!q|?SF~>XduUOpZ=jg(&N#1938w%Q2l&ARik zNiA}si;G}7ZAj^NL@R08WHV`o73`RsJ59`>+2??MWFYpTdhFuaF|;Y~a) z4T4!L*)@qL#r=y9aJd_=5AGVwo_%+QqU@wd!LU#TbunG2}hIu8iH6HVT2H(8&Chcb(cmI3myYS7})Z{>z zfUv56s&N3jH-HUfS8h-sCQ(NWh~#;*B&0^WWe$lxLg5nfr#>>jg(wIyJ8#fvmW2|H zP;O1 zby)>S8rZyB{uc;9R`lI8{eV30=*re7kiy$gAv`0=_jUI(%}H+h?EEnl@!geT`LxNs zy)cQJ&&@rJ3^>s!9Z`jRTKa~4LXv=t>#FJp%y{MWsES0|s7rPOdUd=NPn|aYj1KtV zhkzso{i_Td`y#H&%iM9$a>5m8Qa*o`l&bH?em*;2s)wyE^o3IA%@o}C9RP?iNHBI4 z%$05wHPDo2Y?^VqmiH*;S&o783!!Hcv&(LpKU!SFOYe#B@o z0KBnGvC%9W4*jzesYAj;vvYCef4u+|n#%)ql?dZ}>?}R+y~BN0UfS#b>{6U|{W_AV zSJPdc$;+M`{{p}Xd8jo?=9UF{{TxbZ_@?2UPX04xRc6EM&qIQp7LF19q(Sz@##`-G zVq5r`=H%Z>RG~6w3r!N$#JQ-_H0m3!_jhSRRG$K5A;XdX`BFh=)X{Vx2)Zfs9Ii|= zryFVKt86>k4wFVM(KF-&mE~%h0C^pR*&FfzHM$Z*uSeaN4|IkHftvifP%mObX}DH|t`eQGr${m3M=w9{Ke(N6_Z1ZOH#m zpu!%?2{SG~S<0G!lg9}~+9&TiqS>`JT|YcckndVg zQ~7po39lA-YbipdQyD0{ij2+1+sY3f3sT>c3 zJI6pA$G~H`!k4CEzkt`zdy)}6mE+W=@`~*`$5#2+!KHg~*->&F`QSLSv$~Cp{PVo` zxS$t`@c2sT@5iA#50}t)^fATa**?juE?etgdu~!bK5l={U*1v%fj-nZprMFFdU1vl zwJ7b6eg`5_N(?CmIyz~o$z=T>8m^B$(4%_*z!CA|baW0*;>?VR%g@rU7O`anQFL{b zsD<|e>`UN|)&3y@j?|qZ2LKoRD}OC@iW%G;;pyYH%<7^kAK=ftFgWFKtJ;>zcyB^$ zA&$vX^24z{L1kcan#B@lA7dQEn#KB9$C2uqqDKH7)5XBN?Cclv-3=Pz=`XLRUJPV6 z$|fc0#BwgC>rk}jL>AJPuO&@tV zbz(WgTdWgLo4P@M8JKrl@y>^Cn9>PDZ5{7(@|5Yf6FQF(ow)%Mst^bqc`bUD{zk{x zzvLvaB~?r zexNE1Z4L;%WcE!WZRX`mH$nQ6A5~uPqcUp#8kH{!OR@J#4j|I5 zCZn;(rIhAlzMTR`d$s&1SF?oe(JnA?}0%rQ00F`JPM`%2bx`se2lDN;YShhDc)+4z4TGRqDM9$W4_1V8YxADlg0noVbA+cm!n4)|yvU&;#cs z;t0CztGD1B5j=hwK{AvsJ2e%*vwkm>-&2&|n_W|t%*_$xHKWr{Ba>q1)^C-7RG6I` z*~_8W5k*_nwGr`vBB38B?oYBOl65lacOM?_j=rt&GJWAV(IO%?J8flLH#wD(>{lUj zr7rk!dUiQlS*>f#Pg#v6zyfu9#3Q9H)wpEve4sVx)~lVA8TWr4oznucD~I#s?zH7v z1pl_;Agx3J7v+C&)pw?&x})65>1IjxhcX3q?4fYP{F}pTNaaa6sqR~7V~}tHv`6rA z#!V%7ue*2FFZ0C)9Eg0S61krE?H&EKREh%;&C9*%|`-D{~FCpIttV^^@HypzG??FeOu zeHZ$lV%yC8+s^|Ns_mO%Q}lO{7q)xW@%*$D&m4ay91yqWW4u%`-_Jdb=n!!e zG_a9wmefn|OWxKGqtNHO0Occ!q-BMAWVh>|>MZuDKlr@;9BMfP(F+Y=CsIRsvs%JkGc`iPw(nx~4} zP%vqA#COyg42(>n9SohySF>1ETu(0h<@R{K&F43mrjPA3a8|Cp4O8-gWuF>SxV7=` zs1z;Z+N%9Mq8nl`ogc2+9rV}R+cRNX+cVYFr2D5QhaT_pO+4=W*1eG(ucqr2#eTkD zPwKA?>YD4bM@0c!E==b(T7?T#`XL|1`tqBIq^};C@8wUET{Y$9PuA1Ex-lw1Z;g7{ zk_sly78tB2vg-ySjABru0H{TwYe5{PR5fCPr6Tr8dAajGY`WW3QSh^FwW2V4;y5KNKGID9JZ)K{KaNZY?P2Q?((RM#l6JdFRUJ>23HkEMYU)8FjIrvgDgH-2D!|TvpmfAw~ zi0yL4!Aqc3#=AWs612=uxG=>r;b_8_wq8qCjr@C@AV=3bMsej$04P z`cv5xADQW#j$Mx*W|Acpz%0z=BZo-jgO)Jfn?zS- zkd$JCLunjS_lYG6P+w0Gz#k1hxEP&bv`)u=O(h}#R7($q zkx)&|%BZAtCuPoJ{82b5CeIn&-Pc{o1wHlMK!}`NYst0!@ZEWQO zm!uvYsp$>64^e%QrH|RNzwf@iqbR@1%x_=T$AT6Amxwz)Kv_*XN{OlneHSa|WeKP& zb5tvo<&5XD{HM>ZsmorUU6=pW76Q>ecT<-?A%xdX3ftx*BDn={DU-dlEFLE9JEy2^ zDf0GtZSa!ZGp)uK_ZO_h=C3GxO-)6BXR?HRZ)38ulpL+$_1N+bKe!F@#%pC9=L zCwn8Npn-PE{l#cW-jQuFVedcDM-IJ0Gdj;%=j{RW=ygwMxr({s!#6B74h>sf7njD%jj1m(8cLTXD>`Hyie&e^$>191#;w<^c@) zFpn~P(DlvHY1_(f;mb%vQIU~cSY$!KsG*KrKBaP)@u$yc_{jv1OE|L7y!txL?-d%|1T zlD%y{#2dR%@Ad4?$K`)@b@RXmADiGbzSfdJ823$5{j^>MYo25>DcDpyS!3!6HQlfup5LPaJC)2|e}X`gO5QL3 z76Gi}zpjJaKFGOGTA-+ikZK;M?roPfe4hqge&;5>XUBQVGaWCoq;}$e)B5ovmQz++ ziV-0GzoogE_Kz}xrml&6#(cayaz<(_SS^ySeDmif3+AcT|sR*$sGBOxG&%8f)CNPjaI$K`8=Tt%M ztQk=zjfGr$qt=JB-07ct6n^q=*wyw2(K87h?H{yqeF6+hF}=}IqO1&P(m;Rh3G_DW zCv=WIwICl>xRrK64ZLC9ym`KCDDMx2Gk-3^mSr*rbky7B?<8GnZyr}U#)kQE=`r@x zO4#FkU1gZahwf+q(LHqAgQ9+z|~4Ph+6r*D31FJkcCIp8jbIL6L-< zf1a3ukFz@gSPH(f!ipuH>@oJsGzrIGq^&w2#b1(?^Dk}W-~LdRg~LZFbV7gEx3-L(6fBGMor%eAX|MpLX&)wcm{_XzW-j2b2 z^_<24FsQvUf5wqZy%8t>r#wWyB8J#cNz3m^JP;jf#?`&af0=ye7FO9DMY9^Be?~H$ zpFT%OTC#9i_SBMY%=%(u2Mb><@hUJdf7)J}&ICTU=}Qo)UKe>rtAz^bd-$PdL&PzM zJoHhn1&Zm6TR?}xgZFYQudz-+zYH$cm0rGQlCXB{slc`ur|^PnTV+H0czs2gd89{vFcV{Ng^ZympaCT@=Bf`BPxC&A~n?4e|N-7o8P`l#vnBM0xVH(<~xy2*Of z+dz~_rTl;GeTP?5OZRr{9V{qZstwH*DI$_cwE+TBB47{#K~d=hqz6J!L=*(1i!>p0 zq)8_vG?7lE6MB^nQUig6-voWX|KVHf&N}PlWI@i^GkedTXYYAtjzvYEIHcP^CDl|{ z34m7wI9*J*pvsaEfbG`0qP7jqY>yOy;?&SBcd`k%r z*Dg>kVd2As?{wy0;1>5%(e3#0rzz8~2e#?Bj z!PAavoc7mK)E?;(V^RkVxet>FuJ#E@BW3VTx6J&9;tEG0Y+qIs3vPaP^?y6q0`(K- z(YwiaLJTl3Q3~;m!7~9R3z90bG(K0aUgHoKuigvwGVw(rhmxR19E!H@%re?|6sN5l zuDdJ*X1qxXqFsq|(zxOtSFua5F9s#p9-jW@Fd9G?pkZ7nz%L+!uLvo3|KykGKD^9H zDb&GlXXLAK=WGD)3FYM z$d%G8S}GE`qSD$eQ&e`kp1DwaAwETS-Ln$;FK*ZH5f!xN`fC7UnO{;49>!~OoR*G0 z0kP4%nk>0xt*G?JtDMDbtsyhZWQ$ik_Em>%ppbJ){*sdPA|-Cf;a3B?T@6q8j--#X zVuYM`&CSrih?g}F@}ax{DB9@rOehx62}8oh)dys4T;KEt&%}g(tlRc64-4Y^K~ znTi~2mq%q{KJYHOx(XMhq`ydTx8&6Rx~;2p0gG#z3Ms#E{M!gdBwOd|n!w#n#Br3u zTeE*6^4e~C&;(`1x zfD}7=)@*$!5bM|j9(wVOO*kOSf3D{>j+G=(Jxz6M!gN@uH2TAW$ulFR zd$!lC5OAy2aEe$dGy`zV}CwH$7;)ZJRWVxF>s&gx(f>zEScfgT9o+!H3F5jhtMAVmq zG}EO9!96;PU#4-K&tT*L(FwhT#pis!le*f~=c&O`1z(>wyp5*T{DezDKUAK(V=-sH z--z=fo>}&-W`C6WE4R@rL6K^jpasUsv#&q~>1A2U@Ap0)P+`JR*5b9DlAWB_2`E|H z8$a6TipRZ~my$RDRS+%HYExPvy5V*Jk}Z_inVR4)I-{#?RdCwokM; zF~Eh{C2uFSkL|*x5AnC&iDPNb2f+9OAm)7dfKSuL7c%NpUSGKEnQFn1+q)o}M(4=% zrJsGlRvk^d+>QS>$bjeZkq36;5x?ql62Eg|)Jc*hM(KPSa^FJ9@B(LB%WEKHaC4di zp<~BDE9w3b2>jlg1z6O6HT9xZ;0;5Nm0L-%Rum*^J}Pfu%2($VkuERjCh%n9yqmsG zPW5Fa2qc+Wp#DR92g&+QuYUsoNha;vf%i?z7XK!DK9w(uacf}&;2VI+f|WG!w-T5` zc=fU+g=DRvz=MTK&O-N!HJpXsbX_J9D0?$W2Hs_$wP-QO=+2zj3o(Kf z`#k$ne^A>hr?GkR9_n)Zl@o1F0(F!9qr?oYs)EAxM>ema!gf--+5Vk=3_TtnQaQ;y z`Ovw+D;ec{AIX`FkwRmCJC;{GuMWM@y z6*pPag{)HUf3RvYGZh@`!xmS96H-wEvz8P5`vAD3zuxqjMzfpAU)Z+)4IxZ?}lK=b>O!J*v zqJn^Y2c2|TFY|#HNUz&jNtL$Q5-5(H^U7dzC$_8Sz$8ae!-r|Q@FVj?Eg`9Y1}y`B zIGj%levgW_7Yr2ol=nHT*>|a*M0uy4CPd%#OF{nnsKnQ6_(7RXP`$e1ZN7 z<}BZsLeK^`g!uo0EpSj`jAd5WZ} za>DR&)-xn)t65NtV4ogFS)@vJJv?pr*!8&$6A&OYpRUS=%XS!&wif}tWHzC3-i?@1 zO?8~A2Qh>!TM%}9KH^QF@`5d0*1kw_boeZg;tm2^j-@4qMz@o09$uNRx&YwOuJ*Ym zT%DG6kx!I5$P~>V%KA#WLAJMb%fZXhhjRAzYFkEV6d=LK(xpFPTm;BTtdc$R`njNh zd_SF$tY=M8Li0xv;RQu8IScNq+Q!-OA(T-dRQG&=ss(pJE(-IN$BCHW6q%F?u%k8q z*#2-3=NZ1|DIl%F`b9^++=#X@)#Orm)jcyng8qBjIt#kY^*m}(W-*g>G~Jp5~*5Lktu1zU;H3W2oigQT%i}pTRp3U z^0JKnPDrReDfwujQc;8CkuSv{#863Lb?2kO_zl2khKex5d^|4SQHliwhq4DZ>3+V(zU+*(hv6H}7OQR1Hxre^ntPz225eufWjgrzRoe*H$iFGhTg;zt7kg^AUYd`t2JWj8 z`@AOx%#wj4rpM>0uf=1UjTV1u8uKRYc%$wLo@Kw>ax=rs+wS|4KY0tEL## zkm|RIR#yxHT<_MPrTc2tIs3QY({Je~c7;?{e1tH!*XAV@gO*F#opn}a`(C;{Au1& z|13OhNsVUW!d%%9(ugfvqE31}%Aj|*P-_C3WZmuO$K0g-y_9xA4&M9U-CUn8=4y}u zcZ1yTJXlvvi$!5)CoOL%&kvP@W`uYUtGg(DGGZl2`6lvOeSMeV7v_H9BKW>$gGsZLA{O8rtv1p-gcF&xfDc3dKY{X8ed~ z;FP2vKu%K1mcLWnhT1C(1Rx#{Tfs7U56=#b+;9<0wBdlW?ek@?&?dVX(!$g@#Sp~_ zHo5?1{%{7^V;I(gsK@#9Suu~7z$;M{bLSmL*v4`_uyd)d_%7WM%?3gX0SwU0&vE9!wZU`AitX{~NJ+6~qmg4~)q1SGYQ zc3+4blqG%JsGshn=Fiz0@}lBw4WmFy%ue=Igt96RIY5#pGWNSsgDhRYw6(JI zt5EbS4z#R^XeN8B{+tZZ(j~c{h}{s)hr5A#`us)Z@Wa)iO=9^m#n~dD8lZ$cxS@P$ zxJ5(8_GJ{OXqGi@v$E$pXJ-tlh)JJ;KMvprHNL>A@f=*POK!5iM*Q$Au z&FWQgOa!1cH>Y`K%jcKB`iXXIw)Ta1_$$?KE6B*aIn1Ae6yb5O__cvad61q zpu%PP^(D$%_1XLi(ObvJ`c_qdPo~{ ztC{|jKrcM+KU&rQDElRkr@h_Bf%=FkxV+u-&BjnMH`c583f;s=9Ep(566qSk9!y@P2w zVI>*W>dTtR#obmS4xfFaf3-xUIvRKY#+A{A`w_@cM#{VR0VuKbhHgK9rX{;5hFt`6 z44fYo><=&Wo`T~uI7KjQm3tLOp;B^PF2GX!yg%pH*KIV{c{TT*DFIptpyaQz-f{xm z?F_2xntj0LWJSxz+4g2Gy{g33CLV|i^LN02W*T#&bwxe zXH<~U%lU3&i=%jYpmEJaPuM4bvH%8;y>3A=%4cb1_i^C0;5KG4_+RYgf07>6vJpT> zVm$$rv)KdCBabZ3X&bGKyx6u7&3aHceZ8s2K3%T=s~T)3^n2Q4NV)87;D3h7)jHDi zRf7DNA^9R!Z)g7W;#=<-OErUC8o72Bq+AOU@RYzgO?0|)c5XfsyOXUDHKbv zbPWNWZ2;QKozz=3+dbP32D<$z{7NmB>HIHp*2g{gKn+>-Ed(R=&(@W@s%=EqrFdN` zcNBUdR)4`jcOhDTA$o8!!}6GKe9_z$-)KeN1NBccX-cs9S-)?|J|@E4?(BB#}GH47b5da)zSjsEB+^+Okr92vqBBa4f<8U+!LFa^}w@O{O)ckHX@Wv1+5&2 z`+PB9!=vyj1xi4U_b zt*VH-l;k3m%{vm@S2cB*9FY3^z|7~Z84{{B3X;vaGL)q{#X!Gh2}-VQ;JAxa^JVEa z+Zg}ltCY(V$ajDkb*`IiN}0JXASMB30)~J`kO*D!|aHc%2Pan4aR=H)IH#ijLq6 z7C;zsxW=4u;rGk3LQ6mSW*0R$W{cubD#`F>r@Z-Rn}VNb7qwp5!@>Q06ryuUFD^`r zo%+Q7*9+BF0Q#t@^et^;azCg8sy~HN7kQz_PUVU(cs;_LAKa@moXBOiXbkV{Ii$x0PWo);UYQQoN?U_5X;BEvnw zSUH19D@qJD-27^N;b+ipf-U)GV|=84QPKPaQlRw73M{5zBILYJeDNa^;@F}UPD-RX zlXh9hH+|HH;Oz8~=qZ|cY)MCc&cD>T1E-!Twt<;wH17Yg)g*4RX&uFhb~no}l1iv6 za*Qz~)jc(F>uRRjc_Iw&A+*P;pAn1bT$~652Lf>q3G-Qy7H7;GzxozhwlWw?<@fVV zsr8MAj+8=uc<`7xZ}#XmkF)waq4okMDI1A|qapplN zvfIrE8O!Mw6P;j+7I(PTA>&Y|LmL5q&4EV>_!3pWc zzL)Nju+HMOrY3TX={|b%R7=NQX?>z-pX|o^tadVg{KA7U&I#ClVpZ=2vSe-7@xkoV zgR|@N&xxzk+8-mY#GB^R(je=8PK%2DmYMQfddaXf2p_c2^7y?9656^h$aMxW}g!+b7V4EYrp)1B24xGAJO zj+vUZAKEVaa*M(s;ZLzz0>83=U)|VVMepWNN$b#H{^H!t0Rl^^=$1ETD;dw9)LFx9 zG11TU-E}y6gCL3} zhEHiH%XOsY6IWB!GdeOg9Kaukf9a(RD|IM-QGYR-7xk*ejn}jQI{Do+<Jk59D58IkY^IGmq1Rcb2Ek#_6;-G1cQ$%NIVyJ^K{XR~0`2H6?m>p;ie{pRZ-n zY;@|Ea5h&nj5NhnZtOyZSSBm2sAmq_N}KSd=mYb+;-O` z)I5caaC;A-u&;5o=?Ki5%jT)X;jSkVLzb9YvQk{gQj$lZ_$!15Q8_!n#7jT!?BSB7 zJK1qf<>k9>Y?<6b2vXTlp~swS2(y*LbapiaXKz zsqH)+*qK{)VdwS`&T+0Bk%Vy{FbI;<^+hzncgd-xBYh_D@!un zR~>5wr>gq3KZ&2ZlMTUq1{yFBY=n zACYm?NeeXoiz;_X-g^p$V=jRc3ON(kD86o`M0tS#@Gm&bm+P8i>dchKrycWaYbva-n0mL!bic{6j)FJ^yNZZ? zzF2n(gx;*tHZn4e9obCoY+?8$%j8}4I7CK`(=luzZj}rNQiRQo!ne`L24`ooF^F7N#Ivg(A53DbU z`arMvz+?LEAvj!ks};04T=*Brj!S~jOp!^=vEaxLKJg{R+_RWpM`AbgAvz<_&;IAP zi94_wq;Dkr;}`Q|+w`$be!+~2U#lbIZG#&b=yxM<|KRA~rcw87!C)D65dqG;3X9Kb z#`5YyT%xpnQr?YT^dEiN`tfp1>DKhk#by_xw19i>;uf=Nmvx$4SMk=^_B(>JcsMVb z=$it)KU*$_RpG|+Qh3Bb-=*>FCz$aF^{3$lEj^C(oT;XQfEQ% z{}t#>RwD0j@dyHd@qb?+|NZH|*7(mh{_76^Ifp+j@Si{Y&maE(^P>Zpnfm&j?wG?13}PfQvd(} literal 138699 zcmeEui9giq`}cHObW%u42&IKXC_;9HD0@P(mVKS<`;3!HNRp6sM97{!+f1eGOZH_j z+4p^4X6Cu)^BLdgd48|w`47I%>m0-9UatFE-q-uO?vE3ssjhV580#?v0&(K5vci1? zf{p=!pgDTsz%zbs(91R6>ha<-OHP!9L5YPIfgkTw`P2PLt$Ee+OPAyxT{C38f6PJ9LHxaT z)R~0?_gkvw#rc`~jqeR}G&tjjo}Rkxf8*~yX2$qImCE{x%Z=~&8{b_uC@6kyIYA0f zWO!vY_cL)b60_|~>W~Uc#gP44H!CBWEDQezf>FPI=rC^Xe+J)=sa&HR5dLDg`JHF~ zGeYjqp_KppfcW>+Ys#_VuS4qpodjv(zl!*;NBlQ5s6OytMf_J0|1)dwh4?^9`SxO1 ziEYD5sPDSYX}6R+s%J%#9XnsOU2GWTI7}JvRF|4;tj6->XhE-|cMecKv|NpA-k_r+)&xouGhS8?o(QZkA?9aRx{`jz zrgqfu$4H>u=RY$pLwW6*{r;@EPE(1v<_TO!^gX1_e1Cg?r1Bh_jy~4eaz0bvEn1b+ zL|>P+nUdiV{)YRab??ra+(Che4PfI z9G_ZBBZbcTsqrRwqTe|u`)!rb%vi#?0^#X;b@Tmosg705T2*JceLs49Z+9Crj{qq#o=5OZSD#^ zligX`h$64qcufPbDh))TlQ6wD zWumP574fM(Ca{EauaA#Lo#>q+ZnyV2FV~3u7vCMi`8Z`)4C~F`T@|IopNSi%D)3<# ziBeQid4c`>O5b9or?;0){WdGaYnFIn)^aV|;#82;X31a~3ax}B+XxPzR#$)zC{@mc z3ia8WDYbUX*NT?9E?7&FqByI%Lphf7`IrST#y+S?$d?pzuP#6z5aJ?k8>ByFMip<) zwYp4V`J1aRoaMiJWwI+YMo(;_D!OTATEjuAcX^Mr(adiYBc}g`V}3f1hoAp9kQP;?`Ak`d-x)h#;**$F=GJ^9)Pt-Q#w+Y#io{t#M;X+!f4IyW^0&SPgBOpy=@rbpnO0ur2vEG$zs>7 zHOPI2xx9i^4m!jWA!%14>TlCS2yyfsRTKRkK6Gf0!Q2NDE~3$TE%8ghAG>w+&UnL1 zeuIHW&b2*ej$Lrx?2k#^SslLVs0wI(RrSWn_r0dKv%DBC9F+vlJ9WqcGQ;PT6|Hba#P?Uc}@n$+U1i^(RC zQZ%Kg%3~^5ryD>Kc3L71=8>N^#|KfAVxeziNIk-Hsx6dV^cJHR3BRN7;dVy*PZ!F5 zbygROdF=t4;yMHD1#Nxp{p*oRqE>}Lve=#EQo#?5n-E0$Ke+%Ofor{Ks3i8}X^=xW zH{Xu5N8ck9<}U|Cw`5%93-zI;oR;Ar?22-Kj=XF~?=DTSI}A3ag^~wOH1amw8!5!|}zCq$;{Q zpU!4%FXi3e5lw%NxFIZApx+Du8WSy5bbpRs@23EGyaclG_>C$n4?ZX#Cn-}i>|d_c z$u_iCy2fy;TP@v^CPU24PO!VqA;00Yao_^uxD6bpZ~2~z)eTB1 zj_`j-mFBjtk=90PoSrJ1q)=;u>y=&lFr?kwRFFMnU54xX_NaNygCkCyKBc5LUM76) zJ*nYhT-e5jQVEo|UQxsLye~jlB)VrMU+1*fg6rl9)c9~SH_b~f14xhiiCUBCN@(uR zNONOWL*vST&9uz+dTlA4g;017>6M|B#T=%}&q-)8f!l+9XS;ji)e%Tn;Z)CLitZ|$MUfq7R|sXJzpB_`C6oIg zv{8_Q?W*bO_(+Nf68l8iTeV97CpIQ>hw5O3AHEDbFV7uLW9h{eaW^l4{`O|M&&?xQs`2!QUx&#>xukf9FdY_p|juHcgU)gZ5jVmvhfYkTcVS`_THO ztGli9EAI7QLUS^=7R3bEw2WgXTLSQOGKJ~<1$QZimb(BO+TWzlW9{cAW{}t)7A9Im zS`Ua*UrT=yukf+?oa~Ht4?vy>uZ6wF@&vU6>2Nj35G|6h^_MVUD2cS}ARp5-D?8BE zO?=^F;y5!GYIpkNL-CXi0Fo<)%BjL=@>a>vf$3|MeGNZTQHCpA`IB%TQmQOx)tt;0 zCgHtHULmcwE+WHFr^CxE`kJyP)EZnqR;4e-X^5B?^ilOb84ic0@+HQg3b8qY`_#kS zj_)6vT1!Pj4j+tCy+j(DQFOWTy2WKOGO7h*ZyRiTlCtkpnZKcM^Z%I^kg(|}^LFw_ zZ)UJ84h85OOW&nrJuTgpGPbDh2RdVAtG`PEq_H2M=o65GgNDbQy^2WQ3wbHUd{5;a zrV2IvH9Rt0jY|LksEps>h@r*OT)!52bx0?LukoTW+_kRN48?8|wZ*1s2spjpD)Wgxd(oa3nJWbvMx|dXJFDd>QusghoPg4X;-xrc z-^D&7U^*bhUTg@!mtcEF${55+7zN}`ZjUFHOm48(yA1Dyq~*j2UoVh`1}MnG(fBJF z_#jQ|e1pqlP+WoIa`wTrh3g^&0shHv>n(BXYj3a*Bzj(e5=XUv?@3-;9X%Rg*+_dSD-P;Fc|rNBYK*RemCO=oBR|BvCZV=!b4V+TZ4m+p+I_` zdja1bKlvjxB#j@V#YQ~}H5L1to}jb95?$p*<5nA|(mP-8Esd{hsY5}3{tO%lN4t$? zH`ygnygeXtw(IQ#b3vANhIN`x)#(TK5;xhe^QMWkiv}`TsF4r*XSoOi$Mfly^<5X# zX+N&(74B=hdQCx&C!mAmQ=osh+gm74Fyf{$CJ*OCH~SG*`mXcC5>wgR(SeNb9|2_U0yG7|Vj?z?=UCP`s|Yz% za4?J~!9TjYa~HGmeSWq}S&IfD4)$&XpeYT$UcIM|P(<@qRS>rd0KevdHjwLt)d~$m z{L2>vSMKnSFQ^IP{4pQAhVM4%L;^R>2t4msonAX+7tM#DCIsq~uB^Hor<@(Dv&k%W zHPip_VzG>*pH_3ph>u%|L_zXp0 z1w}Y;nCVxn?v4thDzJ^1W=>qJ{h{KyDUJ+5M?9sDDf{`S&;C!ev6x&Q}`vamu zUcyJxs;Imx6Obw_b+9t6%oC0s-J=p?FR3fcx{}-Ic`O|P{^Kigni%53ajt^2vd(-IF zFZs6IN8ao`tm}RH`AS_Vd@F$O%=@TIE=HcNN_HSSP-Q&3FJtFgewUbFV)*QhxMtGq zs!xFy9pqVD)MDhk?V`!`inL6wp6QM1T4P5E)^P|bk0!z)^fC`*>dnN#uAvU*O@^DT zcXZzmf+`Z2-_r@nn-B!+^$@ikRNZqBAIphv+v)Q$u3R1W1J%pd$#2_h8;7+g)Xyf& zt|@B}=7iNhP6}y?|2w zI+x+}IM%Su6L(6WAp3Cz#`4EAx$C<$FWd8oo|VWYN!-9Th0@&gy;`I5l!O1n0~a0Q zm|?nK#@Zm;hEf?c^)KqwVQaKftDrk4YIIU9p^CgZ8HZhWm0ycUVsJDN$xFUE88O4{ z&Mx!2i;b$3NUBm2?75Z~1?TEr9{2ao)YZt{>eAICZ4~I2sTcOmk^P*Iq7AnwamBy` zyVG&WS^9H>ZQTj8MW7?-AsBOVoP+1HK~!^gPHvN1d2#VwZtBU>V2;{q z$4W7yJly=eGPr%7rxawb$!ATBmp$#-@iP{J2>WE6nFVF5v&I|*r>Ui7?J{*{^-O(X zk0#Rpij(gHxG@Lr4 z3ih=cp$(l6Qb=}Odxh6+_Q4O_U9qOfchiJA)9~E#xRjg22s3(lidsDBy4>Ch|tzJ5%?Z}S}s=&dT0(Qt{{sCJb)R^8@>^zh9ORx(k?^QKgDVEVZ`FMuH?)?8+o`RCr%NKy43C8WN;d0{*bQX4> zQ6?fhLtqIRaGpq|6B{U#*s4(v7l-{7D+ZwbKj4fEzi+0sXyRX{Dn=OK(f zF9pZ#tG>eBH|M5i0EU|0Z_ey%ttvW%Vi3gBH`LA3Ydtt5 z`a3YQt^lVGN7zzhMeZ&2c^vk^4u}Jngs4jqr8%+8uxBD}Q~5-%)R*FI1vIdW8*RFJ z1`EsocEG7gR}Zy!A@>PY^znM@^rE3eY0)K?zO&HmU}}Y#T$oP$Su^p*Fdfv~z_buk=vQmeMEvst)CcM;9p|%fg4wM9s+lPdQCYsxFD?$S3lW{u(ao_8n_QIXX9cMH7%qV>PT0IP zF|3&eRFKBRv064Z!32>DEQ?p6fuhubv>%HG_umCD{C0o3DJ#R;g8+J^$eFpm-T|j+ zRY4Xg78R(Sm~Sua!1ghmxL&UUa#6bMQ14ggv}mXiB?k)5_dj8rLJTDXhgHQR&pPQg=mc^lOrN3M{bZ+`ceN zX`wk-u1%FY9;KWF(1?aJx9L}Edx7DZaHYAcwwbFoMR}%M|M@j2=>##t*L!TLhZn#_ z4>ct`-e(l&hj35a6SZOK|HHYC{%l%K(QVFbbSnp)hN^jPYEV>DJD2`X$I$gt8YVWu z)=>I8E=(mDKdxK-n2Hp(bxClvUa$sT0618WpQ1j0wn94XvJy{fQh^F_o_qVhzc1_5 z1e(?^3E1A=p?*JJn0{S5M`ayHoBPKLUD&}*g^!q+q8L#o}zd(F?@Ew@97?GY$fLGGZ;c>){UzjSJNp8ufyboW98!Ml7|+e4NN z;^vR$l?APDd6y#U3C1#fJvN{>uPm=Z5sM`2
pWt4WJB5Fv|=dZgG7yi9u{^F`V zqsXPl9)|+{dM4%nZ1m{oyubbu@NfF_g_ieEUGhPmBkW8E6#qqBnEU(Hp*oI&x2{$u zJ~{I!S#u7K7rCE0jLNd^`<;`Oku%ZJOHk9(lOLZW1K9EU1heP)w)d*!@jrm)#P=_d4bmP&IEIW_2c;H1#XH zRP=IMtNu=LpfL(ry;1q;FPTdmAt+1xZuvW@=z`moFU>wtO=g=(@QmZpj}QcY6d1azXJ;;(s|me|Ov*vk8L z3kOidO1f!I47H`~_9x|;@>m!$r%se#FbH$)irqga>QXd9S+>$k^{#Zpp!ZD43pyP& zCrD$zv8hhAe3UtwV@yzpn2J>zRCrDAIP|5}zRsS0WXx*GkrZ047p2DDM$Yic^4J^w z?N^>4ORqwiUww3yPfG@F4OR0y; zm6k@jsqiK^NH}DV!lgWq^|2HnAmR%x@SeO?U5mJG*E|VV%|&nu%GbAr`>-92J`{U4 zcc&?oOxK&yD5kXi&*uq$Kl`JB%ma?0r7vpp5J!D3CrRDAr83{yY`(k3zC(k($i!wK z&K_EyNn+80a*A&)Qi(**w&3Cfb@3Q-m&iplHV9iS5c%YC20`$mn1hz z7&08{OXKF0;%S2Vt%%&h8jV-QiV?;je4&< ztc7{x7cnhZWArK(LTE1!oswyPj;>Lfjbp-ax_5p11G?n!?d4m{!FT?C=iuG`efNK> zRE`D~{hRFHT;Z}+L{y0l2;sZcJ1?ltAVGBoQvF_ebEBAJtElwjwQucTJ-VQy_cnUk zK}4KX4>nF$yP0ICIIW~)aXEif>BLc4xFO`KdE@9aUn|N4|7Q`(7RH9<6Rk)b&Q_(G zhEvM1(;rRz`ARAcV#fX()DvYtQ#N17R70bz#tpJW6}iIk>aqoCJ~~)=ijyP0IZ|WZ z$e_4vc)q_G!zz4@aEtN?kt7YP8~OneY4u7p6%lZ!rzGY*&igI znBnfvxJ8HFM40t_!6)Bh7?XtKfGKyv+rS?h}r zb(bW!*-|mG+fb$zbGPV~`<%YlI6{WJCb+$IBgd~pe047Ooi7}CKsl;bj+pI*xp6ib z@44F&r=+COU6b_e@1jj9i~g3$|IbKm)-VT$dzKZ-J=&{!-1lSNUZk8+P6>_xgdCrY z-)~gk9eiAbAPxX4I*idwqWb~h@$!$~WbSy^2Wsi*q zCt%3fM-0R_fpc!A;4hLO zD6FHj7!GMP8?f85Qg-fD+n;SmEZ2EM$nz+f7N*rJ{nSp)jDyKk!5y4OKK$Ev=LCO7 zbX4vM;p3Fqb7x?&xG>G9Az{5TEL_Tb0;xs0KAG|nZgzim4mH^ZFU zM};eE$^GeB_0_vNQ8k5XnD|l&>bcza{XjP|^>PIL9L8a%f5i+wUf_9^d%uf~B8H6-;?BcKA53UH?EypfO@9bp%vRip~ ztT*ddavQ*{I#Hu9mW>T+>r_J-!D%U}jySrU%z59KQPx!x1F&Clbn2u?>T>pC{^D39 z6v8XFAt(2LQc`t!yS*J`N6fkI((=knO;U1gQ;)QEmM{1fs+l}2D7g?$h3Gjd0{xmR zd*N2^dIi7syzL-xZKjx0cdV*-{Zx2~d&%W+ruo(aqqSy{(5Fy;k6AQ#Rj2RcV}+e!BO~ zxXt{Jz-e`WtMcYK9hmvldV70zZ{?;JLX@&$nHuRc`O#jX+@rx7O9Fa zqWHBhxBR^I^q$Ai@I2|V7_y2AQOz z(!eK5v;eK6=~_DuhZ|xn0p8%3<#x@EqFt$F9EX^#+zr+f)I|E9=M&T0Sp}hhxoXqR zaazJ12cARJb41oa$OQQ3^-oAQue%0btyf4@_>O^KcS7<>0CXOx2l$g}+xep_2^7~t^yhuNEMiw5%d)DM z*WbPr#u=uVBD?#e)<-vTk`HzVCOWEmZZQO1eN^FAv)7e()gW5ciYvVCm&Q3m*Q$X#F7xl6z^go zsFqvEfJy|!H`(BENoY;@KR!|aPiEt5dpC8J9m*jidQ><@{ALlk+yP2~-KHP?i8>b1 z>|&w>C(1HB&hX|4hRjV-d$i^E8RqC*2lcdz;mTK82RnbaXO&A4%Ak>!`y*ebna}*X zY-e@#vk}&5R~998>X0yVm!IPgl2-$zHz1eJ(C9�!kGol#Jc?Dnb4|O#|0Jz>tpI zVn9K!O-RsF^ViYp_rt`((C!|wR--C$*y&wG|Ff6VL7(;9+&a;Od{ZjSPuWuw{`up8 z#Y~0k)3f-Qjlbkq3xZSrek}!>+i7%pL3dJe-n7S`Fzd3`#Fk1>@KkEOGgu&t|4TtEivlV`|ErlG+zc zYWbmS!xE`4tuQ)=Fcg2By7F_X!Jf}d4U4p0O?hx-6_m^$p@g600)qs?Uvs{rcm&F= z7=2B)=P^*F+;WRbu70=!$F)zUZlf=P&UE)C*>YByV{C`Syd|xX2%lW-y z2X_I-0l7KNoEI*}nX2~LDbLw@1Kyg?TnXVFV-u3D!Tee_vAlzdCPki8yiS$6A5nv<0n@Tb2-8 z_aOtZ`8|O)j;beByT5EVLO8EIsWoYHl>Tv7WjSNoSfs!t?66%)k%XW7;~ZE`;!G!= zohPtRRz}=rywROLgpwBVaG%N16E4o-T=;767> zsXjKPNK1v+?>o}iR`t`Pgv6Vcf4oiw2A=yH2;u)E73O42dFPd@q`8;Js_VrC74Fx+ zT_aG{MKHf2sVdlP%w3SG7K`P9X>hd@3#R>q7xnXM;62{vv!eapKTuim$C zxufX|yA;pOY1OC0Ytbd5mq8Qx?p62RKQdqsaZkC{hn?XmMO;-+9XqN@KSj4Rdb}+O z=DeA<(ir_Kkn{cGd8W6LRxNSG=4x3fi8|vRiQ7(A0u*5VeQVh+x9ke+V1F>6p-}BY zJL|sZcjc(AgN^6o`q)Y4JR8+dfJ*5b>AoX)GQCO4$loU6V;9P0c;*5WWiRy>$t*Xe zguk3$)*4N@O!xaTV~|4m`)C>5*W4~G7a?hT!UC~E?*;5UT%!d_6yr0+TQPT{)&kgO z;y6k80=7h7zC9_Xv`&I?CV65yh#SS+$0nGd6tp zua&*XspO?7{hK3PNGE-4umHaj*O(CrY^Ru>-cyRoT+d zs2c5?GQGg|ENa5n>OyOBcwOg7k-ju!_Q03oe@?<_FgT3r598av+-^l3ya*aspB@u$ zx5$6Iiz`hc6%?M*AYLHca=xvhrHB z=1n0tJ~m|K)hcHjY`~mTy*|1=+whUwujYL0LE!sRH_dS}gM5v^2W8fl0bf#QA3~Fj zjaJ`LE-d{=VE!TZ(fVGRu~CTt-nHRhqFI|YI4?s+Ss@#;T*^AT)#L5kPtk&zxViYu zMx=oF)Nf!6dyp+w{v~q6RXEqmZsZDJgeu8n!^BFt1gf^Kz%mx=YaI-aSD5=I}In5W53jM zm1N7&t=PeHUwY~f#Z1tkyH^5tH|A1)j$W>&7hv&G@a^2%I&d-BsA7?;vxFaDzBcX9 zy{dIv?>5PB)$U*yrBrRTQj-Y%!pxDTygLt$NJbox&Rh`RjnJ_es-h74^R@rG^P-^Z z;P`cIGtVLp<<~F;b*ciTRMJ_IYFW>2t5h-0p_)>7FsCa1@(=C;r zNq3#&kMq7iuBfLtvMgQ13D!qUU7`ZXQJl9!J!Z(bZ{~AB(O52dHE4zLMOh1%a?y<; zU&WbF=FOig)|QK}6#6t{r93z=G z_n~zzV*>2Ni!Y|AM2`C;m8QLFGJFv2P-N0NbD=*uL0%J=Gfcxg@s*!d@E_Unfn3>L zv%aA8z_v4?3S6lc7UY%fTo0N1s1^NiPpQC=4wVTJ!`0%X$3Ao(5Ov)rP+lcv*OwCk4a?=_Ay?jDz244oIdq$i2L zAmjNkdX`)P76Y=D^>5=6+G=(T`Jv8&#NV(>ul&8FQ4&pes z-vvEd?N#!SXUBN>10m{)$?0%qCL>*XZFV^s6j(JU=GZOI{)kc+8``Pr9Ox6*Ka=x0 zvwSWsSkR9zum|0m+FlU6DwqR2(pu3%eIs?qw`{pqPf;i)-X1C;f)lAq?09z%w=x9E zD$p{jH3MCDhRpNUJ9%VPz=*gT0iW_HnLr&=65GH_ zP0EOlk^qlQ*XsU?}qSR)hbTiNqQ%_d#}QWu~jB2Lg%ts*pzd%U;e)|V_>Z_ zoHvRZLpLMOxmts@5_jYqIZ2Y-S(KIhN2rzPkW?wp?D|yT=Dcx773j}B|L6K>TNGg^ z0f0oUdKPvjy=^8}yzk5#>uAR=J%X0#`lon%JJga@{UoNYo)?me%JSZF&X$NZXW`== zB)XQ9fAOtPG^)vxTjR4cw|=~cWHx3AiXJmJ_*OAZ@Cwh#|*%M+T9#D=dw+yG(^YoyaEx=;M z@vgzMZOp0W$;&m3LbJA#<=n>i-TKs0Bh>2@)1GNcY@1{XR9#>U^LVOZ*_>GuCm8nW zo%mh&v@F!qnp$p*DsE0cx?XM)cCDJ><$3G!*_WMrI1g8i%1<*Z7EzDQ_umDGyBGE$ zK1B8KC)bfSooHjia*Op$f>`WA**}bj_Ln^cFZ-kWgK|}guMx;v2X~bycRdWxexAaq zN$oyVDxI?q;XpkQU_2e)elaX}$DOW)MNNvRJW@}Xyae4XXsW`%eH5S7*nRna4Del= zat^=zyUn`>9e$;5t|~Wl-Rj+b^`9C1xMrrEg>`fIRQ+N)&1B%6@ij4Sh;RER!_8E= z-o!?f^bSbf3mwH=P1ojZV$^0?ktFp?2@8J`8}f{FB$lV*6?n~4F*mU*&lbVr5?xPM z$G=aUC{uxz7@{K71|s=;w;H>lwi7AULJ1Qe zq3|Ma?rW>A?{XZwA*21!@29J$L8w#3;$px}#M;4a2Y>ZTtU<@8w21W|{leHqlB{(4 z(rTg{n#p*ZtgE3WPdh)q`(WZMz@diQ)0!!sl=%8-uV|G|U0RmgYvau2i?xc3&C`dG zZsvEtJa+h$kzxMhr(r4t#~Zf)X>Ito@V!!qa_E(D(Haa<>G8EE`{5*P%(17!h3lge zZTGa4@^Xzu$2%ekU$3WujKH@8yp>H_*riyr-B%B{ld@6DV04_5GR2&xWO3oK1#>PNyQ#_ zfxYkKjc&1_l>}v>@GR&q=9@97hRz>%nP~b49~o_e5-*Y>kV%_`zrK=5yYe9ih97=? z`nZI9FC|PScG1(E&7>*eBW)BW$HHIVmr(HU2p(tI>V)1ugT-w-}=p zb{e_sHl#&^jz(rTbNM2lyv)VHGdYO_a|A=$`J)BW!=UFNuDa#EJyPf* z=~Z^#m!0hFIe=E=MDU%J;z>pg5>}q?-o326ua`?S$mcHiSNz(c`&>RU@siV! z>2B%tCiYRJ=SXSlsVh1&BDIie< zuFBUUvYzcYu=i<^VhUBb$tt;wr$Y|Uw!%kUVQs(bk^fIjc$BwJa7wmENW z#mz!rE!&~E`JuPov&B)h99J>!>U7##M`Pbj>qY1IptJ_}L=4=0$JXTO>X1-F>Db#- zcMcqDoXx|@`0cFurURk<2cwK7aN8d%BnmEcrz5*kdjKIcROA(1ewT?PFw7QfD7oJt z@3gF~D3;w*Kpnodq&`0(Y1y(n6CgVJh5O z3gBz4_;iu2oiFN!2H7ij<*i^TxWoP?Eg28gP|P zc5lfyeb&`iJUCJCI>IMoV%M?J{vn>U8y%(Nw_9VasI$Q6cC0N^Kqq?e>_7Z=n=hNn z`zK6@Hv+?tnh+c#Q+C$tMEy|VS@1Zp9%-)IAisuI6Ek2YTgW6dZ3B7JXZ z<)xt+o>vN%{KnM2_^}wE*~Am9H>Q5e(>IGINc(Ka(@Qf!MZ0y%#4h?>-`CthkFfRr zQlQ$4ZPs)b-6YzqyTnio^KBJ_w15x9q1}||PMs`hXx{=2>IjFOy%7=ANlJy`PY?WH zOg~z{2(?*3m>)Ybi9wUPa}4AgDcsQ^9K_$xj<6y!sm*%46cicri4_V74~h(0Gm#`E zCDBWym5NSD zabE@CJ}i?EMa56MboAC|qt|b|n(j!)tu*ja7q<4A%5CcJcPB{8Y<&wB#>G}kJ%}f+ z_oC$c{Wetx8=}Z%Vu4;qwXd=!+_*Z6zejmTM%4};;s=h(i3A< zufVG41KlO0*Phrs4t>{#qKfxX;{qqcL7m+Ne)u^$Z~S|umZrUtdHmYR$FWkC=n^e? zuJxLR6V%3oX(XlbK(=fDbT>W0y}z1Xc3`Fmc5d9xOqRTQl3hk zG<4@~TK`UBCoq}Syq+e=&T>9mNd4heJe|~)rH5OtVFMcR-JLIGzWVSBkm}*p?kv4L z@PXa)&%dX*)uq;c%PWO(7~LO13v3AajM7g%;4QXpOV%^-TL)mNUj#lYhLqU%F^2r| z-k1}2o%;PzJ`go$#wiI*18%ei-*6@&igYBp)(Y(|-rA+VntgNj$JU?6;;KLCmJi-} z5Wn0tLDaB!JehL+i?TBMm*rz_Ju!yT!w?a=AuV z3Ago2utk=<_eNIX664*}`@)t@UndiNNK1jTMau%qo_lK@8sz>S?8b5!S}H1CHp$l7 zdTW>-?KzuMTC(%P+TMQ7^95gmIvGG3c5kJTS-|jXBOAtRB1UZBsk{Mp;TA*X(hu5F z-~@nT^+%npwQ}BYc#VZ?tBa=w>~22q@9#I+8(}UTbjMFL$KjoK(YvMSijiQx zm&do44)b`dj6|qjSv6R+v$po!8V*F_h#O)l3&;=v-?g(fJMyF z@Ms@GA}&ga!0(|`?n)a%}#~Fw<$5OyNDxuO(v9%O10Pnw-W|{ z158?)&tHDAzB5CcUV82K=8#WbsE18OO-&6aaZ0Jmdp%adZDwt{!y}8IHAn%(h%<;Y zPSh4?Xl~-b=!kmrmQ!c40V4QrH=1xbbYFA)P%flf^VmEwWeKn^l&>} z7Xr@-*>-*gQC=KyfD$nF7#rXpG|`JoV-XsbKCjALCM_#^5>Z_9(}GUJd;TpOF{lL> z%sTQNVbDhnj* zs7O5&k)}V{M^nmpJ(N@79-csJA44*UIbrAW;niel4T`Xx< z58Zm(G{T9Dsy7!XpGvmrNb@TiDN_NV$WI@xe5vK;=<8GJHy=00id5_}Yz}%5fNCG* z+`Sx8A0mj|dUf%QwOPij{E+WzGr&1@j7$~#rh|?|0(LgH0^r~FJQD4*yD`r`Py!5; z=R3{^oXl@7zt)*C?=4`}fVHg8_AEx@_AGWqDM1L*56CeMk26JOs_+Y~Xp##^61f!% z;7^bDTOk8M=!D)gtAj6B;pkT5Sy)I2Q`qe`JU>;M8m zitWbIcu&Mw9XY|;$%1-?cz)?9rGuedROEAOyU!$Sogf$(wDlRZ?f9@yZ&fUEfO{44 zijsJfyfwJy;gI+Wu8y;Rm2Ede?+kC)0=oL*GHa;J-cmIPQ~*DO@Wfh`g++4@G z-uyUGhn-sb?w%fv_?yeMvLq*((FC_{{Y?TIO%n}3UoB3Q9e^ma;nVMq?6F@};>3`N zq7MBO@`5iud^tfKR|OQ+?yqd`A@y(VNH>r?-Ec^o5iG0>|nZBN*$HjuM(p@Q4Q zPjr2UmZHcjoV~JmYw$`=WL!U4(g^Z%8Vb1+284kxuTltKR93eAjJ6+rzb>)RqA@Cf zPGSmVlE&=`K>7eXuxvHb5KT}=gE+*eScN$duteZ*^PWz&)h|y_5)sXdA3&)T;^C1u zmCziGT}ySx5K5{6M|nxdULK($?(v%wxZE4 zFfE1JxD@kqgHzt+PHZ1M6+4# zn`ZZUx7&r$B!3i`05}kZvrO0ymrW+_?ya^?+Oo+_GTjgnCHT1PE}A^j-CobSsI_?K zCD)m(9q&K^Rf21)+ASAtkRRTFmkm6iYkkzRqsbDb73I%0%Kym!wkt$|dj#>WJ8RQ< z*d5ysUhX!;opl;^SIu34prJEh=OI8&TzXlzjNc)Z?Um+#Nki48X5}gPM?cdZdeFV^leSLxW60;^@bm0!i0Z zf#DEtZ(LBYYOOsUDFbp62DLLCpO+fC(a!msPdA&wOF_DKsn`IpJB0P~arF4hl^5V9 zU!fDYV={K?evwZKaQ+aO5OP8)X=K&JW^+(@cJ>izGV$ERg>%af*CMJ5upie(-ib`B zGQfA6$3j63b%B?U55Ha9s3AFDWG=+=C@}$4^0Qx^Ms@RytCToX%gVfdJpX%jvbA-- zpOd^*i`#BSI#;Z6iinDG09dCzbG2@`MMbcRLfe~!Tbs7SgW1F!D*+9~dk`piYuEkU z=|Mek+xF$gQ_Sxd0oH^`t<)v+i?qQQVU>mT)Jp)Yc#BNzVW<65%3@53itV~;^_QcYK3q=$xhp^aI>_5X zF@OexSOQfE1>*pHQ@>ggg1J|3zEXEFY@p~LD|E?q_16>|mpg_b!cIGMRg~m)61Y{_}-Z+#-N|$(I$zrbrlXEyeLrHf^=ySp9I#u*cdHH zC~+_VaQdf=l6gS`5ePFX2^hHlfrIW?^W~9WfVH){FiS<>_5?);hB#-{cSjQIWz`&8 z3{s{7SN>>LM`ve|^LT?2r=M$ok&QzidaX^Vw5VuIK(L~O;saRU?VmxX3KR7FdLIW4 z0x}3nA7ZVQ8CUp2a1@YUoPPYxJ?Bi8-W(`I5qI899-4A}mb9H1#}%V0xyTWsW9+JP ziKEr#O8?D~@4WNQZ0hZ5xU`OQ`E$e=xNQ>d}4X;b2ToZ4VE<&OQ$+9}b<`>&!NLau5 z;s{Q@Gsvwz+*Qds^w?bF70Bc<+uyEKQhI!ul5#!lWxKEomOsN4Vj-dPhQep)bCW{+ zD;D*iX5Gzg(^L~?VDr8wlX;J7UH5~;9coG#@BC7z>4)Lu;oRoPlxSXA3y zkwx}ez+dibF{7sQ8*tlns@;dr>AkG@ylg)99}5c$IP`mTbkV$y zmPjP>#YL*SY2Y$~);p7HsEpSE{f5)+(UHG9P}-SbmiDoVDU8 z{s$UZ*M;W#z8@oi%nQ0zvoBe>xS&Ag^|V)R2wo9e7Dq)gB-u0=wT)-6SG{ zl&9G5 zCT4H>8;%JRRH61J$H)10#@`Ic7^`M&)Zyz5RiP^C*tN0ZS53h*tt|6n`Mz^CHJziGN!M&|(!tT08J($>V4* zoL-HM2?DFRrR5@o5*g|@n~HvZexs1Tf)8f;By`5#-(TQhU8!gqfDt5nHwg(fTDk{H ztd17o_Q0(~;P)*!6kS>dQYJj+!-o&)j4BEWHftOHNv4k3nJb5dL3@BM$^!72gNfK@ zBXFwUy?b}zDxUesXN|oEw~^1zGcz+HX6t801wu3PibvmjwCLw&>sIc9Bax6Sw@*`m z3_>oBr#nN5CddqM)j6B)GwB2U`(g8t0I8jM`nKTbs@%GVZgcy`4Ez1$vva~S8cPY5 zuPm~8EA_urzx5{~6FoC3DI2J?*WmqaX5h{1rHPaFYK&ikrqD%I%>h9;SEnLVY-@3N z?i;O!Y?@Mq%{cfqosUnvx)C`Y1y7$o&B(~e`@HI3&n_o;VCP=7UBW3INMHjVe3or$ z<^j-2j9SHPz%B9M`}+6*n$L}<4*?JWi-(jpdvc?(vC#t(+pZ+A`}FMWFQwOmcwE<~ z^PhE6FC^L_%I#*5)1kB1l7IgEc@>{&TD`|(d~)&-GN{hdCtw5+>aq?;;~AO(qmPtW z>20{$Rz6u6C_*H99Ihn*`PY>{3FjBdte1oC8@<=2Icui0@iT}lC#Q_3eB?|DZYW{PgJYeXn1DX|}48wm-&-r1cZ zfDpz;Mj2vcsC9*f_#0RS3}_A%yl!AUd!b2NPf2MsB&j*tWvqOB+Vcg~P7n+MgL{~< z-5SoepX-6E@_E7toVRX)p@hs}>!%|ZW}VD06_1FplHmjw*T30Mw+oM9&H-ULr`u2V zBbr@`f(I&u)rT8-Jen<#wPvs^ckgxi#A`A{9DxSnXC-7>22160xpbn0goNOGyDAIt zop$@{WiGz>{p-sMQD5xt*Mo31VUx|YKSC-3uvNmuD81OTO!(2mhk%H1R#sNnWwO=s zz}nZ?n7C{w1Bva=lzIAx4##L zEG0{U(I=8^>x08Mw`0771GNGNj7Wy0^QpKjxeUq{;s5=R-ZTzhb9m zBja_Dwo<^bv~b-$+L?acnR5F_`F@Y1AYZXl!ynX?o60Ra#kZ>$tR!XAs?52wWv7)7 z60Sd2C&%HZ@tx(~7Y?Ir)X+G5hIMi08`-+~^_%*tsGK{D{B1FHCwp1ru{}oq&U18k zQ@J&*qRqu5uWV}*p{%wvx6N+DR$I7jhi*lQA%GO) zSPaC0#Q3c76B0deGO2hvRc>W_Qw+pG^}spPP*SGrd<3c@Ex~=DMTb)2%76c9lp#|d z?Ue`|?c1U}$SYlj^$FV0iD+plmyVc(s1GK0LM+|F z1)Xv`8{3u5g~3N+Vz=<|M{n~0RR|z;NPF}qI$)>5t%LI_E&C2i$d#1_vcZK-x@0tU z8_R8L_o*y7`t0Pz13=Ms3j->S<^ASpq5&|VmXY1kNTtBeXRK?OxMC7gdAkXWDVt5K zt|^goUNN^X{iF+-?}#I1osrV>xa z=s=Wao#g>bNz?RZVVOaBvE5uk+{qE8$L((|AZl=E{gr2s&Ql)#y;b)lR{r2m6fx7c zt20EvoqVQ!-(g}RIAadT_kw&Y?K$TOcWTO%GHTU)q{wiExEdtnRv61PXw8j`*oO_gPRUd zY-$=9u>NJoGwQY`Q#1{`laxG+(i(np-wih2lIc$sT?MxlVJ5XkM0e`AZW*$!rH;S0 zvyH=&l_-eFRx68{k8eMSb3{I1U||#JtJ3PLUFYku%5^JUi1Z$_qwzh0+#_BTv&$iE zEf-HaOFm#^q&$%`z^mf+<`qsKNg^%Bk3;<8Pq?iUjQY3?KFkj&ulEqlfUn8vW1MJx_2FIxwh&h_NjCv?+GC<2)45`mxY z)*j#8m{U1)e)#a=aJl`)Tl+UPF%L_vMg@v?Jd6u9y4ous$+2G?()g}euA-d28Ni@d zHFU5646AJl9h741JZyd+TOU9X-L8-YI1aX?EY+MF1y?Qc?sHB9?;71=?5G+_nW0nR zfJlVESz5-0!9Lig%CD;&_M!B9dykF2CEGIgAg5j_azo&06LQ*sS(25RZ*)Z-r!lG9LQez0_u|RP=LN4Ja|y4 z)Cl}Qmk1ccLSKGzO=VbE7!ijuiC@0$lq_ej2cRPU;Sesv@7IRQ3K$>;q>ItWM1OEK zk_cmyrGkVF$&N4a_;GrHLEeWCwQ&RPiTC__N&9q@JLtLL-hKRdUxD}lh?W~gZv}`B zbYUy^wwAVxSp=rMA)d=52wyqqEcW5KL?|IbI0Np3{S!L0DTcb>FMb^YeggZ!~lImDF&=0k}-c{Aqp7U z-m!=>mK(PaarTlus4w)Tgu)p!6H{y4Ew)L|&85-NxNxJ5GFFb5mbmZ>fOWz;XV&d+ z-KF(kZKO#^7bA0-Ciikh7fsHpb&~V&Xj1SP{~%BZsw;Y)mS8c2zK4M0FKf$>efjLT zG}0uA{b1u&O{uWsY!@vntD@sBGvt+;SF67Lwk|Ub!Kmd8RgqtmNBPK2^6hG-=r>-H z6pO0T=1#H%-%{Ii&P#-vpSHKdIZLHUlD=yHu{r43M0>8Jk zwk|>v6Z&Ik?Q3CBOsaI$U577lL7qJXM!3%M60N6Y`=az@6*@k5i;V09VqG(5ljXF$ zsm954w=1TuhNLyY{gX$Dq@&CC@ieSDcm%1a+kCg%`pb#yR{|EEsNwJ5vxLeDboc&HIwM%U^}4aapjy zt@hP*ef;d}8WA*d@!2-Q@F_q}pqbQ*`{@eIe1oMkkSXI=JTWyj1r*+$1U9c<@&Z?g zbGq2Vo8;+jQqo+!q^G#o77=9!rp2?u-RB6IH3RNR*3no=xFpa7LZ7;W|*IlVn=13%hL|Ujv@lNJHU?d!ycGULv zHU!oTF?u>WsP!#&oDIIsorFgOhEC&<4eY$K@>|XIpH$u4;w9tmoKuWcl$1`EE1{v+ z+87t?HPlum0Hv=bQqt16 zRmMS|%z7=?r#m1`DxC<2|K8pyfZzwR21|gZ3xg#%?{ZDi2Ge-+W&pcvO52YgxK$+J z{YY-!9Me_6aHC+Zrjav4H-BN!F35$duzH*ivrG%97WN$pa%xwr^VM-#{?lr!s)D!5)x2fED6Nb{c zfB-gz_`!|mLrH*?AIi_ObLDPhK*}Q$fdct&w3TcZ7j$u* zkXYj4}98?L$Uo>6BS~qP*vV$`u<+6ScV2md?M$l~=O)PjE9-(XffYLnn21lu>s0a~*-w}dV zOPlQs<9&VVMe@SJUNjDvNVqZBSXkX!*cb^CyjeWDYp(BF}sv9?^0I~Vwa}1 z&8-$ZjT>E2MR8}lQfYLSfulHA2qi9GO&qllif^A6Z{AE;+q<9Gqbtl0$| zYKnRHER)KuKi+A4(){w}OSl7OY!NCAP(wo#BMu7#-oC!*n(eb^&%(pQljty!q|pz- z%u8=g+mSq=T_B>7s=zVdScr3Bbrqh zPVnp;{~Ju3pp6N-I3dQt%F2-OJpr}A@87@CG>MB#`JUOuvhUv?%Q0lFEGt!n3zZ0!3t#Ha zxp^6rhWQqLMCM`Go1y5nX|qdePpd474kxQaX^*I)`0XpaE=4ht;|L`44pt!&krM?q z$debra3Zp*J0ryS|4Ew)^M2NRUId$mQ~Kz%2~k|$r|@mR{r!Ci*@D2s5AeTcXN8I+ zFiMR z5QPSu1(EHNaO&pp`UKsriCcQ^l*K1axguXvVd=EV2qi?c177G38w z#i-KHvRiEVt`0w{}~&DLPZL6out1LK$X`lu=%(el&Sqc?`_+1*T$qeOnIwwo<+BUTDIsp3IIEwS7W1O<;kEdsv9 zFC@g#qvdFSN)Qmor+)KA=3D0e0RjB^+4W^>fVt3b#MebVM?dub%y!e4AI%fk-BVHH z=UbEWNa*mY7-tT2x>%h)DH?&) zz3XG*EO9>Q)%q(O^U^EX28L^cSu2IXlr>+u;i@h=`ztHYN!uhcC}B zKxOiKQxhFCGcz5X=4YoBsA+`0eLJ4mnSbC_r{D3)B?%>yY|utVfawE?@sC*UHSqsp zVqy^0Vp$A)cynG>I4+TLBR`O}s%+Snm6gS-t0v>HQ&ZR9U>I&e(1YKRM+|pGDGKEZxQCUIZci9-KEtWeOFNv(K1g)YgC@9d zNJ=1y-)jn|pO~1?DmHgsYvBa0Z~%CB2vpuL&r8t=tE;~gU!U#H`s&EQ$at$N)we54 zZ3(0syCBbri;Ps0m;VS*7EL}iL~TF-*ab$4U*Rdtb(1LSZ6E>OQuXT2x0fAXzl!KZ z-njwRDPU7HUKY#yKS&Ku73U&@bLA~u@s6>42U4IVLHK+lBN_T|?SHV5>zeP_i8=KyN zX=3M$a=@HAsG-p59yfWPf|b|JBVukWZ)L@wjeg@6CX(z0BVnM}Z}yHPdWw9B2E%;+odUgf$F| z-{=IfhUIVd020$mNbR>AJ50|&`7ILO#2gSCA`t+LtNtTp-^~(NpgTY@YwZzP!>g{H zoNTr++x@j<4;JX1H)9La^ISIy`iD=RA< zo#ea&`-C+Y(pDwyPq!kt1*iVtbty#R<*c1zFNdqRj?Bg2ikl0t`!6yP50&{Xu`LJwfwfeJk)GiVkYgC zvyhaWTtxG5a%##o=N-l}DDVPw?mu{-wD55ibYkU&1)t$$eR z$o&Ck^45p+iKB%U()PDz_fd^qWsw;9$I} zYu>`RCjb8;krOC%hK59v$tD1oczb(W=6bvs8qy9ba|F@bwF;6 z0mqUs-JKOFzW)6+#n~+$m-Y0T?tS@W@gPXg67g;w+Tr$bSPtDQ)^i3JjYtI41}~sV zh6pkrEN(dv+s8uR20Q8{#25Q+iRE+LAtOt)6Gp{da&~FHeA}NWn}Jm!dp!|)DWM}y zCx73d4$rjV;c?W#!0>vBz6@-TXDNR3$+T)`()?r!GUdhW(f7hHUcI_pl)n6+h&?qD zZa@*D8;(7_3T{o7H=C?ZUIu8eUuibUeS$!5%9bexn&mszd7xLls-2UXDidRz(F6)Z zYU@al#ASFlH8q{L#Ko-Lq^|~KgGdDB*;>R5^&1Js@xyd;i7@bklZST?eTdmGtbP(O z52RbFi$|P+PQ92lhNvE#&JSN&n z0pW_bAn*>I8PU)@+S)B(fa;wJBb0ISu5dGKoA@XFh~rgbB>^HF?+l6}()Y4Hr;iSpvj3 zj|0bOYuadgrOdPNW~DizMW|)*HL>>{Sqj9$m%M@=A@G>A?~Ttt^GNRK zm_U{Z9BvzsSGa*DnJH50yW%b-6_v`)6eNN<>DL?{r-*x40C-E+d0rbvC3WS>m6r?~ z07zvR*FoKv&qEIi`-hBn>(dJS><3L>ymsyP-I49h(CRkm^cd$Y4UP`8Q>SX;=I+nA_|x4^3|(K0aYOM zUc@1+gt9%LRM>6HS!fv0G=*w(l0(Nd$%m)Pz7Sh_4#Yqtz6_F@EHSk7YnCCY<9<1! zn~vY;AOrvhXramrp9_vbxa4JPO_uY|BF4Wy+oCV8Bx&;+wSd2ioCs|X&BqDIx#Zr= zvv|EmgIzZ+GoWs| zMLZ7X^u!icXVMZ>ccxyyehsxpdlRFCqYJyWfS91o;8*JvLBaj5Bw$T4j47-@Kiw?? z)(h!gbo?JmiLeiVswzg`=%94n@7TP!`0GNiMeqxa$nK;-{0)!dJV6z6o`y;-aoMos z+2fa$ul6!>DiWBreUOs$qgZj{=3gJ;_6mK9>LAgZ9Vp83#p@NY*aT7)GW2)6b9&Y8 zD9{}sIsmzV3Zb-6V5qm+!=tEuzQ1sI<~5{xWA#BdxnBOnL9@yfyMX&Fhe{Q;{(zjX zIEI428xB`WRyLRQ6TBdh4;9sQ5Y4*F->_p(=28cZ6`vanB^N~(LU<2=_G-7J%AVvI zpr8ZYvsz)nVFPG+Kr@ictVXsZ7+NZPZut{G;f`#iBCw#Ld-Yk^iN1o?wFHP`derqo3??q+c;`{wWuzTpE^`vS>A~IXI&RS&vq(m3h*_ft5 z{00!cs?LIAu*U0L9#Ah1UjW0Ju|};kVk>}>_X8e4_bz@BR%Yfrh+jY~wQH#@$XB}` zz(JU4hlYhAr`yR%=$SPN#z7h0p%wWAt?uj=0r5;*Ypa9F3J5ts1|-F}TXPOa+2lGp zRYt3EZl%mxzN=9MAO(^m$m2-LKxf;toeJU$5rf5fEPVq5_9|YeX8dSu%y{MuvM~Z4 zJ5!m$%x`(5Xh`p*iPZm=cFBIahhf0Flk0bGOAZJe< zr^c5r&!r;{bWsoLEDKQw8SQ_Q;>$u%P(NRA!eKg_uE0GKN0%L%p&SL8DA=cHrWhFf z4ia|~0XOx9=TM3aCg#jdZ5H7Q`Y$<*vL&8>?~R;5M#po9iUUw~fEBC&L6c=$$t!y8 z;0wgk`JpmRJ;=)p*od+)fh*4eTPdFkTpTQ6 zW?@-boyctaW&zSQ$p116WzDl^aX&#pP6jl~@TntwRYP*IkUfIX2Y`BpLeE$4tG<|o zNjAbk_0O9M_}urMiqe}WW=E?%g5uAECvS(W*8fTz%`#%GJ_`S$P zc4%4C!++ zzgqW?BstC1>Bt2D}tffNY8bl2tsVU07`SL zfVp~KvFcg$_0P;uir5?a4W$5?c)qfaAD1Jfpb!J1t2uyquDdg7I!tQpSGOl)tTLTb zJgxvwb@*Qx<+Gtu8weZ+P*k-l8we3RioA?(ySS_1S1D z735?nXomsdk~s+{a2res?l&YdJp^7mfFsq`H15*UN>J>AHt3VZAP3|;5k{cV%!jBP zQ13kFMM+Pe1$8U5Y9zql5*0d)ZfnLN%jNIh0EZY55Rj#S1(LRR;%q?K0<8eadxm}wef7dzlnH-mt$yhqNn*aDl2YgpQlFEBzN5aD`p>BRnI0>|c%DsKO+-ob36O@Y5fT-Rt-FZc89y{(e%Phmu& z+Bchjz1E)-X4EHS9k`afW{|!qqgTPCcjI5|c6{dsTK}4{6PTrCR1vrbJ0Az<0(&I4 zR{%I~w18zXLOl5P&U|58dD-Rj2vGJz!&0@~jN(G`WE)y#=|(bF@~qPs0yR*oP>m7~ z#|ObOL}J3~{i$env&>Q2X&Q8EBKmWO%9QpBfEpYv*qSp&_qYJdj7FZ7-Tz%9A}WV> zM0@?cg86xfnP|#>uh+x$K0&6S&87)tY;YXi2{wK3Cqy}9=|mv=c3Sy^O~Rv0sFM$} z*jq=gZWc1t%%C6}b>GYBFwK6ZLj7h2JS?;>`fnORM`AnIXI&YP;lP#mt_#5LWy_a5 z+!6Y75epPjgKAel#Q0dKDSbZ(krLMx!PGYnu>YDov2-XVms|LAvzsO{r1D-l_36#w zVc9!_@%$^OjNrD@sB%O}k9r)T%Le@U+j;0lVKA{j*;*bCK#dKmSZDnSv}uB$=HvSe zCmXLmDn}4hkB8pUt`gB{GLPK4hinF>y z&1EdC;X)HR@M#xv`(c;BhShUaz0AtTa!N*s_?$kbIcik7IRhv_M5l06b6l2z1~MP= zJWEyrOfV(H3#qKKub>C6bN@w7NjVNk1B9$$l-#$m6`FUa&iO%t@ylc}5Wh&)N&CjZ zpa6ml^6q^D9^1I^;yi)tnkV0-hk9jJWrth$BI`TtC$J>;<0I~S3lJ&rbQKvlRzW!okX~53U=8il3n&`?lTO6uLod zEJTn4iiIuqpjeK5^X36~QsSyH5RN|vJ~1X>k2|1l75wm9jg;ns&wzHoSH8;0+;jnodDL}@pA#S6rSZoP^UlI_5Y#lKrKK^+Pz!|K#TTv@dd?OwpbHnk=ig@0 ze;K?EuLFA79RO%6gU>wR4`G@DbmqH&H18!tAM7i%dVwP=Z1R=a=+4tS0$>G=avwu8 z&(@$D09MB(P>&i*5Z&nBC$umLYS}emH*Vbc+1Uv_VBDw~Fk^@?8c=gGG#t-6(*E^& zJ#6$Cu?txv%|4roxY~vo=5M@LeXvDnXdd-}8CaO`tUGE@&yx>6BObNc5Au27I94O@(^68HV{WFrq2<_5ic5Oy7Yf8*t!0!|v633z69Su(v6gnW~*n^6{Hfa2KdVvr;NQu;yl#pPFl8(=sz36^;?AC=-_7AH2 zIrF+Ai3R2?luFzoBw9@MmE_E`$0hvE$0Q-%ohAcN>NOvp3n^jePiB%vCcE;(Hm!?C z?4(9M~!RIpJ)W8;X32p?~6&{uu{U;&o~9Xz10EmJ)P+&?I2 zLE-?Cb60rPwvePj%L)r=mn|oS$Ar*n_?D)B6+9c@GQbn$!XSq$k6ji{;LZyYBSC3#S7-M zLsI7amkClW4}$(%fb517m4mCs|LulAZ;48Fqx?q91=+{~8j8{8)3QR1DCE;83p?v? zQ8%TSBC2QkeY=4xkTlbf+wf~Lk1dJAV3W58?s!F}a9f*!k>wH#tr(Awp;>omG z42;XS(Oh6>?=F&%*U^=)%7wJb&d75Qu>g0nmlW{isWT&o*DmU|M$9bXra*YbNRevzx|$OT#i$H z?Pe+ysiX_yx^l9rXO}789CcgQN3rh`oh@}y}|0)BmEhfiHpxurG;Kb$7lDr)Qzv*NxVOqoeNI}onu^n^w*;0 zo4MyVRjzKN5NT0HyACrI-#-7J?dT{$^rx;!Gp&`f@oZd8?DL^iv>K@I)A504eLE*w zPTBiAcv#6Ns}Nc+9xZNFQGU^q2~=akaRwf~{qSVRBP`bCE+3BQR8e=*vl-|AEd?D8j-M`70G!>C_a2F9T^yzOgm<2~IkW?5 z$d4)mZt<4p)mnnkc6mlSx-H4487=>|6Bl6i@sE3IHabtLPc(||B6GH+!+zl9Z`?6$ z?724g%5N8mZj_4Wr7b2c&4c=%d|`f5=v@ikHWtH^+woo%gnB2dNDnus7wC+<*X#Fb z$Ud)6|Jpdix5YQ#zM{9IXXmlcl)AK!E~5e1R-4YMG0Vvh9ajjC|L6Nn8zU30O^eP* zvz-MeZZ^17myt+ylID*#yGRn(D#r<9*qcS-P=YkP-Hc@y2b+w4CVuU&i3{AXXE zFD4As0yB>CLq1MtH+tTuk0BA3{cS1o2OfWvzrI${V>@nZHDB?KS)WXIQO6Iqbo|Fl z5LysDwREA6O1KlrpE}!6MO)r^TR8#|D(Z+ed$H0BAYDNXx}eG;$de~tmFv%)0lYZZ zQ?hUTwn}?%%j_+EBm{F#Lafv4+^VDa&nG?n>r(FY#g*G_Oi_3INSX`SN;z_$Y3(<| z@$i_`&&c`No05pwWDlT9%UufYFeK!bu;Z>dG9h8tU?tixROK-rWw@n-J;W|l`SjB- z&AJe0H7Eg|?B&qkdn)vC&}Q*x-jUMl4{yrU1f+QnrvH#!-Adidq)S)G1($=$VeVx$ zEhXnsHRrEk#>67h2=kq7F0ztVY08CwWa)2pt^Yo&GNa44%2V%uh!%{ZAJ6xb*5#Xq z<7$MNc4f2bGGNjrhNJH?mEX=azBQUlzw|Kj+&)=P2hOaNa+Bo3Xzn#F%ppptpPsco zh>qc@wK%4K-c9DOce{*uR2aY(9KV$2PRio;?P*EQfrwsaS=$}au}S^rGnP+G@vIiP z<@It=Es7aGLH1B8F{Zo=P;`u2?B8{;{A-AJ(x1iB#^P#mGKp;5*WZ4Ln$t{CH}Q?I zU&l=>!cgfvcx($SbSKA^oC}KxWljbGY7xe02d4k^fS`%N<99uuhkP{Q^`jZlamEjr z`Un2a#V)U_l$FxrAripCG7ZfK`@0q)<=qTVkh+ok!{`X*}SUoIC>r_0XIRmWXmRJU>Aq$~P zvFWb~m-j8`ZGI?fZeTn5ML*z-Wh37&rf+|?v?JH-#s^dxuedIfeU*A{S*gi!kD&k&4_nk?ZaP43Xu;7YCa3C%~cVS#R(zwO1} z7}YMVr|>vfI85l_YGDsuH)a_gETS4tI{B<3lE3ld%RR^i`}c1Y-J9yzBOZ*V3Txt0 zw?IDBS&O51*?UgecY-r{{3DMG>#fLxn3SZyCHLq5`vB7^?rz(pIrSEu=pIn_x2L|v z<*m{~-$V1*+h65{wta3B8524rfESqzZ?f-BbvQj>p1+~unjNmh!0X(B`vYkJ@M^Ne z-D|5@RPqPc4Wk)*MuTtaV9TF_e@03hllV!Bl>tEedMfD0cuvTCaAG>=<9>XdCAr%UgXKoMii|HFHND=bjX2l!N}IVJ`N$tY#Q^gMN#DOEQO_snEHyvXx^!S{=p z!rQnh<+kLdglja-1)OtUcy&fvl>o`mS3cPoZkFABwr9^yue`p5!arr>dB%Sx**x<( z%R7am$n@x?4>*AVI-Dg4Ak)o7BM&spSv)QA0A9sK&4f2>!7Vsh!ez~WMi)sklQ||9 zBko=DDt8Q|RVOBAFvwK@K^B&5_n>GFA#I+=thROhb&K%xp2YtS;vt<*E|j(q9fy84 zvEoaDv4RKc&gO7*StDM-o{zp4EWR!QomLrBEIx=+kDqI?|D4_3hJt|H!Q1fD|Jk4y zK5rH=Eyc!$FkW=702ja+wKwz(8d{lqQ@2b`_pT=IZ>+!e5WXvxKSY3qgY~!%KVF+^;&5 z%}Uvf9Nkt2$HeZR^R-IB#5LAvTD_m>ZZWCQWp2tJ$X)_)jvLKXzB=Y7F&0DUIZNd_(F7JDMij*R_2+=F<1avsmG z{Jq-3Pp!nOI#ulR!uw69y9>OaS1r2fo2xdr;7oH-;JbUD@PzoXMjmBAClDHpo#rMO z!f0s|`tf}KQR#qh7vR}925R(M6tf3xP(_!oa}+`=EB9SGbxfiE zmVePZrC6z~4sPRrSP;kAxC&cUNQbkSdtKTn;a8FBlVq&rYdTx|($grJpF$>~<$pM0 zc|jmSZR6Q`7%qat-U4r-8}YvNFsSv6zmM?>I#ajxQPB2GG#{h-7`r0)AvbFipY^+C7mPNR(bso-{kmSK_tDMAs9niB z&6F=+{I`nIcgvwBi}QVjV&~rcuJ3(5>!ZoTmO1q%(>htw*W!Q`PPC$-2`{S;i4hVe zD#9o#KG$57x2K5Y`B%?7f9_4*)zdYZXh{21t>mM|45Svq_uT3FUc1jcw9HSs7e={Z zam$R&I=D>FdVU~VyDXcg)36x3Le7rcvq8h1cLX9&aF1N?1Yg4l_*v&t;X%nRV;+7FwlvNyX(Mha>;v1OvU zSEDmhcJTs}(!DzrrwHJGju3;a5LNh4FDb(S$DkQ)G`a@T=2qr|VtTn2L9Gd=b+$XE ze?17scG%o1RYUyJ#ssS_Zc&`dl0jeooR*q`7dW5e$Ft_IugCZ$g}%IzQjd}npDNjI zoq>q*xp8O?TU1(<=y_=iT&-VG95v*x-XI33niMk85I7b>EnBeQm8lX-Msv2&u56xI>4Mrh zon4yR3~y{>9VSQRe_(bf@Gq}YGx*jYx#yS#r>sc*xPYOUv}Vh&9~u+%G68y^`H0)o z?G-B79r7E6Z(tNdf^+|0D(ctq#dmvlba;SwD?GfLh<62as~I^TJ&xSvdP9gycNV_4 zw5Ui4Lhn5OYy;!UP4F0Z{0;V8Qr4rvu_Wa>|C0Z`fpJ*l)?hX9kq1n~OpSz>13U}+ zt*7jcmWq0eO@EVq0h3kxGZ>yvrmVS!Bpi9-EORluhK?N4Q|QZOXJ19G{i1mtPb|M{T~Fc)fk21?f`(Cz3xv5*`EKd5a<;oUtIS7N+;T2>z}K_bywtv zE)#k}Gd$H#PQG6OM9C`Qg14=8x$82jhKpu$yHUc_n^L zw)@0chuAziP4R(lf1$mn-d{h1u}rsD&J2-c51XU5)(;#3y-#WVr0%(miP^)(=R%3b z23wOX2nE?wvS|4qG{RW2nb5PFAIxR$T^(EjG_xN{W%Ru2VZ-8*wm0U-^~%HlGEoa@ z=$4Fue=MDQ(7%Iqh4ZJXOQGoK%M8k}z(;R%eOF=yP)+gDkz^c@rL>&rO;u-RiW zF=@j-?eU48G6`-z@FB|t>|3^fwE$tjn5!$p&=5VfOM-RZE{ZG*K@eOf^B*>bK7%T4 zsiyN15p_LlM|~AbHJO=qM@Oy+1)X=!-?(w7>*a{+e`kLRM?Y`E#MZ6rP-x(|`$Ii< zg2&N3uvJark-S~@W9GX$(dSgK>u)Z-qFG)m{{Ly9){ zp2L^1wwD`id(J+8oq5G7H7iden`_%j*0Vn+Lbqi$T7~;~*b%JRlK?nUK^vYp?3-S} zKEGhWipLASOd8yh6-e)WHV9$(w#TY;olnTRV2doH=M}Cg8`A`LSg%Ce3;$JXI+V-e z#1E;uL(CHw=Q)S|z~g8C>;3ic(SRa^Xal{2jOFb+rWuJ(2Y%V;SEdMF5oo@nP_bKN z<{edKXfg43at6lJC#UJs@};TQmAP*oiSaPvS=0^}jA01N5Ict?`R{KJ*w4S8>l2=F zmM2#Y7^u+5)?nXx81cJ}?c~>P3t~bxOIHGg6#{A~kY1m*>&Dg#rVD|o*%+Rj>ts`Y z>;tYi1rK9_b6t@ZLKE*Z$tjj@nRTl%Un7QZ4u++-RVpGG=ED9iUFd&%$=;F4T z^4`YeTnbk)9u*a0n~-@fAu5V}25ZvC_Hh!C#20T({8rwTQrmbDwe#1CF#hd2*-y1A zmbRu#BW*W&g)9l)|IBAIHJ=NE4(z;GW=>4HO!u5+V;1(7%)guV%cNKcoTswB&r?G~ z!w;#cQ2&9sr^(P})Y#O7EYrSz{W|mUhS>gq7f;|o+Yp)LeM zvTf)N?eFg|&ozt2!^iK1sY_5_ zxG+?v&%75se+1?vC-8e9ax*dik!8nF3sHsAgC`YrXKr_dyHS3=LA3Gi> zF_puj;iE{P0To^sS~~CoQb73w`0=6#&Kl;&8c$){BvVltm`ufl#z6uSMuvtSM8mQ#-^yxehra}=i zYtH3;;oF?j(rx$`SD4ovOv0;b49yXR=#C?P*W#pms#*4+m-g80On|yzc4p@2x1_VN zvQwZyGH#2ngt;!P%EN4eI8f zKX+eD=Vy7u4jPJe4k8l>KL7>Q4Apny!Cg<2?w5r`J1q~vV zV8RuQ3B!d_KZqY9xfwN6p^t`&ni{qS2GFZn#-la8Mu!W}qBlVt@hV3{S$Q3LNW{g( z1(s{h8FwZbgL#68X8}eLKsBF=oxNy3$la;$LrO~2flk@*A~BOL49Nr`D2%SsNPMQC z=f>SM4wFFOw4v=1-5+Em8!+-?0*Tt_Rs)@+MQ3UYbo5qYLI)sjVH*hUI-BeAG%8(+ z`WfN>H|d#}yA+mJU0a?DeOV89cwC^u3Cl2oD+=Y+1!zN)mi__XYXai0N@@Mgs9-X| z!^r>~5}qz-CWC4zTD%r3M_4j=0OQZVh@8KNlEdhiEmlU1_t6y&@k{;tNlQwd3DG4B z-YFUM*s+cDH=^WUy7_476$xdt8;)0AS+YButH3z$-L+OzO0885Q`GXd@?*P)rgJU| z#w!0{1`RkPApvMcEcNr9gYiBsy}Y-vDZaZWJSC`y^6p%B7N<$;?fhF2%z7ix*Z{?U zDQTn4lBu1gA@p}EfJR~;23=J+`xJ9Vi5t5 zr6wgMA>9i~q^b5N?kPdnG&GZeNoX%WtS2+#T@OnY!YC?iOY*m!p-V z9v6Lkx{pu46&V#jj=b};7xi=wGVeQ3i*IeKe>mP35gL8TRrs^Dvn)k6@^3IwHbIB7 zrn(6vdQM^W!Ge_zQ=a>)C2OvWm<0D77qvCMP{P5Z=U9XD0+(l)QwCNDh3nLmlt#_= zUT6`5x#JrkBfZ4)Dg&)Fv>e{uUMavSq^}0OEvST?09-37evvBA6$H0JAs!f7^q-A` z!zRd>U_1%s%8Xm#=g*&+bjm;POvdQujv>pyn{UA!Gzs`ZsB}xk2S}1!){z;*dy<+x zDe3oL|E7DaT#l$xPd?aGKsaHQJ@u57$+@0^MF3th57&)a1dXILrHiGR?8_A&{2y1} z0gh$+#{HCvH$+85s7SKQ%GNMah^)s<*?VNq7DW_7wn(-od#{j?y)qwruk7tRZ;$$a z-*+GH@xE^zZufm(*Lj`ucm7TWI?2Nrj|=%yb7&ZPM|pi12D1d`3|c^6H=qpb)MQSE z)boIThW25_tvUd}09fFq7gyCwulh0IVsPPHc(#Gyy=>kOUVFt?-_*1K1T5X%GmGH> z&xS*TaIdtg?7@!!(qtkI58Kw(26${YpgTen4#3KSxCG=-p<=ccEdwkjJX=m*;&u0| zAnrp?L<+i}o9U1kU;)?VIDsg~g=^t`1rg4)QaRtV*NBb7|G9+a7KjJe_dHiKUjUQ(kcZ7Xd`epO!5JN>8i(-F5uA>_i<(06QS$ zEh|BQbk4M!Q=6)fjQ|!zVAXS<{e7J-EjlVH>eDACtJLK%Kq-KNf>x?}O*;TFLf>I< z5hE(bn1$79RxrdsSw@;$c%NeLGX@<)=_wYM=E`RhcMS1g8hcWMa%?62Wh>J#|E1@p zDc^Bz*jMVYSsM;g@cJip>IZuf4?@KV8ftTe9qb!WOYysG zd`mr^m6-{aMnh4N!K7k_UAuJFC&>^cMxHyOo7<~PE1!iflz%{5A>M zkKxA?Z`{5cO|#W=#rqE82(@MzX@truJP`bzXMpt{L%Rc!1-#SJ(r_mjTsVDz zv=-JrM@zd0kXE1$oChzVy1Kfnv=rd>03!!C2RwmKLXMf$qal7>K;i~G91~-q=H<$6 zfU$v@26DG<-3sl1&OCS6GeGQYH%Z2&&p?aa2B-tTNxRjr0>CLUu#!Xi2x@F>hzL9H zJLB1twny}mdQuc~9U!=d+3jz0)-PNHg~juGn@AyUnt&TT_Y1x50a5s46zScC+}^w? z^N$Z*)^ZNh=ciDLjOp)2((e=vAOrH+MF4#rab4P~n&_q0<~8og%rfr>_qbEr9@* zTGG?nL0Xxbbc9Y9F+OIl@`Y-aWSlh(B<6fn#O~1PGZ8AR*!DrS1YM zLQd$FR|7C)AtPA{#1JnCd-ATDSp@l{IQ-5c{=P7pcMZB)J zchaBYiwmUjnoVj#gstSwYkGU?dlUJxy<3CcRk%8u<-PyTU$?YscjGDw~*m2mlKNkbOC0}X@!J_ZUX;nN9A#ZWe2dxbzE#t zzRAfzt|NQz-XCjc(Sl!JC&|PefmxQBo6V^ow7^6YU;l$iXg_D!S9tF98~D}7K~;be zB5E{}hpv8TegNY8j|OThh0wdR(3{t^T)6t*r=_9K_>v9OJ93>hG|;D@dIdUofJMQ zaX6q&W?z1$BQ?FhuF2)-J;Y^f88G-jRsD@)@a+|W&VgmS46UIF#xDdJ=!MxnU1^1S zImT62Bi)JTY%^SJIGoC$!Ojv2^)NR?%c=H`Ez%@ZwpUo5h=ynlS^!FZUg-w^7Cm0W zBeUHWy~j{I3;29t&>1)G1CNxD`(E*4og2cRapit6kjxzukm_bVR}XkV$#Pc56jU2^<{PRcQJ8W7z<+9~g5t8bF0R zLSzG6E#AD)a{?mRP0J45&&!u7P%&!x4;@zT%6>-YSUiaktsFe@Bj~p4GINHO*=Pv_ z{z?J7OSBmhHRC}Nf5;1T9$p#|ZMmxS9u? zA!vW3n2Ee;73)P42DD~ZsZOFEYBD4kga%!{GdDNgwPrxsC$?`?Fx-5cDosZ1x0*fJ zgG49OxgvEc-m``Wp;=fI_hA-B(Xm4C)KL^c3^2m{Ox4X%1N^r$2e3{8QW*^Bc*98r zz{YluSqGt~+iQEZ+u$(rGBYRtY6WFjtkEY4koFK(^qF66v5&q!IL~AJF~kQ3>j{SG z7lzaVs=0xd{KFH7M!^l@O##YKtp4)a-PS9HC2${rj9< zkt-0H>30A;lmJ77N@UE9;-sORizGG4aaf%bD1MT^+VR3b%Y=SGzIYpR?xAL)@lS#Z z8HvBa4sOF@G6@FWlA^?7@-@(H)yOnU4~@-%ds z)Ul31?|VW1djz=--J#EAb?S_BoPOu!>;R}4=_SfaPM-nZ=#@Qo&SeNP!-Aj(YkoI% zjpx7r{sR>NANT2c<>EYF72sRf7Ty($68|R_?2ypzv#LKdW~R zA@2EDgm4H##zrCdjIx5l6Xh^K?XJ(bLvN!58sdxb-QiY<9yXx6jO5u#IfS!FEywsC zx~{U(&pVb?vrw^4(=rQ*NU>$uRDq{Ih~BO*aW*@`sevzX%Gvs0EY6VOW$hfacCE9fc;alk-_6z~-`rGkViTbwI{-m(&-GQb1> zNPV_8i(cr$M=2_K#xjJHyj#2X<`I9JkY!&1#f37{(=+5E+SG};+${#aPirLXwfy=H zk$__H<>gGMK^3CP4H)UskPIV{K2$k_QPUVUJ__9s!iqqxsjaFyna6pA4`u<0NiKc? zW)Yb%ZvXrkFZ^Y2`6FZ#s+@-kArNX$WpI6=q0|9n`E{v9Hh3IIVxBl2f<;IO<_FD4X!0X>m^;pXG;rvmPuzlGO^%-xoTx2#`e<5Gubpu%2s{72q&X^BAwdcu1Aa zGzs9&q?;tj17bc@0U?0fVcQ#0oq*Wz;3c6Smy-p=J0G&3tqYSn3?<;1<>#xKc0(r7 zhp|xp?%h}Dw{U92LWwG+WcdJSaqYTa+a%u4jHfT7x22E(- zSd}ckLVuWnRAdZ&-)&IPUoiX*i;uHfVZv5C_7vEn>nzYa+d^TVs+6J(jU4Dz=$L&{ z|D*bz;IzsXnFuPTPB6gs8YZzlwGOmHJVxVUXCg5jW>NFV#UJ`zoplQCyp8V@yg z5Ct5nhqXi(Zaxeg0#nFlv#ag4Sv}hc;Zwlg6gN0t@S;ebp=h4DYatk@VuYZ><;|Nn zz{~}N_kxJ-DCN6kncOizV#nVqk(LdT+ za6LZ1DLOa`=S-mp^uc8lyE5{j3QS4CUb^PjvJunvME@1JtCZtpWgEkUB+jG*tXHm# zLB&wqTPYqZ5JTUXTC7&G#af?*g7cp1R5@$A7(!7*Fv| z&l~3|s@3RV>UgDzMN-_s8Vo)V)9?wdPS@-7oMh>vR|nVdqM@iL2&RI;>DFILUR`|EdwPb-RaYRU}_;ui0IqqNkN$B zv{`3{h7x89Ip$R(3;NBo%9Mb}*C_1$yh&bfgY+q{sZ(ZAXjT_OViW<&tG;C9%M|0J zDF>C5=Oq_f*Pn|;L4yOcbcq)feRy47sHQ9~AB?1ijKjMZdJpgu$xLaSJVkd!pUcW0 zPvVi`+k6?VS>n`jr-On^;g;6TP-r#i13`$hOdA64AK<`GxS6)2g{Lc z3OFY#ZVl75lFN>?!Ni_y48)ZL&yIx(JuuiZytqL{;_mzXeM*ee&{32kopYmB@idb& zp0kqt7Prr;4Xwt6Kq1z4I#Dc+>Wp#O?kPz9Oy8sC{yG{?LN56lyFDS`_S1Iw8&8HW zhXM{CfvWI)E+2E0^^Xkvb2Rek;-!%Ku?fKwLsA+~o*)$pNJk(|>qsUAL}~z20G0{d zXW^~MIHWUc(KK1@Ey2REsZcL`7idg}mAz!1C)j*icWH6z)$7g09SsudtJ^E3D3nx) z%jMqG_ChVi$T#Kg>k4K;-sWN!u9t-j{fXR#OBT8pueBthZKdF9LaEsv@M_vHh@#1=5k}kqI_nC&5fwzN-(p zP&)(XW5~W9&WFvx`Jf3`IWHbE=6SemFU}(FhkF}$18nbz2`%H=3*dHx{_PH+Cx+P5 zKO`g%ib#l+4wpZiEyhc*u0(7Nluo6pos}1iA3S)6tQPQHKKHvA=;gQqbZ6N9^^HFx z`d1LE7WA|6U7vzMw?)RcL}QM|IFbvlmDbPczmbb)a+m^x1v^mWJK%445+N0$1|KgkFX#MK@Pxm(3qU!kwQI#6A^;L<-dV^n?}q@{ zWMJSjl2(V-QXm>2*91C09;i=+a-31tf$R}1WI@5#-e<=vPsKqhmI#Cr9659nw8&LH zU)2I41TGe&0-AU?_iOlkX#e$6S>42`vaCfm$T?~;byD4UF(-ax6Wk-^sp;1z7v_)& zWvDN^AwU0O0Z?K*2Yv?@{C;7@tgNhf>~&xb+6r?cJ$shRdh{pcyE$R{3z#?vJfpac z0=yjasdr!?DKLEfG5VfdLlNHM^y!Ywg9jhoioBD*G@ar~P6q0WPfD(Qg7Z3$xkW?< zB>9e`#L_SK7fd{eLi1d^zG(3*DK}!<&B`F^w4tI&XXaI6|0sNq-CP~xyE4xu*1H26 zUl#puU5O929h_xaeF{tcQiu4^aPIS^b$khoG%XC!m7#@n0 zv@D{|Ds1+LS(d63chby+P`<2#v%FceYIS-oF`k$_84rUZ^-Z-@m5uYnIJK>K8OdI_ z#Y1nMemqn-@0Dpn_w5P~UbTJ}GR_jFyg2LVAbhjJre718kU>(Td5@LuK)z{(2gZEp zE1&c%xhh0aE!_h%(_R!fXDw*_HIP59ZNx-%3#{k1TQCTdc$k3hGn*^&c~%&)wRHtjJGiUjz+Pj3mMJs{ zv2d0*83yimtpfY7v<7G5T}esjflD_81$!-Yl0AS;qE?fWp1u;sB%h|2aLCHkp&ZE8 zhQ!MG1&aT8X-`N1^@F;0pB0cL=*K_D!`~YAgI0Fg#C|9BCw(hAGzQqNg_b=tfgfG} zW%VNYqi5;Ubz`kvCrDkLXc1OwmxAhi>a2mIi5v?pF2nviRFic4r#}uKOIL zCc%q?j`r5*)1aJadB2v-<@Sya05ZAkEkOpcDSE%!KXRWx$>L1|)#S~NkMy=af^wt8 zkAo*wo!8x3mr)yXYg&0J@|Txa<|7_Vm`6vr9j@T9{|?;q)@-9kDIF_$jj$a44j81I zGi*%G1BK2sR`-ocI);HUND*_hz_5w?#qzcn?X@-`LgQpXND6}IfG0ln+2)d7#e;nv zn3*!bamEyxvjB51vZi4^*62VZgpQCI26Ywa4AZlBINBSt4a+A}WXjqWA5c4mJlUgT zM_H?y^*n6bf9I@RD81PI_qd!qI4;%3IkI8gwW&a?!HRzB2ioyD4W%zojegXFj?*&> z3cz2Q6;S=X>^u1~FoWFbQ~=&67@#B-8V?=Z(4mjDehn_jr=ZL%@wKomIY>xoEZ{pUHKz1Tbw2M2c}JqG>5tbQDJlioazMVTKc6GQcD|dv)hOe)7s08F zBZ;JtVDx5QiZ-7}Pn(}zh84zLw_eDTL%=Td;29K{q0aE2P7{*NXY+d5^sZfp#5n8n z2)r0H!us1%kSyo4v|Pp?RWd;8GqSRNAL9{*^{^nMZt>CJ^~Q!nRx6Ya#Bc0+0h2&o zJ^71H7)2pTfGs_|D)E#F1p)^eFi(11UZPQTADkR+mMd4U)))GC zb>BK6aa?G7Hfw;x8uGnBpwpVVg-jL~@^PS~ge-EBRO?dKHK&M}+_kbn#cl?$x+&VlgcW zW&UY*?7{E-lwmt>_SWoTvmx0izrvSDHx#<@92rf)#ib=2qQqmr3Vh;YQC>EIcw;bl zbNOK;RO6uA{WS$tIoC`2UdVedE-r#n2txPdTaCbox{|VLC=mfMu!4SVWkuf@*((z2 zeITQn1P|d=FXTj?HpRUf)2LZK7X)-B>8h#wS-@oksV??;x&yl+R9Pn) zwqS-LR9OI7#>l7-tTzLx5bP%NyRP2OkTBagCO(F5+j>Qz@Z+M9+qjk)az~97_tc7_ILX`$mVC>I> z5MpM7C`SqI5M9J+ZjeUkJ%BKj&u3zEl!%)5SE>_ycZh+1-RieL@1YtDl1>3t{uQXG zHC9r%Lh+P#Ewbd6scEVgrV(5=NE55HI6x8(I2P`T7uC@xLaEodV=H=pla7P}#C8Jw zvL`+v5M?Z2MMXuivo9cD3js(*H3+?iL2IO!ozJr#9Z7?7I0L% zmWGwy=aSN3W!}}G`r;xMHA0pJLvL{cktwFWjeRoNso9sn;e zis`mPbPI&Hu+qU@}_D`>6d*_yYvOFt0%-%NYC|h^7%TaBueT(9muu zdi58{7~F)yk2Q>xRepvB1mVmpKAP;S#PTMc0n{hT*^+Xmp`dtXrlX4${yermu!Z;D zJ#RIIrbceGZ$rOjbY<4#E-o99cmoMRMUA>M0vPTqpz4=9ce3PFzumt?5P3yv_(8_;&~<4rW|`3JI~V_d(z{ zz+>H1R0z{X!(k1`>tJ-~PQ@J_dV2cn*R7!11sqxQ^dpcPJrA@i^<#yf$xfe^|172d zV(vK^71i|S7yvt<-e?TSv#|?=?99wgKvN4Teg~+UlY}6Jv@w@y5Qx5COa;@w^KYl} z>2CCc@?yFwv(lZgpZ&mU(z-GxBKA9XR%_>3bjP1>It>*Cb8Hm-@fvpI}JV8D;C?dkeW*eet zwLEh+QKtgoShkdX0v_YTT9P?`@62mo{lGEEj3^&kPD zwVkg+3C33h1`^;>09ZKMfPVS7*$rb4V`G!*K+Syt+O%D$&ab*O03{cEVLwPT9On6f zlA@TH@~LN9EayGtA(`gypP^eD0P}Alg)su42z#KDP!0!%?$k0lFoweXx#>LK7y@p! z@a%87(@-q;So)ST_r&P;gP4|lg-I!`tHLC8^w(Neb|U}})HwRKm<$Jc8KhE=!2`Mm zfLXp5lO+8E!+s&@j&Mmvar6TCk&+W{?IxWRxGxpJ4+up9crswl z)MeALtx(s6$Pmpz0YcglQCj$pZ}X!UdsFuxz8;UkjIU2dKf$m|NT(r}{f3rJ4B_n+PcE^C<^39YzIbwH{qi_!K2 zj#ryc-+lG^HB1>V0iAWG3*OcWn9-!({Nylo8G?!}HIPeT7H)uy!>fARDYe3(*n!e` zflie<;Ttpxt5W>@`7_Y1056Ys?9B_O(Df%K@UB7a2tbDbS}856 z1~mq1S}!XjO$5O6-lh8fs&Vk{JVLj@Nh6Q#e3Omk)qpUufP`a}M>I%eW~pN(;j zmJ50XAf@Utc}uVjLtwCh1hMdAJj80STMV4vonQX`{TphMbz$d02a7=J8p1xzu6&p6 zwR+}TJ7OmZ347s$BE?FdYAC#Rz%Q?hoCHLC#|L?h(chWUsVdYWx8Ng=zKVY9=POEi zr5ZG!P}q<5RBe{NR1l@Pro$?W(ti+|4~ixyL;m7DfcT!Dx_rAW8*CDc>ZpJ6XBz8= zPwOxUD|L$pYU};x+Q4ZIdAEhJs}5NJEe6_2CxGHSnG4#|86kucY$s6oO^#g#WJul5 zpN25O>7x`Bh(w=FK7^Q{M8g1v7(opdDs)|EBaS zas_k>2QceGsrNqm8vXga~yf#;E%ynp)^D9|>6hm!LA`ORp$5C?{mGbh5m*2?REpVopb?RX6F9Wm zKi|PGNMhculwhyqgv#?8j3owrkS5dxqgv;I&#@4EOxLZOzv}D5!I=g+^bat!D{7|5 zc4iH`zl#OI01aAt-}dE2_lp3-0_-Y6FxnF{+L?VLYOmNuIBy-yak6kXLZo{CxU{lK=9UN%3+#Pe$5`RDQgXkAm!k=Cv&D zRI{Bs_e_Uy91ah4kbt#nst|bXqTq{6!7~Ao20@ff;DUMqU_0S&XJOa}BtZeRsse8* zc9mR3P0a}a@?bjwA4&u8DbVpSq6#hm_?+{(0(U|I2astd0H%Vl53q+=gq+=W<_2b5 z4v5o%_zI-CAO0E&elYpZRue)Ygz*tJ9;#44u>=Z2kYhb9m9&x*1_Ts986(<#Zxi55 z2sXoJ{DGBK##bYRy$M2i;L8Fgz+CuM(n7CFrVHT7VC=!HWkJdc3SS8c2?lz4u%_U# zLHP{?l*hO|5z-d$b|&ypux<_mpsTg>w<=P$Jn4>6-I3VmedaxQY6ayoG@Z(~s&tw9 zgvp&BuZ8!pt;>VK=N9;R_;^ZwDd;BdMhBW_scl$XJPYu!$6K8tc9X=0M7@p-DMuC}^YqTacpiP)EXeC@u5S@Xtn?k(muH zTzOB7{GpNGiNl`7oqO2)+oo#mo#`xXv0~pcc+HH=I^<(onAohKc|e%N{2KcW)(rD6 z2Msy@K$yhH4j){6*NKo2O4;o9u>v$o>N7Egi}`d41@nata)NvRW#}V~1yH#CcYgl0 zfp}2!lPuUp3tnkXl#u9lCizH%?{RGH%OzvtHX0UTOT7#BH2oa#{3N;C5$Gf-`+33e ziGOMo1#0x*D)+6*qo5H|&M*Pj^TX|q+u6_Ks-0eIpB?m_eDk4mHTGAsdRrD0z7Bpm z=Hy>AAmsPrII$UXR{;g{QxmyYiki`hdABnMz%c-Vp>=KGJ1^7l^O|kp&fl9epZ@KB z*&yFd81rts)NDA@UJnuQiV#XSqlzyhXMwSGs(IB{^rzoTbp&aYoU9iteIdQyfPIVq zaPi}RKoop%Ez%L?mD*)Mjb{8cYDdB)u%*L?tnvf(i9AJ?2Q$qvxo94K;rhQT$1I4X zsgTRV-DY0S_8=7;7dt1seZL7$jNKX2+ac9<ed3Yu%w2mL=zA*0+Vmpjy#H%x6!w`-YLk#8V7{bZ({vnMsos|JBxrm(;pkp2b;|qdr2JWo+$~`)}Q~ z{;vD6asWwY6CUr{cVH}=+-_eAkWe0XMBbL&H}=k)-urQC&x|>S@WXT6NA>rF z9r@sLxjwZWV9Z59bUhp4Pj?ln=gt{s+b4Xxow6qLZrOm6$vZZ`f2*e&Qeofzv(7>- zQV&gF;8Z+$^X^k6wQGZ1yr}i(!6))>|E;9N-<8}5_wsEv_U!5Hz<`7GkgU2uushPE za3Tdi`1gt2#*+AnBZG8n=6P@DNM{=bCi=oJ3zG=V{Qf3;_f11;9pj+}$wRVI$mLPy zc=LU!T$XBz`0BxXVbBb4JW3vAES}|!Y0XrdyR$%MLhjb@!5LoNnvyi-v7o%{u8upC zmc*isI32T?Vsl*lyrasmWLJb{2HRJF_G^y@M5eOY;!Q}qYy|O+%8HY3@)ywS#ra3G zz&qV%o>6pa(4XpOT}yA2A>PM7%q=KBkh3^E@*E7|(V^;sLSJl4)L`euk2xgdJL zzfjyXkkx$l>pr!JmialPKTr0#037Djh&&NukUYG7eYbtQfIVI43l@M6NF&Arp2*0u!M^I$>P-3xMf>C zsCvS;B5hI!ud#Ef+r_zs(bl+1QhbAp2&Vy9qY|mVrUd<6wvh0ed^Y5%i)SH=#hMGb5$Kk2RsHYX!n9D9c7RrcN_lKl114=Bal2NRm4^COhTC0L;k|qJT(6IWUuAP z@EVC9okXB+ZYuCnA9pa`T+B~A2ZfL)X4NiqQ|4buw0J*$GBODnYaDgdZYp%`GQ<V3m`$E{|Ou$$wW(D zGKJFB%T=&z81>7YhH_L8E`OvxAx4VyFs#!uwHoEG=DffhMwuRTe;vlbJMpqA#uDiO z{YAtkr0p|Co3S&Qn3{u+&?Dx`j*ES&c5=Q3m>Jxa`M(>BWVKmsgN223yDcD;-znsN2)Yzix67 z0k*G->W-(cilP#P%N6&Pa&+w9g2&N#`1sO)n~l-1y=fm^V5lrJEabFrZ4hNOfB*DU zw#nKN`=5Szz>bDj!^B%87H8AMYrp3BZ`Bt5tvpMa?x=vq{Ehq2PoDK3e0vb$YQ=Th zC#umaz{79J`o7CNSUE~K!~e>uXZ|e!OYPMM!0yz?DR8-Jyos|T@=lk#8e`{Hr>*2) zEI=}G_(fPp>028G7>s)I|5dvg`0FZ`Uu6#wSc|OZO0lLbiRM?}rFwn*sBhq|FlKXuIpY(xS^3$aY$G0-;7 ziDJfA>hScVFaZw-DzLbfT%`SXyH$MqdHuX#^mGpsWBZq5+LqCxb3z}On-h&MtsS8U z8~G4zh$ji%{4p&B_C?^`fHFC_Jox^J;M)uu>ZU>rw*3;#7DJVBuJ$e|L z9u9e3EO=N1$aW3rB8gQnkQfM}=DqM*jz8Ce^PowH*GR{#MGGV|$R|yP;(n$6eAZQ# zo`WJ4?|vlpY^kgE4?$wQK_1p4z4!&1YN%*;pRQ74I$*Xfkw+U~d? z{-1tEDFtu$U7M)TM1rtHTux3=0@NdU5o7aYUkCzt{tK_X2yiCc{fcPN8&7=KdOeed zct$;sJiM30b9wIGohqkQ+xzfm+)uswE7cy%b)RRb-H?QZ%!lyfV)5s0Xe{#FLcs3N zei9#Q%s2l?0+a%u_BxG7e-?|&LEkr7&V?FnVsUDkfEx7`T&t8IZ=E0BY0p>3I4wYRWo*oP8bWch6+?bOO0gaVM+{U+a zu^H$vE^KMb-G6_KOEf-G+j&C+yx{QrwNu?^3%OUFFCV;@M@+f@Va6)an5ab2H1WPX znOXi|QX48+=+C1mK30m~VPxNLK&-*fmdsQKbqmkvHryv2BmVau9XA8I&Wr24Kk2A1 zV`v7*CQyaR6+M|R0jMk%C$BpAyY!Y5?Wd`5QUhfHm4`5D?H~EXF_QoN7KHtQ=cEN4 zL5$i%C5WFhlwH#XXU-hUeuLwkfU^O;47e8`tSD#N6J48U`H{}0d3IS#FqQe74QoJb zRbs00xhvP16o~4KU&~Iso2w|Nz|($Ee#GU6$Ix?~%JTBk>lc3D{rcS|e}-J`?Y+=@ zil%xz)y&?C7k&5xo#(!}e187*eIc*-o?1?d@xnxbfES(CU^Ra^^XH8}`^dA^r041f zdJGoukHs~nw+@emt{+jmH#JT!-*=ic)on#~cZMc({j;__8QUkW_?BmnFe%6ii-l(% z2bfwZk8Nt#L>B!C!af7b)mBsKq^w+fZx8W8I5)CQ2(0Uyxpiv@0Pb8ZpFZ+y{y?m>i9s zXX$q_XzxbW<+ZqGoU~8KYrQ~QIX!jHwwnz~TYR|-NgbL8)HpppuMbp)+AXK)yJI;M zm6?AO)+e85o#k-lWc^gUq!IQpi|r0Q;W&4(wEKqcQf>On!`Gc;JqYQVPcl=+@1hVm!dTjQ=Coywn_t#sC2AE{W`XsP>3!L@LwtgzxGtIHxQGe3S1#?=H)Z)?*S{(tv#ps6>C4X1(yrrNxVTlWk9928%<7Bw3bSK0g)$oKB9&oB;lM}|lvr$AAQ?+MUUMMg;rf@V{5z z$1A%Oq@pcVpO6VFlTaYNzvfpmW}FtPhy3^nf82t4=GAR=OeLK?Qt|zD2!(!QeKAS1 z$VnS^=3gZY7e7VaRPN5_Mc&o3`%x^@wEeSW1?PqOU77grm+15`?~QxziuG+zpTcIYo%%?@1kQ%E1SKzm1M4- z2QQheU66Sx7c2G7@e$L8Xr6)(3;WEj@yhPbHKmN}h>E5pJ9psDQ>M3`tzntzdZmXf z)QvM&ap$Ar@PSHWs}!wENgj{?46`i5m;qR* zsFPXjOd6JGF-~E}%MLS}jFu^N(8j)tAFUwB8wJ+$eCfuLtY7w}Nd@^_R!B%-><<7TZ zqIWGPu%f%2qRytvaSJPMwu>8&`HUrVnnaW5HiRxx`cgeo`^Er^DagX6L1pU;i|Hhi zw(1h#NVnJXMqwyynUN>VeA@PaEXmLnw<3*=dm{-Vy{?nJ`;P1WfpVqm)nzVE>aoI` zbYOWU1~BKGLJn-hwV1OaErN__Q`6?X^u2wXetkQ1{n< z!AV$H)4{@(cX#&{OL(w*OjszV)eO0I>-iWSaRFyl$TmVaju< zrmBHaiwd?}8vIX(-za>>%7=ZmSXp1DfmMhJ!s(rxg4E7bT4|A@Cf1kec(NY!CKs>W zPCv6mrtv4!WNG5puVNChp+5fCKIsGmUlU}NwX}oa)73P7Y4h1w$4yD7AXG*k$_BV? zVVxDR&a}t2NVFaIwdfCs=Vrsl#%WV+9J^RfGELyB%Z*;X%f2dR%M~$xb+xm!()oR) zF>YfSvko+a;YY#Llb#DuLJx89*!OM`znNN6p%HE-4k zZ|O_DzmRO|c8!&q!|`J84HWh)$F7koXZJT=VLOK28!INaUPgD(OTV_Md7s)jgFD#G z+|?EA$nWGdjTj%wcuOzHK1xLPN<5;&w&KXixEfG=CxjwKlJMlaGS>7R9n!6kQ zS+dFjbtW8D_PZ`9=|3bIH_ZBepZ+rxSev(R0_$%x@a4EoAx6OdNzz~t0`7|m!Wn~` z^ixI)E!dk0g5G^`bPh(s=xs$+ZmqS4xtgdgat>!ET^;Ta7L4QN(q#jFQJE8}BHrc^ zTzdTp+S(u|FADm*qWF@s6e(vFkauo)jN96Grda!DAiBO^2`36Au|ypt*z|>-^Q7;7 z$gnm*hqDOEJ?+^pTgxY_DgQeL)T!<{C0kR`-XR)1q-h)XNi_Ip{8J|0%`U1SQyj#c ztu&F?V(?wWxMR!wb$Wd{s(xfaU^7%XOLt2(DxQ!wlf~aGog4UOm^uE|w5SZTmXCs@vbD)8f#5r`ztx#;pqNDBZb7 z1=&$%h#5ou#BIyQtsJMVA8Ve3afA~NTG{85-JRk}C&E1*yM6!I+Cj**fM@9xzsV;) z!g%7?Op%?ksEZ&hDqM#ffbWtyGdL7@FD}V>rNKWHeg53Lg?v#JCS4F_FLLic0o&hW zYs0Q)&K)?q{D)sU$-O=~@qkL$_SYNzU?aIzSJ$9CzE=!!E=IMx=&mC->HpA>jK(ru zRCQeLSQ#t@5rnIG{P0U<Br&_ThByTr;*uj;uE!BT~l;)cHJ!>fMu#%84lvp9l#&_6_l<; zxz=dqik+W!4!^N*aK9k#xy=s?)SOLfN+lkxPlnTjx&d(-d9E>lDf76c#8hQ3M0!pJ z9&2_GpY%jvKOr}Bugo{@f-T3&lZo^FvU~4V-mzVpzGq}3mHF_EMH$D80LmaOd$jc1 z*lJxb_4Kx#!2pto^T@?HC^4UXeHU8xb+gn3uOHKk zt}%pmBF>oR!JTV|ce-Bv~o(0M_w)?4L~hthuA4tQ$TbQ=J7=QuNi4 zT=2iAxm(QrR!{5NrXgQy*+B<}_azW37!jk`u)^O!0tIP4K9Ac*|vd#pAJ) zq5D`v7l;?KJBRLVb6HzoT-kKrTl$eFT=m%rx(#*T9v9Dk)*#bUKXFmxqmo5O{Z-|R~`S=@Dax*g>dwk9~ubS^!TKdIKW=V9hr?YGB96#<4Tzriuvk!tz< zUp%!rVLhYC(K0W1IBGEjCyFai5k=k=!Iu=LYN#K|`!QJV3Py+`cup1cnjY%LX%4~? z>HRvKSC8D-^8sh(7ka_n?w-E`dTU(P2oWf7!GztoFRFgx$5;-@f%q(rkaLs>xHqQ4 zVy#%}wfVrofZq@^hcl5Ir41#nyV`M0V}--RL0pWyIWp?f$`~TTAN90#;_~qH%+ul( z@81P?3Hcw&)!%13@2BATN-P`5u#@jd=soTL-@$B~;UcB29}~FtusrCu76mLS-gqx^ zng%d)zk?m=4&L3nYykQ1M(Ms?H@SP+j(2!dG;gfp&Vb=i-~6qlcIAL(uN7&&v^Rwk zARHI(v?N~tGpwi6J!nCX+~-n{vt8>TA@IU`ZQ&ey_U>7e+U%RP#90Y0+sTuk8e8Mr zevsG|or5Sx8C@p8O6@XpKE`M`{<(H?ok>$df-EQ&_+1{kOS_T>zT$>#(uZhKlO>Qj zIb~y@G_X%rU>l9AVDA`a#*}^tmOFloaGCwuuToCnsXQ46;f~f76Xo$% z?p^`p!?HRPIx8dx8p>TT`R=+wgxHZGpySHtCy@y|fpdZ9O4L?56R2~|u zau)6DE@#2s$}(xXn~b}nPN>1bnZ)j6rdle&;4bu_cNgb|$CmM9$=&BtUe@rft(i?v z^}3FZ=D9C9VuuI|YfhQ7z;E?H9lntZvfLFLYtA;+3h;GdpUGJfdSHhcd-sra#`tk%?y89@xQ+a zV#9Qj%r@i_VV8SyHQgPG)-ieFHU)j-bI!)L_6JVm&|#?jk`=5zdm8>R9~HKrIQu*P zQ%(@$P`!Go)~RG^xDDMkM5lT)p{QkYv34|26F(e{Nan@AJE7PieWq}&J!9vyX%UJW z5;rvWJ4J$0Ix^WRwZnLGO&Y(n_LYd z6DZD$Z@`k9?v`xr1#hKChOQ3@o|UxI;I`F>oBE-J^RRV(;Nqs2UyH}zetSIS*&Azh zHj@pHlL=>D_*uhK9dGpBaB2Gfny&WnR(fIE%%y1?oo-FU)+_>L4hhls!Cvl&#$8T?f_d zr`<0LPArrhA-XRwqP6x|l^dOPqnF*K30biHm5#lqW74?Tc8Bs%OphVqm>HIe^qqjf z{k%R1Ks+kQu}*U7WcbHS)J2n5UBZwjyLXN%eBLj6kkrw}SN6Mi^uT$lID9%mUCPmD z3N|F6LInvDk6RSJwA37GRKcr1Cq1UUeN-X^GY*p~k0}qc6j||-r<8b0D1&`NL_fkk zmo9_X;+j%iDsbTI@5DpGVt*t2CB7U3E;~Z{3%Ak@!Nofd($8dSJ<1=<{635LcAR8n zjb+@kXG0jrMmr`TWU)^dv3O#T)V#pdFvh#?bTB)Jk{0*2%^KjegX_Y*u_^4KbJ2U4 zoWx5!u;cv%q6b|P;#BkP#z!HhK3E?Qo$t7($|&u&QLmO_@LnM1AT}Pn07?OApI}G@ z9euHCfq0ZG%OWlYLw%kqQ=(WK-KLhn!}mTEE}5WIEpRKr<5BU>0@?a;V z77ZzF`5tBgDm`%NlCZ1jbwzd=ycg9h7Qf^K`9O`|k=cttSJ$T#-|L*IElkKvuXMKy zOIZ;lxv)Jw_(wk&IYI2-JTRc1jx_YfvBQ4DAe5p-KyVXdM z0F{jJK{GnhVQ_93P&XdZN{^5CV)I^qyvaGe0sO~?%nfDyRHD}|exmKsb{q-%wY`|; za+ra9DyRJuuLn86GP<~Q6yr6Fn-D7{c(Mo1_v1-svXOXEVjsrO+G>qeM(M5VG{W6k z>ryx=j$k`5Sz^xJ?QQF|>358#$-n8RxMt+6b>m;Ey?tHFS{v+yXZD8Qw$0`T?Lly< z^45@C-$rLd?bEM*=UWV?59oF|t8iMUM=C99&#OUwe|33buT9i+YxN)v(nD<)rn?Gm z+|&<5H6XiCHFovEHBI;Xs=OP{^(2t0Jnl<(zQ4UqWt{^F?L02w#I;#MWNUoT|51^zA#4ChLX*sg9MV}-%*BGu| zyitef6Ia;xhG;G>$dn14E{6 z;P`*6M-tB9l1i>t=1pT~i3lVjHRHn%4+3aOm0iqe%mAryQX4{`GNCT;#r!b-6_4oM*siDKrv? zZ80)%YaW%4qn+-llh6?m zNQ^KBo99Ck6ICe>A|B_y554kKdlyZ%n%S*}lzO6WuF@|ji6<(mVA z7*jnbY&Q+b32GUN#wm0C(At&>d&47tmdY)jj&)E#x)!tpym+}KPNNxG zQG+yVi8@Os4R+DvU3T2;=Dvo1Y?(`+f}?~HS#ixj-kY076UUFWJ-W(_5sAiyDV{X$ z^hmNHI}>w?7V9{u8aMU5V7`UqT{f-Dk%Fhyl?6<7xu?Wf-Yos`_WB+>ru2U7uOm++ zh&##3xfy?!V@HaH?|=0*f#6Kub-{OQ9&_}Cyn)Kpco76=%~Zqc3vUGk@LsH9$`ai+ zl)>|bi&6_`D%n_s=e|$++7vEpWnQ2hqo5@w3^p%dnWhQ_gB^VO?@2?is^Z*tO1s1R zQVg2>OXIG>LKjGia!wbOC70%1W9`it9)dtL`_s)8LA2xY>ehfJtQ|b>vBTjirxFW8 zY8I($a5+8zxqlBzS0n7i|DozVpqk3Mu;DlsMo}3nDotNUQ9w{ZK>Fw)3IZYs2tu&X zyYv>Yq9C9kAT@<14qiy$3Y3&)BWIZA*@|sS|_PCXvel? z&>6-DqX8XtX%_zOGVA-n491t%1 zLGU1?&z4BP1SsTHadqtfAB%CK7CWq!+=+l;2+%$xK;=^KCD_demLQe9nRh)7Qpq_% zLrQz*sZBisKL9u2MTotso}v!Ey<}~Se&9wfa`{>0@~42x>$Chew|V*%lnSv)Rs(8u!$ zQVw0U3bEKrT~>9Ir@ES&E6OiXpf3Go#Zzx{89>Jwzi|0z&_~7hXSf1Nqm7pI1QJ*& z;V;&*&vNCjTsmeT?eG{dDxCNK)*}kra{ZV4+u#l}yk{{vp?m1tajX0-Dyo_BXb8Jhy#L1Ne9BIr#|l$)8ZwH_2Ri0$S_aR1C|{VDIB_@iPDrO< zRUD5XE(|qc{29Is*T01#zZyoQcC$?Q_73+9Q%ofaj>Zd`-2DEa=DGLnw2~qR2A~>$ zk}A*4?Q>tiWRxee(4hENXR@mZSzRpHm1#-;@pF89ByA=RjS5f>vB<+~#xBhGe46?gnhj$&5In8vQM#KKQ3(s$x1UxJ{a+f{mW1ae1*7ZJ;T;RXlb zktBEILip@PX#_^n5_E(*%Ty$!+zk&N_pqPn&Rwc^m|To!rNBQ?-M##-3P`y+H~x6K zG3Vf?BLWZ!lQ3=5tUk5(&%`lJ;FBh(Jo<@6D@>EMRj$l))(Z00jnR~M8DS3Y0_Mp~ zFXK}yR?{sR?vXfhQ-yaCJzL$GhkFKTmMHX|-Rq2O8uK!uJ}RSgZDsp5Xy1ZZ0Y_Y( zKYVHp?@ngyblp-ou;w%tvjEoOp^twv+kvN@vSeeiGV$`3=0-LW`*OEGe2KO}7xX_VP^;GxN84Axs=zMqyARtgJ z@bdJUk$D@&K%SX!xb)rRlFhNwf6S2{NDfL6FwrkYH_AzhP)GD7ZEYa`ug3y)^ykDL zWf|)Y&pvG5`W*G8wHHdiSS(01l=t%c;yeK%uECXMC|)fYL!@ZI44H6VX~>L+n`Ujq z+@Z-_+t7)!r=Dn(d^Kxj%_ZMEwe!z$esw_u7fq-V>z1ItHmQHu{}=dfa5%oMSUsxf z{_6WHa#Jo^Y2A?blj@N2>*I`ut&gZ?>giNI4*wcK-sUmd>0KYs?y7dJzIwlP^hNFC z756-+p1z-f!*@t(kiXC#>FKgWCXRfgl~=4c$hY*D-a(fiDsu#Iq5zQR-wIZ5si4H# z3fPv!y5Yt1&E`6;#e-AG*cJCNvAY6G=r2EdR(@?0q9v>-PU9hDlXCNaAJ)_|XC6pf z%T~o60|Jy%d4W?h7tT-aJ{b?oRtQ1C>yR&^#Combkg|)E+Vy`H4dgl4wdLKDpr>fn zkW=ve14y0F;B-gj7ZbF4mvgAZGOp@ox)O6CkdQCs5NIsTbX^QZv{$)+=y3rW=VlPj zYr+*}1=gq%i;+Jr>v$ZRgkU3@KiJ6b<n-8QbL;Q zJ|>yWc4#@r^{%gtcLcXofRqpE7jgZFGficuQjEAArvp~mZ2xbCEhO|h+NiI+vY;hn`@>OVja z51Oww4yfj1$HWR4Ga=Om0$o^0uW)S6Y;*!jrJZ(M>%$QwrG??ysr2@YGvWGT`9;i$ zhO{|hSy=k{OqK`&Ka#a(S%QZoH@Ca^*=~iG!$mmW!(XjwU-DMs5gREkA2Wn`{*NcZVXe08 zQRhfO4lmk*>D&X9>iEscp6ZRc$rE*Y=kDfSoR+e-u82OX@k|5lP$lLe*{$ad8jO^8 zu~P58dI$*h+IJHi-VI7`*?n}w)00GiG}*%sgA!KLIoZG`!`1i(%?j`L&aq-S0NaOb zyd|hUmB2)S@#z`~`tu0tlE3D;Spqm3#wpytFHu0T%gL?|$Y?8LbUuMr4w^&$n|Gmx z<{0AU)20NUb!`Wv|td?o#bY%=wIs+t}wi%HPzdpBZBIK|0(jG z*p-qd5Sd;=Yq5CP6hQCstvsJ}CM~h6i0;&TarUdAup#uUueI;#MUQMNI(u?nW(GLV zEYD`j3dM-ioPEp`$8{KKDG$oZ!udb?pFFL2_>zBRR)sw0M0cE9f50{UHSRfScYv<2 zbDvdoB;*LM;l{EA!=#^$v0^JhE!uw`+_k?x79c}k)uBu}pTN|dAt`j8~RSxrXi69$#zrHM} zQCuL3oN=3TxnF^1X%H1L7qzH$PA?ot&y5=h3^`=aT0aNRn<~doQml(;%pX5CI*z8G zmrtxc0?9lZY^1wuJkl$*YcACO5L-I@k5?*UxAwQL5MH^rXi}&7LtCzw%|}R4V?nbe zR3}y?h^H=3O7a7iriC{_{KX|4%@|l zJ20%M0$D^M59uCV3);i1*o8?K=iBpyW2Kzo(LOLx0HXoP(Z@e9ebeYmYG=D@iB~|P z|G1M!`$f^v&&5;UGR@~RD#BbffDGQiySw2uK|T`j?`%8#x{jV$21GRw4Oypf zUbxrK|L*0%nBJT=*GNKe+3JL0Y`@JsLz&tBHofZXSQvd{x8Ag z<(k=4y=cA49}-l0`4_7Spb2ufQ&K^_lxf?<4=CZokW)NKmxNR#c%GxleYZKkU~azijJ24-j9crB zmOL&g&&v|rW)pE6BL$~EuJ!(O>&?%rBo0X0&4(pQmCHuTFGLlwFTHxY z)4eSIj33M+j@1*DV`&CR#kll>$O)j`XUm-r9yfl+307u}wUEASSb}7s#8^B)lZ?dO)XJ;?1QZlVP2^mm^ z6b?A{EvFv9m+<}dwRq8@WIhV&MWbNuCzv%6i4~_q&qUhq#k7fhnaqkRC>TKe-}180~a1 zji12yw9Low-*ToiaIWmZxHYF*kbYz+ho^rul|D{4tv7>1YoZ|MlRF|Hib5 zDo9V-p}f+!Vdy2(snWSoT}gK1aO_pd_}t0 zlfiMsMpwHjH6S;|Ty}fj>GuZs7XTC}Ox<7Ftk;0T`Ha5`@8fiG28AMoKbVsN%^YMQ zJKm%FdqttNydLmU;!^F8C)~^pE?&^p6@$5eOx2T^mro(n6+?61YKhACI9D$Z)faA| zboYeCRrM;8qLNEkx}@n9ppThQ6u~nQac4cfT)zghdmms2f}(~(CR7gN20_UD$lixo zaUKVFG&3!u)v+Ra?uy)_q8IZj?MtF%d;G&}?gisVV|09epBwa2GpC;e(koh4mtdaA zY#Sa?Ko{_7Vj1S70%H*ZC?^OgGi?QTIBfPiGnX0N`mshA5YmMKa}bo#o9V~yV znbs|_HfJtoAmfr^Nsjn}I9wO#kAWV4;N!O%{d^r4=&_YAAf4%M(@@&sb6$ZJ1kEsn zDXEt(7AYLr4Rbx`zJg0tKHWImuCi=fm&1;EmYidB1Lj`dKGG8b6vv{x$N#%}8ZS|- zB=55H!JHY@cM_C1bPRC_cv@M$_vx)QA7+Qtah|gjGZ5=ujw4>z&bS%!SmFHCv7Sca=Bg)uc zhONLf2v+W4<*$AA;4mqpE1i>{ww|c-lv_8sfVp~)>H6RzND91u*3eOLAxUnX#Ex9o#Huy|&fJoD z%jMs$wO5mhl<-e_R?|8;26i{ptWlvOiP?Qw;~@2e<4TEYZj3DK0IocKmF3(IXe3b6 zY66&Zt<0~CC?^drX_|tP6>QFlc^TKXC!fT>oqjT4G-8nD;JaA|{T!sU33JyVTx)Ui z#u*C}e3;f?w+=D$G=M0Ah=W_1@*iefUtC!TX{!Ut;n^lgTkzcq+SD*4IUL!K$Y>P@ z#;&z1Iut>bymJb%W-8E3jfc?n3V{^zGI4!%GcNtzi8_k}YUM*z$~(@*N)7jEP(l2g zk4QX5+YrH^tiq)3bK?rG@NmMMlsu!>iya$4z_ zzbq710)FZkEhxNr-O>G`*|Q|wsqf40AS%v(u6CixAjJ?FITw+SLem;f1`X07!9z=o zWv^};IpuDMk_&yMLzc3;Bc(38jNQLR;#^RTI_R(9aWJpdR+#|#CA+Mt(}K8)m|&=u z)ydyUdNWNSUUHzXDcMlFU9csiag!%UhV#8~bvcV6*H*F>>+dF8>FN&-F6`-U_n+Um z1BB_wVX3*zs7xcMH1%8}fUx0?K71LHzmTeep=Y1*6ONRci%TA%H*kr#0{hJHF7*KX z_{_j!9r9m$*n$yT zQ4%52N?+^%IM-L0&IKzo5SQ?||9PaeY>)mCn9IElbCbiy-H!~BpP=i zE(qzunEE1rH%vIe6|S8D8wgN)=1oCX{9oqE$wHiWEgy!N=Qg>zpKs~WJLuH6CUL(N z03%>o6ExBARWa$6f}kK{vHN}n^~c!+MHLXn$}hP)A_RlFkb9> zyJ_q(^iG@c7fmufkZn{wV-`}MuJ@pE#!4MUW*3UQ-+@y4^4oeWHVo@3Hq<#q{;>!X zE<9_D_$Owa+8~;I!}ZRs^io#2X>9U+5-Y1TPKju&faDn@UsBJP{R4k6W{RPox!t!* z8Wzg{t3})adK^iihX?kBsm5-4f%@H>)Q?aEyez%uz`WODiFGS%|6#|b2?}$TB6{0|HewMvjmgAo%cj@ ziP_~9_l=;ko#2&vw?14JfpMc89|YKk6F7jX(w&55ryW+Q3DqQZYcY3IQtAJlQm8^9 zhL5%;((O)%k)lAhKlt8m{W#{-$G5)C35J(DUBpfF6Z?gt+YNpy(E=@293AFk(INVm zCsEp&c1pEDo#uVNwX)COKin|Hng^qIZPAZwmneMy4u;jRe!MjNCdY?gW)unuourpX zGrodKGLC99yBt)Ng&h374#u=G=BL z5UC;a*1MpvtVtAHIngVJ$%(vjp>$2>ervscMt2!Z|ETGoJ+vgz9MNW0NMG(}X%khf z>9{Tp+?4#w?eP~zkZg-s>oz#1S;vP=D=TO264h>RvJ}*$}>@L^HC9o zp)_HV59!#vgWfFi?VrD73mVdI>598q-|=F^T5aZpvKQ5=9hHr1C9e=%P{MwG1_fqj z`+#UhrFL(93WMMv{X&~7CnZqYJ65n72>T_s)%?5N<|pAfq}c9$v%&%w^@PJqSWpnD zjG2DZ@BK~@BGeVESJImD&d-1SPvEJ~pWFUu`~1pr%UQoOQVv3*rk>64g0|?zNYX^3 zB;m`KKXoTc{9cg-?z}yA`}&nL=6|2?%Ak82N(M=l`zTp%=sA_6b#VK(k+#J8 z+3r&VNgi+bq>QFMoM=jfAItd~igIgI)&DqKouC?u#U2Q2nsu;qpLzah6VtNTHj>}q zHB%1O%1a%7e3mF@U_AbQvFTcww{>UX?OgN@;{V;@&RpT;b+^IFB*Jxoo(6GtRzo^( zUHc=aWXs?e5_O0kOCN4h`Uyo{T#F~!!}7l)g|da!vC4rTTzT9ucE5E-NiH@*>>N=F zOUE!=Iy!k!KB^S(C~1rz2GKXkFiF( zR|>s;BTIWYeHGge7s=QF%v& z>||8ybXiJ9R-jNMFu35KY2^On1GTX#7)WM!J)f(VnAN{9xL|oyL*SA_{dbf0+QVsQ zx~I}+5NJjAMv+n4bVRpyzqCtTqHzhfkY%4tcEKN{A==Vc)ft`23WUoc#R+f7+F zXSFeY<%L6VTD$CORFC8RoO`MAi}g|HF8<%`!bpd)3oX$O>8|UWYo+UrmZ?(#-!r(J zUM&SY;U~sDdA7{vEk(SDaV((TuT|Q*F(^&AIW{uSv$|sFfQ-*phNU{ zEBIWIS@}omr&?d*)S!WO-6ade_VlKpH*$=csZOp2)~X#?hcHnQK8WkFu(lo3A(T;E zB;*#$Y`p5zT8$D~9$IOX-jW<1{kI6CAP}m2C{XHDXoK(HBi}vSt9Ry49`l$zFNOD7 zBe)N1O?`6l{(zs8or{!PL*0bK-8qzRVK%0QrAc-t*UWWUX^Pv?WFKnZsTUful*GejT zgFVH{a3f4bGvM0wiy>#Zmx-UJG3DL@+z##nyC{913`GVXyR|tLR@2*SB)CdSO-ABE zr}dd*l@kQCF6cLGU5<*~#dSGT@?l@5cG%>RMSVd*U;;u>csEz~_p%04=dzIaH0dF;@~8#+4tJqh}ss(POo&1VnmuG|}fI42J} zZklT@EIPbrTA-{zPAIB(*@rAH{WoyAfz#Qv_cKas>#hc9m)k@^^FEOl)xFBQ^i zrq%E7*$_9F`4rcg2rk^(Ers&~Ip3C|rgznP2`?)1*!KS3>T=|gYiqrHT5sSnt?0{6 zeT`>FYBm$uKixeBkLn)B-1zq&E%=Ug25PI|{Ji|7#_7~3)iqn(Hvgtq9ulFp?4GF- zo1bJwHBFd{zhgr2%@%b|ZNf<%*N2m$?!&+KlYN~(<+`cPQ)V_sxgx&&ji+Wt-n#FN zeHA=~IE@U0DKOAPeSP4nh=}En#iGEhNph_Vcl)qh%qLj#$e!uStQR8&mRmnM?W)D! z+0_17X;y5bI+h-_ODQJUH6bvcF#2sPJF(<+fbb(xFZg963}zy!&5J2tO(=lJc3I_Y zuAXE&^f*nZ{phfAf#>wtePW{;Up>xf4GK!R$s>8{x5m*JC~5k_Dt83yRws8{^(%Wjr-!I(_67>HGMe^pW+RQ%-24Xs|fh)V( z9uLW-L4x|fPBX-o;AIUg!;{OYiSw{OaZSD+A%^1Q!It`<-_hVMWasq>JG$!q6q-lsF%bj4&J-=zDT zWG+F4{xLrOcRVPQ)81izJVy~5UPl`g$1em4>1tRmxm!v3t*-FWHg&va=rz+I%fC>^ zzpEb)o`o%_3uD(i%&FvNSaao7tL?LxI$U8GvydJ?3dNZWei*5`h8Hh|AiFx7>^tp0 z{=%4D34d&iy>4}j4@SdY;rAEK$}FgOmIRqdD}?6zq@(J_^_pi*1pmE_rY?gvT7nIZ zPbGy7INc2$Ti!xO=La`=IwtRSTg=EvH_x%3z>V%5l}C?n36R7Y(X&k2y-o);8B-4q z(~@O3UA^f3_leYf{A}}M7=>Y^2>IfVgryPO@>Yj6VLkBW6KZlP$lv`7R4&_++~hv1 zLWb6SYni(Jy~5SFOtTKrk9I%m>bkc0oYRt=djI7X^u?~0okkkf3nVn3?sWaQ;Xyv& zyXS+9$#qz_PmjNPCrO42iYe}a*iU&$3{6Gskt@Arq%td)Gd87!e3Nx@D9koevHsc- z>pBK+kdDx-RZ6pJ-}h8KS#jeEoD`CrUjO9t(h~>=mXon*o`s-3OyPf5$`;xw<_@@a z!(&mRNpCFe@y^;p51K zmaDLyMh`Myq@?GM@+-*l7fxCb@6kUHPWNob1ZzpIzR@}j(+HQDGrF0^tQzuYvPX3} zEW=v7-+O8uY6xbffY2H1B_k9iKQTdm)rweqTY^$R13~JdkiN&%Z^~05>%;}nhb zPBm`2CR+ecTJ~Z+y_LIP#;POGCpO~IAtPlR={*KBNegX^@{QN z)_EB2lAHGBn7;~E&K;EBAJzn4CEFvbgP|0Wzgs`v zgc_q+yVu$tpQnvIU$jcLt;*Vn@J*_<4uP}&rQC+#KnFYBJjyz4MQ8jJnk7`wQd!Bf zQ89~qTrY?3x2(^rVk@=IVRYC(NvbNmv(ba!aXQ}d_jkf6IQYEu%AKZcrVZUMK!S%= zOxUna?P3nU_b6NbX8y=3rTKyf_v#bt9fuw#YY8YPn5gk|11`GZ^*eehgyW^L!zOQZ z>~}A4Hlx&ftD=WC^INO3Anl}y;4T9}flvQ&zme}5(#U_t#OvA0(56zVQ@iosHv_%; z6Jo3=s}g^3UW+$dSWCZQJB{V?5!duK9(ZXR4TnAJ)#AgTi?D3!D$IQ8z>Rw2Hb6!_ zc@vviiX=sO`c8NrG$+3Cvw1#o2jh;_JcmuE*M9kBWXlcpv4 zdu9kZ`u*_#;OO_DM^8?m#1;G|DXz(#hq@2eRA_kQ939*H&_uWE|9?MhPuy~xzTJmC z7|OHC*ZPkiiBT;PPOQL*PR6vD!ViFH;ay=as(0E4)`j@#;f9;B@A|FrnN};U9@G9L z{@x_ZwAnPW6OvtxQdy5Jn&wRuPrSxn&)kV2hYsH$Z3E-ndv6pX+@YU_AZhtNN(UCZ zJb@r;rq-^nlb69%VI7mf`8)afb~lW#_Q?Y?LB3S(T?FOHj16CgEbY2N9_3fbisJG` zX~_Z_{f9k56V?d&lyyNtf!rEC`apL1fi|F8UJhQ9*72L9bGgi!g_x!g=1Wn$KFTqw zdo($KwR$u*&Pd9FQ?&SAYQ6Ck>9<~u7AxcrHy8IZ8fZhg zmmW(PN$n)bV%fc1yI~trw@rH3ssO1kDtJ|>0J6|}VP!JUQ!5U5)BA48zWgjE-&97w zPcO}}QysqVKov*k76tFTQ%dlIsJ{5QIq~eo09$c)OU;b}3GMtW<^aHd*Q5ZO$~EN! z!m#=wBBIy<0^=k8SMbUB+$7#~f`=SYF2-W&*QXKRy=LMigUt6~v=pEon4{&!uJ-Ye zniPMqdxLa-Eg zo77GsX2+cpUD-Ai1Yson#@taC-llY)N-Wa9OuyEYkjBX|;#3`F_V z`2Hv{XpS?iKUig;-$WFK46-b$1XH_MXLO8puKx>E(TU-MZ}U`pYJmADFBp4}eka3m zY$I7xE%Rnlk5`e#vt0!y?VIE0SOoqO>x8bXxNvlm%8nqZ;g-o}GIO_rqHd(V*iB#K zX@}S}*=4gVFR9zYAp^Gczkp0*4Gq&I^w2XyM>#R@V?<}Lw2*SEgNM}U58|vbAIo}! zGrST6y@!8Jc-WWc>}Y8ul|}!3F_Cuiitp6uf1)|lRk}Xx`3H@IH2xv zHl{-nPIvf9;}?4>Gp%rpDi8t?0-f`s(K*Cn zlbbs%O(YiUH9Gfb)A6%c;+v+#L0WvAWFTMkJX5Z7Jct@vU$f*e&QL5yINHt`*?7!B zbt(Qs+i`C-3Mo&uN@A_>&7$Am_C9O_`2<2aK%alG8$&;SpJY26sX8A;LXVG|b$nq$bOlPjJY$z~% z+jiq6cH2vbjmkySQ+jNeo;$yv6Ot}MHyWU5b?9R-Ac5W zG}1dqO6OX-fO6JLV2_0b?5YOvei~VcK2XKm1)jQjo+H(Zi2)F{GTDi$X5x|g4`#V6 zsav65De$8#q}V?-_TIwEG;h%cvD(&p$Wm{*nZVws8Euxj76H9(X=n&f?|1ABVK4RUJjr-Wa!?n>We?ar zCYShie@&rIrDR$GH2(deJp^z*&quqNqky$_^FWkaEW8A(JrC&=U-vLdmCw^H!gf0p zl8;-_b03&<@z=3Aqr+Gj1Qbo_3>_?)-f+mE%#H<>&HU507UxJKj66Ooq`%%_8voB# zgh%ikKXy^ZyTi0H%idgbqsIS0TKg06WdT~xK)q&0x)m!pSf|nNwH#Kw%+bB7ZR17n zK`$ou^{1mU+ zAs#g#K|mAoD(dfy>Xd*4k|DO=O3E@RF)3;N+0rG>#Hn1M^uI*ox2SSn0%oSTm5np- zvh4YLY3~6#$2m!BS#pZ64*^ z?rMF1thBc>t93zRqe}fIM784w;1fz$m7W_5x(xQ|Qb1vnYQ$;Q7`H+G9%hn|!_4u5 zU^J-KLnH&|ZRrCOydl>(1V;6UNwe?MW#kV@RAyBlkmEyX(cS}xJa*N_96DknrmRE% zyHzU2#7rHxHhb+7?Azr=HdYWpLp|t#{*XF?U!$f~ni8`UFL@=r2Z;>Nc(Ag#S(!C? z;lL8Y)u4{Q+vUp}&U?spshH9$4Kxf8K~-aq`IYR}ETfjb(=ZFXqf0Li5O%7C3o|sH8b}d*`2&y04bAcs z;?MM07ioBVEU+a79PQyxgN6G1`=9WFwK}7N_e7Y@*2I9IxG$kzJu0&W{1zfqVWFr2 z=UR|0neHkiKmBt_HC!yL^w`@p8vPwGC{y`N{oypJtEYK*&RbJe3B^mkjLQ(XUt>31l^Ir@}d|^Dj9Gd|M2Arbq*9lq9 zn7nzNz3^-6)bpe!Fq_P>Bbu3I{vv3*O*Q z6c>HJCtv`myx6q|ds$=`=1JU_bz<3GweSr3jTF5bnTTqlAWy17hQ^Mstj9@sq~@Bm z-)*nS&${W6+~@2>?W)hTLa>K<5u%Y4Dm#-5vWw=q!mPjQX_V4>P&!67MP08$wrMaP zf6@J?^T{0`yl}ln(xI!pk)$%G`elhaaZF37UlQ)Jq<$%#v{P4S}B?#Y8 z+h7k9zRYZ>pi|^B7i<#$x@w0Sk8}>i@Ab*7<=gh$Vdp>>7JHPwyVghCMQ zQsY#oDGNlYfCDdJA)RS9?}2nCFLEd2lrB@r!=gCCU}~U1B{BfgHO_2!0iud?Ogi26 zs~KfJ&n==(nzXv{FPx`OejPzZCY#ogX$2x5wD^$f0D-|kM{WvRp%#Yt4_b-K8YL}i z9L&v9*MB9EE`r@`A97vH_KxwRp4oxP%W^D4V=KMj%s|eC3e+gR>Sy6rAGu`Lm$KYX z;t+KQp*5g5+$#Oex%krQK5-`9!&E-U6j_K%DDCF}(LfI1N_WYf(v4tNe4#I2_&EIo zvV=oqX=*7*d)M{~<-tnKz{Nd#J1Z8?U3S`mDVEpJlA)DtPZBIEj{9bz2xfv01$`A$ zi_^G}e)gl;M3eSsiRxy?5zZQg!?np4r-Y)S++0n35eAJBKPhT_%?AIhD$73MUg;E- zwE{L~gnyjwYo``Zw8Tl7!)RnUs;n-0xXMH?SCEODV)cWX+$qRvbe<-9TfB+*; z{$6eerHl3tstQwLQO6YCx0b<|OGY;KgnXpqb)*#`is z=~GYZOQ18$^g2GjVad5^W=a_p?4F8ne6PAW)+Ya2!djOx_HfwAvT}H9DJ89sj=!0= zAG3hFGq+(pA5;o+CocoIsUuNw4~B|Xkt3)1aXdj*rzH?7@JKXIaWK)dO5|z2qNw!D z`zSXgk@#RX?kbt&;rD~PeH9pVG-uh$kAPf=8BiQ)N*Kc$9O4#<-N@A%WfQ@)aC~mB z7A-v%o!eyk^()XbC9pCptv-BQq*1$f2`)yhiu8{JBR#0Mc zY9K|_N~oLH-Hq7qFyK0y769d5LC%9}6S9kV6U%(aiO!CaKJP@mvj*;lc7=A0lK?W2 zr3DA`UOvr8Zm;jA2?-e%j&2t8uc;b4)a6-N+6!EAAx3(P3%NPAB0aZS`9ZB@**vpq zx@PU#eF<3RP>jqC#32^=$MiF-iVMVqqIfSzd6St@x?f9j{0*dY$XLYbF)YG`oY$Ut zV5zlOS=vxT1Km@f%rO_6{aIZADK1fHCL5Bkw$u)_U3ar9wyO`1f1v&p?DI%bcB>!$ zvV^2z>1rIz2yENTDdM|Hi>n5eGjAm`#LoLsee4bOc5(t6GBX##)8Ry0{-_QqJF@45Z;#jCR>Bk3iCy=1lt%1tEg_!tgyh|xInpgS+ zYS<+x1vwed5+!J+ec-Cltw5LY-yL*7>jU9pPar3O>Wx}JBfJtOyn(Zm@m{zPF`IPy7aL|m5CICNJdgwp zs3qTTt7WQ3{oj-P6doR$vZ4)T6S5`x5NJz4y@WxZZpr_Ixb_^;r8b5mh=%-WI2jx0 zCkxUAaAgT>q!nJ=X`xvan=qf&#dr5R@HDuCj|+-I9b;;iPK`y0um^IgQLl(O{)>cZ z>7hM*cO>T=z@h=1657Hlu#O)4jv*eUJvQPc4Jf1TW*tM4W8K>APGwzq_gYaUzq&Hw zRHR)>_(-NTb?U)y@vwxI*ORJ2Z-nm^;9wvJb?#ym|9vd#i1mmADZ65EI0CC;?64E| zNO^Iu)Rofxw7qk1;Eu=d#v=Y)-E>@*BpFwTD5`C^QK*~W9P=CV*!y0`U}*E*f^JpfJsdSGW>J(&%E1Uykb4WGpZ?%2Dxp@yqF zJbfLCT~BKT46T$Fx>r%hEYazWb#xA~jdq4w3w-Mzts`;+@X`mdOQ>>OX>azy$(-deoGvYCsuQx^8$X6YdqB&@dx zGduLzbP|0kQYqcry>%*JtW>xYFLtbilV)irC2FomA5!NBJTpO9^5ww;w*siOW=PIR z{{GG^UOa@5i1dAlWaw3Ng{Ptki~0n`U)z8fP-?5C}hn zoeWZ1M)=c_>THI1=&I&H%*3$>D*}ljE@^;YyD~O_J*At(NsPgNmL$p-cut>^v85}m@wnMolHKVf_Sv(6cU$= zEJzgj-Cu!yWG#cr2L^OLy_f6!Lu#f;dl5-!QAHJQ+TxA^*IC&$%9KQRIJC5X;T#1U z$X7v#<}UuWZ;T!AOc;{x&K*P&7c^%fUkVs_{R6gZMrScK;MDoX&(qPaJR*@0pWUA5H2 zg7td_l(Q#K^wW-dB9&>nd&f&rVl087Dq!KfpB)?vazN!^LfaF3(hp0W@N~)z$N>!} zq}8b--bwLhgd6b;`hr23cV%rLWytxNKMWlq$id)DZ#U8k^s#ek#>ErOW`<%pRJjN0 zFVd80W5m!Rn_YpNfpVv0?QcH@f-4?Ibgr%3#~*H6a#6^zfL2KTN6FOr*IA0C^8o63~G1J)qO5n(bq(7 zE>XB>icCbc9G!Ddo^)%qlJbI13NYggt-0cFr9%loNgFeis<$8syT?Gx=oaB9mOZc= zx^o4jaBx2n=!s=AwJ{nR(Pk=RdNjIQL!_#FUe&~j>U-dJe2bBt2@T#yxCwJv9zX^U zz{H{B%f7}c(RO)mD1?+}OrQwsz!YQA?Vh7KS1b)!q!Gz)kM`zd-7LFZNZwpb-1FqO zW1;KnV8Z`6Goiq}ii;KT6kWf&;aXLAZX@O}+`#7?s$TV|M=SSVD4O&j_XZphvz}?u zUY(S;$o9q-F!F|6fBz&r%8QCNf;bI%NA2Ncz2DoGWYK#nhg=B}*q|M|ndQR`Mo|1sJugWbVr9yJe za7VQ)9FenrxwGz4U^@_OQPOJV{~L2F|;i-^iXM+gIfs9S8_Y(ZRcZq>MhRSgh1YG6CR@ zgsN%7%}8y@;m<>^&^WhLXNa@T1Rbq4<0llCx>r*MOxmxSI*z!te$PoJw|nmiOi~Iw z8|~_h02G^Bk{c>Od@2?P*cqpU!;uXFd*MW-Ip@cuneM0nm`7TJ9&)HL<@Hi0rBOeizkX!t<=g2RIE{Ufj%)>H#59S63VNr*ifU#*0JdB%XPyW-+|ES$yjX?%A zJj}L4Kr)v0v(~|*Ng1i^vX3{pqiI9DfRsc;GRg{%qg#pUcH%n;MpD=;+)R)dhWU(x zJYprA1M#+E?gWPSZTpkwV;k0@X@i;?@6GrzA1(jYAY2~2X`J(+-eMHSZ8phlq0;FYWirx|hB9+s0Y@{VCW`#y225>11t7Sk zKkjZq9p%?w%Z~S?b=mD3dNDs$9=TWUes|rhmyumD0Bso62}WffE)5;NC642*jq!3iAVJln zBr=YBYbgUG2(%Wkr@(nexViM>rY|#fEC`J67Wkf46ufELL zYr8?`lGDyup|9gL?YWPr0}`d-lXLLCFuw86>2`;?L7*Au2h7OGKY$s=7_be7{)6pr z_|q~-n?LEiIenM!gSg3rv{JvbVUB0R*h=;Cvym4k4M?(&}f z3?sUS)q{>nPq1|>R&S}x`vbG?0NIy|-n%oPQ&r@Lt)bSLy_A7mz$3xdNCkZRnEBvp z&(Fa49e8O6(y}^{)FI0s#H%G^M)@&EJPcET^Xhc%DC z*`C1KvD;9p)GjmAp4E2d%#eb<#Si=3fip0XYVcW6V2zr!rZl)KkR<0km&h~LT>JHR0vdv;Nt7*6$_DUseLxw^c1MEJn;YO=<>N59Cg?fd zH{=QcWu8E1CHu1|O_A4uM+TM^VD!|nsxu^RatnTB1 z^@_ZLG8R0 zL?!1tPzu@MHjYoNu*maf7+05EQtTIC19md9xLz17_hAJ(PP5yhj!Q;vFs(=>BgOB6rM@;AFlAg%0d@HI_lpUy>k4 zZ?0*SzSZIbiBRKP63L&j7DnAuB2OU!0Zvhu*Rd3XE*)`@vE;%S8RzGVE}P-#jZ4-_ z*;k9;D%&C?&$6N5ldLo*NZ=@~4pmNAV&jSFAB#s);GZG=D-Xf=N4af zB;d&9Dx`k-&9Ot%1D6X;=aAw@QHCY9+(3yfP0ef0VXQZOS0MCl4-(dy(UbQtBo|;w z?1AC7rNyO2P>m>Qw8S@-;(Abpv+UfMI)wrWZ3&P?JL?nqaDssT`v?l)yU+-tgD~M3Vgc8+uiBo*Q z^^|06uLGlRfbEnHB&IC|w7m^;tBXUfw9f4b)84U0c=}l$Mc>8`zpM)F#walTpT|@z z9FMRZ@HPw{dM+naESi;<4@13C)OZ>SGpv6pLh9zz_%^xGSoX!UiZGqgsFJC{5VK6$ z3B5xid6k%fj{E#~qcV-uRr-Q{^0kxeB4=XhoiH?kM8|byck=qMx%Z*ijBXFYW|CG( z*u8kVnUP%4;Cp)*-Vo7S{I7Ygz|T4%PFT1hmipLEM*3kswW9WKB<0@Ss8aiRlX1(g zxYW#MqecbjmOKyriFITEj5?)<5128V&=Y?%(V!3R6Y{TK;(bXD8?hNwg4U=h4|E#C z)Hv3c43&L!oK@6cVi&i*9|eQ?5$B7EWVp+ht||`XUDpZ{%O{YB4O=)mQkd2- z$gkShCTmj-1X4YPd}1*uY9?2{fc{k zM1MrgWd<7s9@u}LNt&_pDC3JLS@motjm7gcUm6Ulqw_qD4Dmdm(m_k)UAtcG!y3}p3b=$UptBDiVB11tjdI%HMBsaW>?g(vAiYsm!AwG z=t|+C7@wn=#ScnMX)&ei{c0~R@?H#YQo`Bg#elA439sQ8F-#wFudvA5YU+qa@&_AqQi2bZ9;}(t5=Ar zIMayaEvQS`+&;_6ullD&t{R(|7oBVJLe!~We_}qqYvZydk_$4BP36L#TQqK@YY;9z zxYZC=#nufIhsN3k@yp&fkf9!V6d_FTT9;AoTi58vl*(N4EE#{c7fHnmBbRtQbuE5< zQNtR>th)D}lQ{h=DQUxscJ*3#z7Bn9+#^5;@rM%DI}*9Hl8S%PH}NiX%K1Bz?w)U( zPIbe2xSp#vZJZ?Rs?2QPIh#+*p-=>OYENn8aTScWJlSw>FT%#|yOgyDZbW{JZtR+W zk8-tT4V%WB@YeaYTyl;6Y2BTek42AaY%k%Er#O;?j$=-668 z!fD-P(oa)Se4nds$)sreIN`3I#Uli%Pn4i(I^aOAu%Lm5TJ-Zoud*rR9)lrAi>z%j zM4af9GXe&pCj<_KSav*{x#0Y7i9yeqKj&hoHdlKQ=gVMq(JPi#>t!>F^;5Kpimt=H zCbD{{m(hKl7Kw*}z%Sz&yb;I5v)aSE$D1uS>&BpfTz;8m_{+INZza*&-C8@jtrZOl z6%=0DEVNi=<0#$9zJt_X1o|qa&zLsG6B$}2tA$%nZ^rT^f>Lu}JQ4}(mS@kKHY!^W z3>SYWrIycz{vW3PI-u$9{U67B1?|E*%Kfm8!cd(sZ=j!WmUFV!kwkL&JokfGQHy1;dBNr1* zW5<6%hd#UhuC0(Wkm6|;bM>ffc8}v=t58@a9v(GL>G?ApoVvn4keG`gs*Z!f~QdKj10I9mV85`d-gM%OPvWcS!XWl+vIurSWNJGj!b-r~>PIn+ zWYf$7DPLgTK5Q%b`ipF+&rkA}F1o{Y^O!h8!$*|k&nblu=PrDQQ{Ba!E#S%4e5eG< zLx<IE?DF5VJ&=`%fPC2mM?^b2!XXalD{%)l=uH#=NgzY6ruE3{!yDTf;n)XO znnhzYZLFq&$c>e|kueyqZ(`%N!5>5K_R{r>-61@;$cvx-PtQp-VOouS|2T|Kc!4- z{hQER8%!^KOwp+5@@C{wUZ4{EYDBaYcKu5{u69JTW+NnPEWtQ+rTm9sj{SX?ZS>(2 z2}bW1spe5$-c2RD6K+3~zO3*-a+IRI=w|&v(G*>P8PkMUArd7`OP4eC2Q1ZAxA5l9 zH_%(}IPf?V0Qeh7n27Jh6=qlV{(}KWfr!ItN3U%k^@Oj7KUUDU?O>}|Mh>#qv|dac z$_+>DLjk|)QARbC?#kdU$ajwyv}K8zSUo2{P93m&nV7HVvG{QVRo?K#TKdnszOJb! z+yBtbr)$+Kh@fXGdd@N_=N~cPs`bVHt1SxEl=C zey+QJ8FIj(YfB-=N}?_k)L_*OzXZ=*8_rab4`%+HFDan@$dVY2cN-PR24NLz=n#HH zXmsf^XR>?yJL`p%v;&uF7oO|oO#{^q#rgKooveE@ULOE^d=x4+)2o_-nVe!Y9E5W} zzN*sG;Z+a9e7ulfhMamY^j5l5_B7oEl`FI161>+13w!_Rp7u*8bevA%`awMzSU{^l ztHvZxgBux45dS%qs}0z9WI(iGCbtP;a}*ZN8|b~OQ%NEbi%00XPNW?_-;9PE$GvOO z4*yKq8%?9$v4Q>D5pY8E!%T%4{XHF|QvfwOt|J6{SnOra8|8$#V)kJXXn!aLx2VpS zF!HcCeR`s?X6(8iq`v=I>QBTNS+FG_}mr2`^PU|f~Z zl<8j(^^_H~0|lgPR5vNtSviwuDw{@E_i%sZPMa*9=Rwr!?7DY9;@`{$`tve|Un~AV zYqWi^>B%ps9Qg<=mc{}+6Yms@Ek69A zr1~Qe7=TrC_Cs*j{1k1GjafchPmpD9XGq!$y0m}EP}o^Gg+Bo=c<5#p_ioJ8ti`U} z8IsUJ^3pl>&Sl5vz%mk7`C(rAG`S_vPORKoUD3DfOUasWN#sKwuBY^0g=5BDUdO%L z%DT4?zfRR3?;MEZ3c2i@$;C>`L2Q+j(m5w6AJeFTJKww)^mF+4Q*Qyb!lf(0WSr zp3hs_cEW713v*>l+fBh`P|_1pK7H#C&chhF;D@v@!{r41i99h@>8!%#Un19rIUOT$WBT5|cO5SkOL{#lpJRq3FLU9jnkReQ zu)~}C5mlcIHFR|47|fcCzqJNgDShu=x=_Lcq>QL6S;7(Idd!RctJdD zV<}0Dk_a*&20!zuEc&UWACC8x2jh)mg@m%H7Oz3`WS1C@{a_VPD-bi0N+b^X6NHO3 z>Ui+e>6!BO4IP~C%*oNtKxIA=j?#UHy?c8c40&^^KhiNat+6wH%FU@u)gMh7zh6v5 zSGye4;eqoAVg0DKJFPJd`74x_4M;SP)W!_kG(nqKW4}MT)K|JXIDJcJGHwhg_9w7o zkZ*Hg_wF%5{~`>)fA?;(l&#<@`?bvMYkBoVK%fdB+cXLSSm~;}e>PL=87~ zNz$k!ya$^nktgbTun|$q6e&Tue^4m+{5zvqrhjfMBzwIqQP0K=1{@2ffjG0gVV2>) zGrcMa36#=Kp9=o*p(Z&8kHc&>4zkv4%Ce6aKr`1DCmz_pCh2$o^I=?I`nw4PrmL-7WQCbI#2P;%F4g- zItM@e@I;5;h!3NOJ|y!@$ku#xHLG^wHXb8>KKZrm`jjl0d5fm@Zhx1EY)wP1mRaMw zJuMu9GoUo{&rgW)g+X6&&dN4>NXJVph)FGvCGxvP@Y8hTw1Jz#7nrN?$Xc{)+&jTR z9r5)P!NJcuw*eD0hvEd{Tr@wlH_&sNAWZFNOVg-ROXIYYg@ymqG%DKe(M~PXiu*A8 zSVJvzj3XPw8ZVB8?rZp&_-!@}V{lZ$B~1Bknz|^^>MF`5`Sew@r=GjZ;^4d#S`mdoJ=g>;KIH(EWx* zg5cVciVlhRV2IEmd(QX@s(u3p=i)E=1LmuqWo6?`C1pyso+sbPRv34fogQF+xUu*V zha?q=&AA{Tq|G`@aM9U}9{PpptlE1X`wNrjBzWS(f6X3OB~5}BkL5MDwo3P{#@E}15f3*z z?YlWnPMC}xjD;KMc?4(xDNpJ2$F8ag!F)Lj3`0GJ& zdJK3$H3HPGeA&vO7v;MvMiXnd$jq4?&o(A|N6q3U_JE-1x=g4BOh@T*BdD=`NZP1>}fBx|@ zSn1#vtrG33eo-2V$4n)sYf^sMzClGj%rL5fz8PhcIF?Vm z19Z`c{}Zuou7rJ5Nc~Z%-4n-YZs7BE(vJ@zS~a&7G%t*;PnRlufy%BGT6%O)&c$>1 zyAEVMGcTd~jlA;uiOB!xl1}@Xlh=B+Zw`bU$g$Dr2~d}7 zRMe%4*0P%)Y}uVK+}|8`yi_;)XzEWOh(B5YS)A80cTUFtQF%c=)B{lgPeeyS6v1<< z0z&j`yT=7OtzSa7`OGs>ttg4|P2D4TYo^u0AB?N=ig>yF3u3EvNZ+rs8;WsPh0PydR({wBp!}KDHhUOQR%5}#J9$<98p}n@pX@y=REh{|Mo9dt}oc={s>4?UUfbwx0%odhQkq6>vd{Ut06NgG5n;i(uJlY>7eq)$b zdcx(q7z5-0cWou+C1aM|!WcEVnFXY|4Qm9G6-=x_Jw8_wgY2Ee3GxM9hwccFnfyyp zsB)$F`XB3VlK539z5tly9XaBEbTaIh0A>=O$WrAH7cx>;*`T69FTwL9a`9h3W6Ry5 zdV<=dNgw1@X!|=mvjB}XZ=KiFIhbnb&lYHEJ{kM()W+pYxJZmP-4zqb+EXJz!NwlGjSawevY*@e)?epLdzWs0J)d8^fF@N|++Q zQMFtc9Qfa{@VwOn0$~F8ZZ^uv)BB#K(n3ZcYeb?-n#SP%*q78g!CbM!@y%7?La0_1 zroAULKV!3sHLBU_OVSHw_%!TQJqx9gAiyDWNjEst#KtA`SD?#fh;;u@HIWRvDm z{1D8wQs`$id!e1=^QpbdQ&wi`@~G77b=-%(-#7di1kUxuq#6DL(vDZfe4J*N@{9E1 zLO?M(?Z+u+-;k#4>UUVqhW!N2!$l7i-T`EF(Vp~s{wigK|ALARuL(*IV4g*f?hn^x zNBO@!&e;b%R06-TMc$VP&PG!0Q&1bG+uk{d46UrZ4t^k0*geN+7yYB|jt(Goio=P!|L-iO!#(^yv$JfUJSIcoA*VNLZl z6kVj^%4^E923UKC^kSu#cpH+-#O-q8Kb0D*>_TaWgJL>tXpWE4Cgu^zIqTJD^G65-V2BUfA|(O22>^3483$?R_s=o#HlwN?pIOXtVFbKrS2zB^ ziEx|q1jZ)rL!0I3W%UXUrSu3J5R~DU{DTH`-d%OKkqZ! z%U{`0Gg!v36t1lP6ng@$j1Bx8l9>~_N#T1CpPfD0eGx7Fz}vggcO4-uN$#*Ri!Dhr zGRzACsAe8>;uW11$46Rk11_s4TzOgi1Opt$EN#PS#Ahc4`FK8_@+}_ z#&XXcE25txhFZfsQ&BD==R>eV0`0n<+@W{@HIT*ViGSUgn0{p+d3^VoJXCFT(*t)| zq*Yv5_d3cCh+gLu;3AKR`|=lUfzW-a6kxo0%<&f@M=@DV@wQiXFwP-4tU%pe7!@Q`r>bX6RUzXY$eF1p2_8$!uW2_+JuP(Fp zBYQjHC8k&WLzhZ|M!Y>x_`m=Qf8k{!W{Go0IR$tTl$=93%GndeZK;GWB93~afRp?b zd8+=9zcF|bTC&jwQCuR|bXr-IP+?0*P6+7H==Do-FjnEbQ z=rDEay2@muCaba`X-g#{pO_vSR_vp6^8tV}2iUrd;mFB9G5v;pG$4!eC9PpNH(bJeYJu}aH z9~J18GwV?0hCgnk4!hWd7v1C^gA>{Ipa~v2X)bDZu?8QJ{D!~^r%piSZaBPD9Z(+x zVE%?+jZ@!Tqm1?CqXkMss{g$%D44AW{Oi4`@3MZ5`u^>H2HcTO1bNPZ**4`Yofp!W z=0e&1F&Jg|^OMyQe3or(>E;bdc#Ym+y&|y2BxYLwk1|Wvx8k=g=!^As$mx#J={yi- zIZh#W%RPD8rtF(2R>|sRY1K!jCCk(+%>{HbZL_; z!P5|!*=O0mTmuRUH=WtX>{N|H8M!rS2&3`u%VG<{8MHuN4}v@<&cpS?ifrdM>5_#t z8@_`!%X%XxsVu0>yOnMg9|#PPZk(W@ZN}+&OE%MhwDwT8_rJ*&Z|8kH9?pH#eo+0#rEMXvQc;$G&d(>M)QH>wR!qHmZ^I_39K>c|4x})USep9|GHreqawv)bSwwCr2%pcxiKVz8ojNVdi%`HFCt-t$L}rA4)IZV#B$?_Rh~U z^dR8QlV@CPUSvJbzW1i7hRfxk(d1UXF4}ZiwVJb^NyMQp)7B^eK8h^OP83Dc`gZnc6 zx_q|a`bD8zhE)~YB#V^vV1{gHty~&Haguy6FgC0b1dy@`m%YV(`_Jx0+Wv4ZE?;XIpl|Wpk`;DU}r%AYAJ!FkF$fZDf zcQ#ksEKjd$BV>_K@H3=2WLy+IRKanEf%_O8o$M8+FmWO5g5EugZ`!7JO;BzZ`Y%C$ zpd+22n(7upqgIGAE}yrZ0g&Mp7C(SaJuBkk0eK9*8P*i?5o&3m5FtGl z9dsJOXD1UHL$XQRKgtqKBb9(uK&?sjhDm0@Df42TSQGeHbw8s0_{}h8d&*&FE0_=$ zx&^>v{8mm~zn(@KC_+g&Z+^4zWtuTE9sk+(8aFe$Bk763q_2+UK_UZ;|ZS_-PwHNsNJ(r$IYN!ugKXACLHuQM4aA&|9-18)}&z%!xnGs z9f8#N|21(A^)DaAdF;d^dv&g?l)LU0=)2YIy>#q(xAy=Pb-(P2P^9Z%P9m^PPjVI~ z#_ynfnXy13XC~4L5-lK>cE9mKfmLQF8nkhcy}+q;fC38`|Kzt-RX$TEt*6WHV|usz z9y?X9#6q$%s2sDBp4{3mXi{6qx-1}(EOFR=3zVWjDAabfk2mir-^qtWH|%SkGv|ja zvBw9V{WnrGoHxhH5E*pOxtM(%yZ^hMst!3R`?iX&5F>n+N&skjxH}JmFl~P{R%u9y zS^O~CB(Mn_be|14$2t_>6s*wtr8L1)r_|cJEe^Epn8Ok-ydy)&-`UF<8%+tZ6Yjy$ z_b`6W!E>y@S$&;mOM)5hucw$J*acWHk%j`|`J&E-ZE<~tntYiiY%iSy zOaBKT7v|ZohK(j4StK4>s=GECfq4JEWf}Stuy|TAe%QS!#8mU3VC9~Cb;wl-yX{9e ziKJK?#q|wGkV=DR98R3Gd9b+%3K= zoG+(sbX89F4M91K`K<5CLsQ`(cCe&$(~9*4Ut-W&zVPq zTH;EZ!1=|p8F_%%tARRaI^&)BRK;d*tX(AJYu?`$avQBH zn)}(wJxQr9Gdtw)rd9(+)H-t>;Z3P4MWza#JU8ZsJ?^$Iwp>oBIYhvM6MIQ{48@Ym zEHHqyUHUlwY8T|y*I=241MHEj2fC1^(ak6R-O%;T?DpL&lK(~+{s@?kZ#=_#FDrdL z(wBn^z`vl=zzWNJJy{?MQhexZN>6)h%~}D(MT+YQ=g)bFgwqxasN)K%sy+hNb$NR% zZyD`wJ_6beu6;IW%9ATcqfk@zLj>}JE%*H-(P8IbCcwJ3IUl13^aDxQmRC&Hlvf9ylplc5%cc&;Q{CHQ#|Itb@bOxy@f&UN=g6I)8;*@)a(bg@K#=&hQ)%G>Naa1z67H`8QNM?7f|V+?J)EnDF=P*7qjo)4qSip zLk%Q13=oxcDARAWo*hg#mSReHS3d&}_V@e8ujCGNmt<18(%EO__*~mMuN#)?rS7tX z2Z{qs9cr{)c+gOWYfv0e7f%sItB)mt;`@LRV0(8oLAYhPg(Wxo_41$ZiHUxIsVo8f zxXNb|N7G~4<3=*6@_DU>ol@UKZINS1f_JZ@y)BpAo_q#&<=F_|*nzwUz#zR>BCH7_s*ND(J5wJU%oxhA+M=pB1Ra$CM|;7X4nOTo-Zw z{1vM6~oWhDUdMN<-5}YIAP@3I7an=^EQ=B-&wV5 z@jwk^!l#Czfa8MA(mVKZEYL34vTQ8*&6o!m9HpBF5r(wR3>tIHux!$rN%}Q@dKRbW z%2)hjbjDF#F~LTJW3#p7T2kZSl2MtkS(KNzul8eJ>gJIR_?ff-5xH_5m`L|wwshm%V12nK>-2$(TZ7<1{jm(u_S=<$pqhB6feO$CwSb}=2_Nt|MAdhmmZo}QcVnn52HKv5wN z)y2p#+f?HlcP0<-daK*yCG*V`oIi0ch`OAfxb>UXJpw4>eumrNwlj7nN#foeM2Y94 z+dbQ6s+3r($$TB#vssYNtBs#0Jc|bKN7A z*5Sbn{{m(hFe0QM!0QYFtNmm2#PFGlilP|`%Y}{gy!-h5}0! zWN$d)$14klU;CW&5p7J4O$sU$wXuL$^iE7_(A!%x!%GF z<}d6OQr;cPOStX%4ArWMtz7|CUR@d%C8nYgEtp&_309Sv)b#$n)3Ym}#KEP?s9qsh zJ;TZH9+>+Cx0II)a_AT6(FC#guWzMh-ymcRPKtZ?of5I?wU1o<{6IxdoDb3G6tgvC z{(CouGOWX$~pN z5<#CjTjb>mnNRfT}##rJ?(m zo`NBz9@n`$#e5^A{+mvo=m${z+`0<-+j$ErlWH7XK|v9BbU?-WUl!xAXYj`ykyiw@ zRgYJVDK9F69iV}S)mCa#>4N_LRJHP;s?tlN(uMDjzcP4S04t$XEH{^Zcgg_x*r*=F zqwz4#6!8+Y9qIcH5W_A!s(u0;#uat1F-*GOF!qZ1F?*>0Kk8m^Qx-aYmdWovsMzNX zXo4J_G}oC}oVTh&r@);HjQv6S@g^RB5{{;jTiIem4N^Y<00Xo;D_fOK9L=b#qXmM^ z7Iak!U^8$Zv(i}fX1V&wIzg&GQZtW+ZT%U`PgLRH`NmklW(Kfrdbz`D<2$b3%Ls$9 z0KCrYtc~AOqmo5~6V!QNZ#=a|Q-(E`B4H#KaDye?nsl8G`F%+-`{>R8va-NnT`h1& z&^jh!S4Cf908pG-fZJV38TbhYhV%anRRJK0U`i{ht!$pZnmLSx{hf3gXbtixrGufd z*u!7>^m6i=3t#E+0pt%deYjs~T4toD;*bUxlUpey5K!RX2D3ykvVww-(+Qvxh&P;8=RG80?buQx#x zRCrht7}s|q4d-Q7CB}KB}g`dnS_Orzp+>HQ9bY8S;)8@xBYRdN_hl5$%s)3J#kA@d0-Qod2 z7X&!IEDlWj2UKPe?V$d=ThbpE_%6~RZpgc-Jy7m&{2U<ollQB%}@h+ zXLL0MTkq%@{w7med_i|6C_U_^ani0GpDx;#f&r<;o>9ysQhQXO0GJ(E)6X#~pfaBi zG@(#N(H$=lBY6iSr$N}C$#i{485E3dwJTF2WpSLW{l`TSKVsrF``k8nN8y$CJ{Gop zk-V&qyKiTsehXO1L5W~Q^UBu3Vva!H?Cm0UJ=HQhJ6sY0-H$Ze50sG)(^U5|@*_+bOf^2E`hkk|%H2`o6 zCwooW)5{%`wakS^qvmm*xc%l??aw3V4i5h5qMu#G0u~|I54y^+Ye^VJ_xXk0MhWWG|Y;u^^g*sr4zzXY^l;~CB|M<*KMOV4CcnX zo$s)6Len{Vv<4qCX7|e%w&?pM6D~5^Zj*Tm4b9qvo(i4LFe$2pnfPCwhpY+3ULbspstQorJ^Aq;MWn@HcX)oxu7&q^y zf?xV@nOz#ldH$96;g(Uqp$@!?B1+l6ymKU*FRq%@_BaQww%}5SYq8t>Sht|>uhtGZ z2)Z18yAI}#3JJ(Vr0GsZk0A#Tsq&kW@q$U*)sq9@U@lJEd~ZQ5zzo%;Zg$Xh+))|_ zN#z6;sr8xo0|0t9w5>XJ;VWOeXPC*lC!4;!{m#~a<77UT=$6Sq*0roQ0Tt@S*{_#? z+oS`dF4>iD4kBahr9UYdx*o)WSFPOa)yKiiL_w#6^outtyZ9wRJo;oVqIcgMCRA9)QhFc-ByYuB0iTiU~?kb}LM~cpe!5raIw`DFf6A z(jm(~U*q5Nfzlb+#PLX{5E}|^EOVFlx~IbjbxtV4+`1FbeH|^kqD{PYiHQcjfl}fQ z^e4Jd>iJV2(4tcv{4)6@fDZtIC%=(u)f{LS)z?04@` zGkoHzH&gjArMHwa7)zO(=UDnV!UGa%E^{8rcyFDtHW4_E4@~muv3CZTI^oiLZxR6~ z|8MZFtC!C{heX~-EUNWpueFZC*M3~eVNEA=3V^&Ox`CVxu%oZFYxWxN{{cAp$@*D1 z8@n*`2pr4(u?EWX4Qn_k*xt7;5+7xtMgOH?8VlZ=OQY$^80xI^dDdvN?b56~of$f-^gk&BHLfzgBFgS%Fl1~^+)tC+XgNOyhP6M#rs@i_AJCRPmA%3b zmZ#$tvVF1+K>C5$*^-zeWhUtUUI338HnD#hDzm;adtP!JGWsnAwL}V%T%CD45*nNx za1MJ9rayQtfCVm5p<*Al%UUT@$;V%5N002~j;u9V1 z+D#ueo}iRO*m|R~_Y_E5x;{TCP}XVMMB7VkR)b-Iz{{sM{l1jsH+#*eQoYYOFUYCN zKvw_?b9vCv!PUtHP=(8ZJ*Kh-q?~pojD&Kjwl?4uBl;9=!a1Of0?0?h9mcUCwD@6DfGowR({Oq0`F*@^uDT8 zLw=Gbn7Mj#3^+0=Wn^FUKg?utOvn4Q|BZTkm@EV^-`+k3-Q4h=Hh?eH@kwicw-cug zXYrpJbQ^nvr`IgPZ2Qi%K!Z!l;8@MsiZ#V-Ou%hM00nQ!0Cf5s_#X?~qUt<_Ah1Ji zLJVWXDFEd9s8a_rWWt>ZCGaR7*UsO=po4RB(E3?39&^musB_N^2ukIfhGi?OVaK7l z_?yr)us0tz-s`27t@~mC4T#ct4$bi-I9h{Q1?Z1-NzODVucW3rYx@Ux$)Z|p$pQ#} zKa}|kYNasSeQ+@N_)#ZuNxd49aOqm|IPlsI9hO<_y96*3EIm} zQmvf{?pP);c1*MvK|Yn%hmWi;S>yq*>qmsAljn5<@%3pAqunszXA&>Zem%vh(S}0e z(*9?AdbTXVTM6ufW;cI3a$6j&BfQR0nEu%O;hxgnFE%#<_1TNT3q%l_07tlTiL8O}F}Fw*)DP`CD98mDS>*Ep0Z|7QPsf1%S( z)C)5^M%etK^9@6ZW-D&JV==%|;oEA1DN8i&-pOG1)wcAFe6D}b8H%S1cRUkH5a3h(dzsR~_qa;xztnxR!b8G>|p2vc-%YnwA3Rt9S%~ ziGencfL#YC#Qgs&lB5Q6Z#O`uTGBgrLiSCE^r$@;yP)j(jgWSOn6K-{?Cl0HSX3gnsn;VNJ2f6bEcuRKZ-HvwgIn1$U|j>+1wLCY0`10o8@ci) zRt0Ba-lkBKzJXINnE8%tYMWgHQWkZ>recI1z4nap4Dl^1jd)n^p-$~sAuWMAbZ{zLeVQ& z!paoMze?(jdwIy-myZsp0Mpo`z4+T@+c(<@9*3=?G)uF_EL7X>ZKp-cg(6?5+I3s2s=iRaWbq;p>y!1~*EjT=ugQ|H?|Y?~ zVHB4AA^ckiSG8(ozDDufI+}vsYmg#N5V&i1UR)LGRrJnYsVMOH0ES-I7Ua^~T=gwi z!J}k1XGWKX-pr;Ktw_bf^zO=QCz?GZZ0~kRTR(p|i-pDr2{e=|@9}!NpRIrdpJ8Q+ zU0{*HVYXGqPU6!tAmXI>=5d5dFFQYdidNK&vc;?{%r$|Um$-?ia5${;5bpJ}D& zNnh=qF$W6k!Dm~@6uO3X zwEW!uneSeV&ECOqGq#C5+NvULM$BPUu9JMX+ zGfMQbZ*hh*t5C?56S9)_I}PJl3=rINEUll14;sj|AvMJKWm-kv6RLfM^DptfI+|s5 zRS0-RxBODlcw-`}dT*BZRh#OWk<_W`xw)RR6jbjFZ>$r$=N%^hsO$IaO7dA-#6hj( zQ^uo5z0h!NJqTV~JbQxk3&KeFo^|KBIZ8Ja|DT!`vBkPn{9gR|ed<-)-8Qsc`*{uJ zTH-9*=$7GNjMn8t{CboW8*mRk+ceAg!UeNE7!j&904>*$nC!PGa#US;<{;LTaP3>|G{BeeQLSn;O#+I%OBH>n-d16jmbbhrMmfPz||!AaYx=4 zJCycpO>Bv|+PJ7rb~yNL@mBDz)m@P7;{sEb(g;H6%73{CR&P{xBv&{W{?lArU$sWM zexo#etiC;ya2X^CGJoTNubi#En5nm$IXU%J8zgP@YL0vEa#Yg3eoQ=k(~Gx~A6C68 zWHwaRxmn~3pP+yVPU^5nS}tk?Ah6+F~$Y_ofa+U8e; zRW|!jNZo8ky9Ya2@h#$@kLV*xJA8@JyK9+Wecy8sgI7}vyWYFjPNDylz0nBVLoSXh z_I1?;=e}a*7qOiQ`yFh~WVF^5@+bi&?LNrriQruYjHMf)9eVE5Ds_^dd1b|v5Tida zR5erkMS4T!2igk>s*9)gnx8B8&kx6v%WJYb;aiok6(ngoUhkDz5O+-mao}?@p43ZHeGK2HjA6@#5BH0c47e<8a+~g)wK8Rz{ANa#WJ}84 z;^|OkuYwx07~Y@LV$1GBA+^==6pF9k!OQ8O)Br@bMx-Oy0-Zh0pMK+O5f(jMA(7g+ z@u8t`oJs(@=_R*i(+LB>Q>Q>_gW8>G_RD651`|U~#4}a3l#7+_8>z4rto>@iD)zAl zgv)gursqjQ2HVUt|>}t+o;T#G>eWE&92E-k+9#W zmNhdNNp4a^lNN5gC2lWjO@Q$cx>7f)ie)7Ldem^lXP;m5SXtlIqol89f=TZ^ikKi^ zMX9ysXDksOW9xlYF8zLn<)sDO8F3ra)%dp@Lr$sS0xEWvO@0the9*Lt_}j0!uVgQe zm0F{gSQfX%p0&f^OGo@^Wc8fVkm`0H4o?xuX}Kn8A1nnQH#fe)1oH^@ws0HEt(k&| zvY`=G(bLlq8Wm>>JlIBKWBE|oREXJ6q`e`PSBqSrwx02uVXfirXBEo`fUGMZ>;xWM3$qPhed>ENIqpYyuRvys-`;HeSJe)1m{f+ zRbIHAMKQUv`g*Tx=V5K_?m4^~@HR=?RNPXg;g55SEjk`>;#JsL3s+7rAt~}tjx()s zAap!M0Tvy0f`|N=KNBsgvyDQpuVLBk2d!qPztN>kt2h1)QehS|K`N|A&b3~<=C(Ap zhCO}hNI(=-Vr8c`+3jnVa*NG63M-nvj3yxDog$?1p-=%WLL*@x&yIexUC`bP&2~oN zGsg6G{`@gL(T`rv6*SS`c?r3Ne<9VJwc1x)74USjS?b>AL~$x*v?PH2$=K37ZZS8X zH+H>8CCHj2W9eERZ)c3QZN-;UhB9KQ z8}u2Vb$##`HL`2il!y2-j%4P@&oMSuHO|*%`c5)E7Q(Pp5+qGlbf;N!f>*R5lDGe}EsfGFCQ= zeUTC`YqmT)DFv%tR)3`dsX_x)4&SYGd0xSZ&a)YlC!meiSNR{n55+5q-c)8=hi-(A zO>T`QD#T>mpKF|PZSoe8no8qf;&r|c?eG(|0Fw^x*+9g4@5B7&W}~DYOdtsUz!eZm z)1TZ~#wa2COkEmYgIf~KD zpv%2sI6YmZCE+?@ynKqt+)zG}PyHQxRiNtE1f;N9@b=onUUwXs#>d-KNBtei#dN=% z#0?^@Z?d&7eU`OZj~#K&CNes%Ue#Y%rL()zm>1noc9s6m^lC4m)$x~b8*2IMZE zCnN|FYMa`}H8^GL^XUCSV>W#8tIja{;%D`{0zq&ripuJd!0D7Z7POAXu* zfj@4t)H^D_V4Es%YifAbKY5XTGP-zhEN8hldt$0W#EAac6U` z)#<$6AB%>H>RK`!U*I^Ce(5Ho0={HWYeSGm?YB;IDkt z0}?)>IpF+KuP!rF0Izc9XkVqBd72q5L`sc%{-OF*yREUs-sCZ-5B2Z3dGBSwCY7u>$0b<_l=v+sK*7bajLT| zr_aaWE@~)nAr*HigTMoh{m}VXQk|*wO(+Kez6dgbr{2-Z0vKItP%tlKR7g1^9Bu-v4=j zWD)0L2wY|hB>Uem8ky~2UKdqv>9D8PS5c;Q^HX+JC;Fz;N(IMGIAqkRfMJqqy>F1&^yvxr6i)LM-LYH~EAXLTXS0(MW zY(`$YIO#Cw4=0NcG`)a4M71`O(BEj5Xk@%)j92(c+%AA^E3W4q=sJM1gAPrFr<1k= zSq5J^?3t`g7=dt>eYIIwUllC zI6xWN9LLH3(Fjq!jAxJO*_vxjiR9%GyH$JGadvX;xhD7sn3ZNR^YmCqpL0Q5X#zs3 z;Km4W>en;mTwS4)Hu%H{4T8#3Sjf|lC9iGP2|4qM{i~YZ3#F?&SI$H27><*^$Aa~Z zMP~fY4+yjFlE<)#HN3y(c*J;%HVY35;#LU3U?oPH{xbsiKWs#fj(0~ry{qS-3_RXJ zK|Cvn^G-Lxr>yzDZuk)_`H;W;Zllq7ob;fe*CPArPMGeG>~%RLDRALt?d5@f{WqWn zlBuQ!+@x2*DL@@w=2zBik&9c-(i5&NsvoG^P}XJVf24plkDg{OsIZwm-8%S^yx;Kh zq1*c2k83bT`0NO8s;UJ(qY1h7O>)2V&l+m{DR8e(Y3FAR^Ls`ML=LCs{QR7GByNLR z8{jsL;G^?^_jHDS8D8rL!@(KSxIGJWm20>KLVh*ryd)wAhCk6PwY&QZx(QZ#V@Z-dPHex~^4xVHcS1d4 z{QmnCQix}4K3Tr>p#D@@AZJg&^+f5#&xN(gzEtVZ#;*BPby}ocG-gN4fXCEvQFmG` z+6H;W(ikQM`joXRd22p+w_t`oRrbP9i>dv9bHm>hGdWJC=&}R<%Df-5t6Qoul&5&e zOqQ%1l&xI>2vXqv0q_MEM^?f$te7N6!xQL0X?Cbq%MtjCd@3{j33P)}GImUQkL0$edv%8oQ zxoVY9RC5^l*%C%?vG6!dgWc1{K;LW_I0U*<%T8SN1}CBuKI{C`@rWqQvApx}FkCa^ zo@c%8aI@HP&1_#xogik?+!geBhSEKcWkTQ5q-H@je2J|SD2tr|n1Wg;V?4v8Wxzo} zBI~40b&xuUVoCNDZUZUR%(a#IiT<){uoLG;iV%aK{@-hHR>Mi*_C|sk`Itmql-Lg= zw}vcy<%(0@g2hK@x7J}8jSJtp3s1Vo1!-m3~v=dfbNDiZBL6gBV4uX zPP2=xr@#}h$fr)_sKr{+TZ3@ZNH*XfWUg(tc;<8@h!>QubTaHN3=(ZUm)8;tq9!~! zH=9&8oGo>VO+X6uB5HiG*2S=9b%6S{zh!(7B-Pd0j-y`H1?R ze5z)T6dKLq+z6z>uMggg%>PqgHnwNseL)^nyh7-j($W{t(pylsLV&w_iWt+c?-=Ki z1lp1mNlhJ}%I_Py^_(3Z%@6xJ;E`(P@$<#PV+|#Cl(NC#Q<_j;H)y%+{H!eCH^b&1 ziSKDv2^-2Ydc0_XW)Tswgdd=GR&dACTfD9A+s%KF-e_F_&rE${pM<<3)tTvDl;2le z=`=>XTEHTBq_%ei2}*xvPuVFjy@;oHWDN9&lV zuij{L0K`US?RLHZd5`3}QL~i733DM=NMN-4Fd6mT$=PipQOsuEWj$}}Kzgix;AS)F zD0?Mmi;69UdnTfYUz^NqX1_OkZe1&xv22%@OCNj7AcQ{DEw$8*X*~?sbCVoIuS>2k zyX9|j02>*gUfUvbEb>cDOy$lXU?i_J_ZjWfros5Nc93rbbwY&42d2!EhzX_@?hRGv zZp{=0H=ZBQH44!9^$c_0dAz{+{Fv^FFT4Kh@NNhxD0@<3n+xb(4utY;pP=`8s1E?q zs^l&|*6_>GGKX{AW`VC8^(NH^ww3%A6|hV z0e5*@k=?tD%68vB0VnPux}YNDSvan0DXKT&_3ZbGe_|6WM&|~2a}3(lD*2r2;i-)x zcI=sEUCu(x*wMECO3txVI47Imn1`#vGmn7%eKWHV9) ztPO_MAdX ze$ULKR$Mu~g)plX99z(+C!Ni2KZJgQB=GLiFR#~lgtK2S+{_$p3Q>l@3jlc9jgRt1if85 zH_`DYIAEp5qwRj@xbvMb4xuE!A%h_)S7 zwhqZUBiV>@_)3Yz?zx5HK_K`f6Yei5&Ue~9@mO7g#D|b3{_C((fTkwiCgtf1p{q&@ zpYI&MYz#M#9`Uq07}ADHk4A`lU#a2&jTQF0onsrBV||joFOpBqyucC%Q0vvrH*UV| z+*_e&lF!LX=^bn!B1P#XAks_dMOr{mdgz4Sq!|*L^qT*iaKFFzJ%+qv7s(5{Zew_bI%TI-{ouu$Z$C50cmoo7BsCyJwwb(o=GqZFIy@uLflM!WhprIUe|1S9hhn+ zhgsbDn}HR1%OBxPSaRT|-R#2ba}i4@5WFWq)orox1o5u|V|Gt_bpc~s@rc(@QU6!- z>)#l{jIGu!t@;zca&wq_A7$(G!9=h)YC>uJ{uSt{dk-$%d7gaLah|tNgmMDAn}cFx z+@bBkxS`!LJXj<0?d&^=#jRG2*-JK6;#wlxzdz`X8J7~F-U6_w7R|f85YPuWieUd$ zlKa)-SdGw}TJh_*K<>wFEE&F^jvcIuSvl!27bU*!2dv5aG&}n%5Z#ohN9}vr*H7E5 zjl`DB&Oi#9Ir3>`PQ$Uo@r&ddosg4n{xj|!r;hE1^H}tB<_*#LpdSOPc1?(2)`|b; zIkx1UjHVJ=hL3eZ>sueeqXos5!g-`+n5|8^HvcVKNfr4mleSYw+n}^3mwJwg7bU25 zl07D(Vr8b|<5X5RPeP9V^z!qRL8870)ZmmUTJyJrEGBGdy`k9kJz4a1+$BPS>SjG($|E*~tTi$$ zw~z{SN8?WZEinzwE7sOR?^=aksbwU-4UmIO*qdv?uoXigY%$9_mqzXvS($TK?R|YS zyd8<2^pG8g#pH1dbB&&^72=WWaE2ShNV;(!=c5c2Bdc9Wt48d-T(#AOz*7U?9XC_? zQdZfRe=>GQf-yeZ;|u`PztJ0`s5~5TO)(P)E(=T-8Pmuec5jN<*o7gK;#O@8KAUtm z#qRI44+ClVyw+aN%62{*zdgFz2W`B{$~=56rc%r-MH@52BV150fp0FXY-x?sE;&xQ zLNM=K{+yDyddA!m!kURcHAl>9pN|91Z?#AQIMB5IW~WLZt+uV)wlGbsWm(3h+xeXg zz0Pe@VvQomnB!FW;&758v&VAl_(2Pg!8R;oF29!KNM^OIywUF8rr%AiD!K$Iy$T^& zj>X9?9IXZ`fK4>@u#vkWVXc$NBU;^u|GYg1q{Ps_BhvIE!l_mM3&Jh#D*@D?*SqU3 z&w{h;n+Ds1qn=bHRyz{1ukF+hizsbHgV}hJUqcr+EbMw#e>1Q`ol-F|{f?SJk5w$W zfL_@fD=m=O(42cMl3%Q&=;Eo~ZRCw9>t@>t?RxE_`e)xI`O1plZ?<9q2N1+i7{~fi zgL0NuWGM72TO+ef2LFaXD$!g37t}iJXucXI@hC$g6GR2dc7P}r`^P~~m8qhPsU0*E zoo^ObgjZGvF+E`_<*J48K$Xq3F?RT1P7{QcOnz>e=ckO^bhW=ynYDkVVf`1Q_sWc> zPCVQkP1}hF{^og(yMn@tn_S`8{x-F>SYnO5bO1X?vRT13u;U!|y&Zbk)fG`TPayv! zePd8nvNjWqWf8;8MNsIxg*j^ z=|_*2ImkmSo2j~3T`KLa12*tNl3LyL3%-T&wr?9=4mst z%=FW!wf?`|_?V4(cgKF)XzgwyL;@OKV6KcMVoJt}lZv&mGlNc|f;LZGs-NWIG*s=c zgOyfN^JW3tFXq^mK@VBoxn}NGe;}KOa#OBIojv_C-DP%*gWY-THFMZ4+ZW5L?l^wE zvUKFMG%uB}N{y}Me758BGBV7n&Neo^!^D3%e-#guG*XvN4PYia-xPF*6Z%AU6#x`- z%LgE^YFSkwf&Sm$zTANxf07(MgvU3G=q*Z~r^K7tsH@Klj5I>RdHI zagD)@BJ|Q69ttp;knZph+Im$|RD;B-L&&&u*>PIOPZ=k3{ZMt*5Gi2W2I$;-{K}K< z_l}k4>fzNL@pxt#5~?joTJx5NNp{Ohw*~AR4OS+kX=<*L*L6U!-G?V#6b1A&+`?t4 zv(I+szk*}Th9SWCtMW&do{70iF~>FkZqH+ndrQngg-Bu|mU0K~*7s|UHH%DN)9UVO zj_iEIaJp!+RyhNyHL$87rj0|cGJpwyIE3$qAa6Ffn6|_DZsn*lJD6^PB!V2gRFZ*n z7zCqV8-Z+&{rd+=E$e)Vwd`z!Zn9zw*GCU=`>}1|aA8}cK`*@g;H>SQ1k1Z!--R4o zW&6sq{0UiE@Qd;K;8O~;9IT|drZ|XO2dG6d+W$9+&v3rL*x%vk0dZ~J86#1jjkVcMemg1@U5^cE7VfU9mqZQY#-i_-O+a( zf^ysp-r|6ad7$&TMK)?RWn+a{{#*36wsSraYc&Tpv<*441uu4vyss01*RCiIwKR>P31E%1h5Pi8m7KR<=%Zp{XB z7kRh3U!WjXsZe7m+FRkO#8&*^kT6qhv`+AbZqFQXQRgw+ODDCSJe7x(xt+pDnUw2r zK3bh<3mnGdy~MzZj{Brqc?#JM4yexnAb?5viEBO&{s&qb2=b&qbLOX>Ai_}Zb;7+^ z{0Nzive6M`(^DOJmj$mLgFYbmMML{|jZ*2A0|XtM+U9rypZIcz2xVJOi{ImiuH=@T zWxQ(^d`DaDgTAL$Gi)Uy6f}BKTbAyp%gPgfu`7ZzL13CuU{^F~YBhZqA2RGB=-Mi~ z;d4c*??pbO)YWzSP9*nYiGj6*CW*8c+C~y6DIc5IHIh|JvrUdJY=f~=8IPTV2zXA z{16=MO6K^fF)295S6=ovk2Y>2=c;4xb&azUcG2h_BnGagt2ImTU$)&6MB=OR`=8g# zl4{w5&x%%yt$kzt5WP=O(NWm35Q7pr0CoU%G%5bGbS$+swZQ$j|bTL|$dw5y7+V zvYEeSIbvMTBxW{b=za?FW5syXHe=`8e)p5C^TOxc+nyt=NP`lV`sLKOA%49eJ&(gc z=XUN#8DhOE7b2zM5pp17bBCjQGLdYxpkA@0JAPS_`I>g0TKFdlx$V4rnSH8#f_!|z zx<6T~XNo=Q?8(1{GshfezOcBf&3IkZtJv&Hhu>|pp;~?;>_;mmGTO#`EREBw_X4@? zs^C=W@{hWATEgkN2v!&s&;W8|vNKjan%8Z)E*3MxciZA|N~wXRhC4dx)coX?kqG#8 zVDODDSKr7b&86)Rd`i!L9Be-WcDyT!swh$EdA=sGm&P757#QaO ztPo)c7Hr6NplPdtJD~{;;Xgx7+%GySJigT0?Tn4xf70(_1yzYBbvj_ulbIQtd8!w zXAn}hzojlLXTqK^#l|WRTmVWpd6grM#oh!MV9RLut!^siupT0vR2>{R3E5L({_|I* zCaI4HeGSaA-zxZch(o$9r0Oc9b-Q?&vJsLJy>Uq3NDT*j&eB&Lt8%uY;Yl6OtHMO@ z!B1OI&xeWWi};}T*93jp<0unLn1HZ5D5f_^(sj zn^9o~F=5;GGJFiNJ$G)q#@h}nuZ&fG_%JegTQWF5*ov!S$;dzBovz;KTw42hu%r~| z#J>rC+mL$1i(1O>=#@Q#KDFo zW?u8T_~UM^40~nQdrH9t@m|+1l-YDq!p|QaW9{ zHgxq!O?qK^z;9MRpgEew+~k8=yGvz`fzua`#5agB9AZUvA+OrWxkrtC6dfgQQ2{<- zONHHBT6A^F@mznGWB|}W$pLAJrak~?HtK)Mye0BBp9YtZtpIXu)yO@WFG3PKeA! zq1JmRa@^lIl@qj(jX_5t5I^O*$u1*aQ3~ESRwkRFl)CxxJp?Xjre1?SFg63IK^W$W z>NnQ38F`f(Yq>TL0|oumBc$3q9!Azei)boEo?BF;k}Bqn0XG2ZnNj`U8kVXgZV+=< z=H{y((LJr&UCnSBSL_|5aLkrnHaaPa3%7ZHE;iamAf@14wCVoV9-p6M#8c zIAn!hD^$eXAD616c3YUzHUaB`Mk;oIx+aS+EVc%~>;PKW(;7OA>(H*_)ZtETi#hF( zO@r-n$%EFz75d%iZs~%Vx4?keC|dFG>Yz#2;rt<}1#Q-LzH9}^kZ;v1LvCuTMu4H0 zLt?@D%An-h1V`-Peevgq-kgJOTUW3C7s*ElZ^nUtf%|8xeZ2mCKFv7Ht*tq7j;#ZF zRP~S8I+V?oWq#>-%zYXZ6J};=NwW{7Fan)m6PKG-!4P0s>WoDmbL5~NTU+4Xp3d+$ z@F`wQv}FBne&O6-&uZ_0wC6sF^rHL(W554y>2+aW^_}3U>)L(2&5`&rN8oSntu#D< zThb)X_T&LD^ZYXhEEl$HI}WCH(kkk%tch01LYdaqff%)y5Kp7wVOygKc3jHBgg$T_ zBou`cr(D?;k?`eW-8=i0z2sVO1zJrQ_ntxJNH+oFgUdvZ+SekS{e7}mpf4mbj)U3C zlOs+g1g+glC(%15trNrg!N4zlNkbQdW4xihN21_flEPS@^M=nnUSjudSJ$ATa5^`n zv=UFV=Ff|kTeP}rB;<*ayBP&0ed)HGt*y*5_?SMDZM2(v9NWOSHOIHq_21Rx5RIik zxubM=Y`2PHZ`;k1I**2m+A9wIf`lV8LE&sLJ)0I*ueO0i{vT?}Z6mh87d}xwG zk9Fl~z}eulcdp9a zi3f(up(hBAAk!4qRoYbfVU0D2#rcIz>rPD;Yd2N?VXFL4Ulq>?Pd&89R7iFH(i^4~ z%F?2fO|Lieux~~0dEF{G*iR;iC1JPBiyTf1VIoKf&uYSDlIvRNg z&bVlfd~nTyaIcKqTLw>h7MeUyTj*kh)H*d?kVzYGQ1{x+7msazzHS)X@`jd2DN+DZ z)7Mw~4=g=QQ=&1h6T2{aQ=BUae4tSEu0b&fszx^nBD^rm<+p4b{a5 zdObsm7wI1#84}5~PPJzRdwGjQ(7S$2hEa4&MpGP-QE?O#B&4@gN+-j_PL8Fqr(h|>B&IOZ{-m6cZ2;$4E^+dtj6bIA8CXJ)1U5o0&hQEQ)|=$>27Da?T461 zw<=bdbS#vvwWU?I;v(hea@e{|%K3|5T*+~#MK5G7Aro_rwFrzYcmRVe5fqc%_B43r zAVIT;V85#cWHOQ-FV=m(Le_V0i`a^LvJ{53LifC`5HD^>bG3~7@GHF!3PhUz#H5Vq zmdN!*o&N1ISyWFPaB0_9($Wjf9zsh0D=>$EwZ)Ziv!TfmsM>!9ReW&`kUP>Z@HEL> z3rZ`r7*fQxy@8@ccUOO-j-9I+bKFp%Fl%YPnjZ7Tl`RC|rd!6W*-+9XI+`~|#CbQG zhj7a_S^SIyB`4m!v{VBDmyM$^;?Y{+>QVH}VyZcyqHL%2M_K8jK0K}t6WNey8(Y8g znOV&Bum~O}2ww93^mtC!7HSe;8M6`)NOR04Op{OCDI4)*p$j{+)Y`Wro*=P^yW)ketKJe^? z%cgB$MQOo?KIilny*;}|C~c{eS>}j2 zYj0w+j$?0LNPBQ^p-xKMY4p9k({Sy(*Bb012BaC}gg38MA`Eo^QMr`hIR~wVGqmK6 z^O#i2q@wd?X3Y}2FFZCAA<&o)8M6KMg-!lavnESFAVTh_AXvg?UZ!#pp~~peOA_WT zx`gHG!}7GeE1s4562riS|yssO)oOY^uYJe1E;$bL@IksB zjiaIhI!HFresuZljX>AC%_gCX)l-0yg1ILJ*FgU@)?@Ef&PXH-#JTMxJ7)`d8bQR} zZAsm|>Dd6{pE>_hxHVZ)%+Q-Fe}O5(KD>zMBlL&s#cth!+R|ip2Klyim4VAX^U=MQ zBTggOolS@#)UDruvWGeLdb0OUYE80H(Gq8uo&S`%F&=)^je zYzXWK&pOn;F1s`?o`7Vc{usCG5{^c@@eLarfd_x-VFxl5VXO;K;Fq#lM!={!PmaJd z6jYEcq=fiIta8N8OTaJyHPJn$axe;}0M0&WOQE7u)59E>R{Q;4F!#jA%RzZrlS-urp3!8ANB1%0;4usJZ zs=$m04Dr|s%<=L%=OfaRJD}2MtXY+V;?#ktO@d1M89bo459W(u_cXGZrkd+pG3sun zx@~zBM-;(*9JUW4*-4mQId{ZdD@E4%ccEcr%&NuGe2R-hx&&aYAr{dzM2{w(NWfYG zY||vhe;LMau>-ewj*Jf+eGGNv9RmYs<8HGY1-L~$R4>!#K5l`$y*(HSp&LxBs}#?9 z2)Ma9ac-Cc0)IV_tA-^N+_N1~^XPkf*e_{n_^G}5Nz*o0cQ{Nvmik`M-I5#ze^lE z%@}p3nZ?w!T!Ov$y$ESe@3~MwHzlMwV1h{~O9BKePh!{m_X=r|0x&XS%W$RuAdIp( z0-M@8CT+oFri|qpS|g87*cMtX{aft~TuK?I_ot`y{TIoDSb{ycmMCJTRh1tRFm`H6 z{7am0KHyp2?T!s-m^odzV-g5jJ^@&f#9}s-?2m-y@TXcqd_u*%Xvog%qgur??P=7Y zO@sani@h;DHrRaieF{6n$6x54jZ3g#`w9$(}ww$~K{8kx#D9C{PzAz$%A zMR)k(hI8N}j%(TWn3ZFGmmS!{2A8}5p}j*Og=|^Q%f*j=^OSd%?RFPDR`2aco~kKS zL5v8i1pR5yD2%@FU5jCTfZu6MdjG+GKJs+Av0huOua@`56d+bC^`%GsaNs7dhnNH< zx4K-4u2t;J$-{-$3)q1Y>HG>UnM;lwll+-xE=CQs%(Bj<8_2Ix=6JA84ZF3JIYpbhE-gCk} zx)v-Cixg(%dw{T-tOhYDPM<(J=*rqhJ4{Dj=FoJbbe7z=9r)&}My91bavH{SsGGPA zZ;-qtns+UGX-jN+xb4KpAiZ|n{MD;#naz#qGcfXQ$|9`M>F?a%*;{~*u)Hx))!Q7Q zOQTnpZ*4DHguITR2QjSzsFEQpWoY#1K{G)9A<=?U6%*Pv>)3c_|tZL=3VTF-?dP?aYqU*&9fIu1~+ZTScyHjC}QP|UD)gw!4(3L;d_gy zA-f2Vv@|9FVQoYYAq*1DS$gz9r+#EpwqaKJ=Mwi{^@$kz0e$*8k(}Z5AR0`<34-rm^*i!#rv~~E$! zN%I_eNy**wojktHE5ZV*!}XfZTJI(0>iUGvV-r%eQ1dNzwk&)HjjtV+AFvptfG7rTZMOs94#!YD*h4m^&AK8 z^R^gfY1eC31eGj?$<<;4@)?s2F{1OJv8=i{#!2y%&e7PeM^imGCquidiynvH9g|pb z8|h>#Ku(QL72(T1rb(BRXXqJ~w*f8#3|Z zC7P_r6B!-O-*eq4OZ%B^FsSj&b4@*rbEEz40TNk&EMxxyn`ylJi#hv~&q#s*_mOeV zSdwdzpWhZ$9u0jP>_d`uGGBQ}$=}jpHAhrSOTBlPrt@;I`tunF6kuQ)`onY(%4q6^ z9ctN2Lvao_ZD-$zIdwkU$ftzB2App!C-fO>%9p>uxG0|^wF2K zxJ2Zz6S!X9{ZrW8+%4R}tka^onXK(RQlUrB)mcy)sKME)!Pye6C3UpZ4uzauL3f5~ zg%kU+v&7uyLcdl2Vt!#hVs}XAYlo)?)3HmfWi1lcY-0KmVV$pX1QrXIvpvTCF8`HY zy-a;m8z|;&eT#t=4ue})*!rSQ-UWDL0+wzVD3*~Hr?mnlj2%{4?xWaf8Tg7y7c+Fei!#c#BV)mE z-TqUM=VO%wd*;4qC@3&z7v*z)JCv|!OYp73G6ps^vQRhd>s_izR{i*<|G61oEFe7G zsOhPQmlt81jz46&5|hL3*+CFBBbmf}9`(cT{68rq8TF zW{nl@YJRYZSM9K_uwWRx@pq}_m3of_=C(1LgfW}z(~vEyCwqzRnPdy%XR|z14G!mV zBDWRv;FYia%oEa}KvsV1%b}uYh9P;Eg7v5dc)MILgSGOnV|d(r))p?9SI+oH%OAB% z?nI5qV(kXaim$>1o zljKQZ6uWdLHLpc{9JQ9|ydA^Ey=PYNJFC(*VmqKu{xeTlycgX$H9Y=k`n*J)V1F~L z)~Z<+QL>C*PO_evyqq#FdhI-Zm7N44d)4#TLb&Wj*bX65y{J-G1GQ!Qc2ot5hg$~A z4FZ>0xpic|dFw{ZiV;eTwT$D023(K+kU}CHTnDTKEh(GK*+=+l=VLcsTGtrI&V*^Q zH0q%HE;@FE<073&%B~hw#9M)PrStP!Q4R#uYDAx{LdY|A*z+pa1gh&*Bq{Q&Vl194 z&${vXe*C6Kns5e(Bj|Gky*8t6IY@dDXJOD~y}Q#rVB7A9@k~#c;*28|CfZ#(E(T2!qyF?5yFs`7#dJm-Gt{|YNNqg(bgc~-8d!*jg@dssi7Hj|i@wVo6hvv9I(mG{)@Tf*wZ zdYK~P~5c#*{G^AP~lf35}-IKbvgY01h?pxu+O1%+WOo{tL zyc~+ng!zz86(Tg3L5-80*--oc)LNyxwAih)DljNHk}D#s+tJ`O z)&Hw`vZo_lrziIVgwNL&Cb=&1ATy#O#Xy-&xEa=d_QXlRqBJ>-(tU~-S7&)5cQaOJ zGr0eLZJ=|Oe7scuswa{`%{Z2Sp!Dc@3_U{6g9Gk2Fms;lsdTzrTDmxD7#jP9LKKk~ zTp!#DrfX?yWM``vlA8Sy?cK7Jn}Fn{BP!AEDcE5}qj}T(63pR5_=*F23N8XKnjO<{ zpcFo(C~vh0Vx&6WV(q!*t8B(qX)| znXnb;`P*)QlighZZFJ33yu2}z(m~OX(k*XB3srvL&vu^pZa)@s(Qc)>7qOG#HN^i+oh@s_Kcnv`6`P@SP= z!ufS!c$VYkUFzm?y^Pj>U~O>Fy7#TH-GwQ;Z$q4{Xe8M&PGe!%sJM;@lc>nW^-`K7 z;qJb`vm>C9CE9*$y@Y{{$6kFah|c+5%9lviJusoAL-v*5xIEqUHqoo3(F;Zv5 zkz4#q4NP3OrTaSdS4U-C7re!sYGPRg=@wPR#}2F2aTLqN7R!lV=P}ztDRWnwOSU_BfT6P*;VbAd?a^6LGY1ZV zvH@L8{CE=)W*j?=o^Q*2C0RVg0ai$EzN@GEtzN?=y>SyklvWb{O_H|$v zeA-F8yC<|tEc{BC2ZdF*v&dy3Pp@g42&c(grVYj^)$1c53RALZG*znsp5XtqpLo~x zp$Z{Fs}3x~XzgZxg;Yq6GgMYpvD8Ep#K~{!s@Kbovt$^`^Rezz)b}3#&0@zcAe&E0 zwcn1hCuerscDy`whwaeDJ=R*KOMPb-ZnN#hth3kO#`juNc2<6FGW`!F!BjdQf4pV?va3Bf|-7%^=y_LQy zDDwFXtYZY$F`)nUkxLEnsq2%+`4x4jR|H6tWU*gE6TNAl6g>a-kMc;`R&KW|N|CnZ z>ZsU)#-~a1+6p*!QIOh@&7_YjtH(rxm0}0Wua-aEAw!;mw&U1lyv*vKyXP5B-Z)aD zY*55@Q)DX>v|=2WX)W~54h0iAchB$n*$c$aWGsX2;NxO_BKxj%mYCQxGW%soM9*kmh&rAMsOeqWQ zjr|}s%uSnM@8_>R_AFvI3tT3JzUz!!9p1UzKCJkynPhivq9XE7qqY0w=Kbwqn!u>P z9V6?p`NJo~?e>(jWhSOi8Ivi#E_=C zt_E5O=f7t_?mV}*lB~wWS>jFCR+*#Uo5C2s@LrWbDbCjB(2}+&$!k>n zD;tiz{t-%ky?U4s%QUc`R+U9Bh(a6*xsNGEh`U%U_(`4@hn^ z`;Su>@$OcWvVo9egr!vT>O~{c@xK1cQ1-V#q{#8423GPr0*a-m?%-_hK3BIkcGhRM zinU`~@1+TX>J=%}#QsEm#Ntp81EB=qp?!W zMOOLP0Sl1}Zue3Iz$eJ(sZ}R~!N4lKospxUj&?Tpo~y;Px(jl~Hg8O!`c`Ru0+j&d z;e`V+^zUjOv(~Cw$y3S>OBVHSW=Eumn0t~V*&S^6uxh|SeX4{U3V654qv^#fp`4HE%A7PELJhMAkH&*w@GTvG4R@Ij|_oR^e+^@2R5v z^-9r!-JKM4q#N+baM2&KJRMglx+)xAHy69nyEr8uH*a_2#KH>~cRYJ3V&uy@`LtO` z9PvH-WvCig*kmyqh8;4JNm&RH!NBz6=omHg`$Su2^!*DdA{N$ju={5aoli{5#HGGA zGqyXrt1$&Ga`oO!k~c8NX{+`0W*sX%^es$D86CgEHUhQ(i1a8FGNe%#MB^|~t@bBS zo2b*;o5J$8a``i(!pkzAzwcDcTto$44&iKh1zu|5pWbGxf0CE?sK_o77Gs{$*KwH? zb><#e_g^Y`gdiaOtE?A})z&mrI@zupYm2I=7~H`eaC(elFQf&KlQpov zXEt5~G(~(6U~?+c-_poD9BK;<6h7?w*x}n$?YL95^Zsdea#vTX*c}V`BN@KBt~P3Q z335I*v4A}T&I$*{+$al-#gpojR&TLC;{m%V+q9?X)F9Og6 z84j#YYDf2aW(Nl72$+A(R1Z5*1Yrc?6uuL?X_SI z{Fk@B?_~#?fcC{yF*hEnXh1$)X{S;c*$(9;4_nNI;4wzFJ{EH~SkXuPwuYf!CV;rJ zSGnPUnFpLNq6{St2p3E@;yg0ofFk@jmjt<;3a6?9&6H&Q`xP&m*>uI85#~2d(PulCS2|24H_4q49B>6TqSM#Q zC;sU8Vc{#3zu4m%mOClZIhpIz5_aVY>24fv{!@XIiHl`7dxgI7Rzgj2_wSfaU-}cO zpZnUlqx2=Ld8u{k0kjI!hVs(k>D|UH_uW~!cyKpHSMOWi;`?We?B7uTGVL$ zAc+FtY7vL}eg<{LZ6DN0f!rmryW^@`e2{^SU+G{d#^O!|-wI5!75`g6uNI1>

2;C_W!UkWz-&rw|>H*mjiUH#_P@%(rcJIHDaaMB&$3P))47=Rj}g6Qm0kYz-AUi3lin>WhfQRsxc+D6 zvtL9ZJ8K}8`H$w-peyV){K^{Ie2DV=uL5^jgwfMQuB0Rq>b49uQOMhJ{RUe+S!@=y zfeHqJ=yO4hY*vjk8=M{!s?DhUkXe5E9IgF8N4BfVC;QRJgv-K?z;!|nqVhm}9WeaD z;HL24jz3!(GyF@U8~v;Uo14s4`wnv#c8F{5E+%=H)q`sXZalV}n$jgZ?w6q_iwyG+ zMtA`D1bqFd)3%eUVx)hU zsVeK^^bc4xadVV*y*by)?6sNkbl9*D%?Md7fLK>e9TWu>A|LU7c~^FExO(JRq`j%g zl!Uj77F-3&spVws2&cEO6jTDf%NL#BQ&A=(&3{K7)CZFfiHKBK52k^_8gIZZ-;H6< zg@mET_YKL}u3Pbf2{$59(zuJQZTqA!*&8NWnn(-wITed%T+}x65tO|aG(hu&c<~W| zrd!QTfRzS5L(F?dKj`aM>s`L%vA54LFLp+DWucTpL&J52cESvzw4#wy5VUx*vp5Y< zH!et-|DB)|Fq)2KmM8&3-)%QToMC>+BJq=VK{kDn&~gPCaaCEbxw{(&3dHu`QS5Cl zzsp()TJKtZfM&yBi=3T}OdHTe9SYN_wp^^Vo~9Z-Xy?Dsmlkwphkbdc^G0u%VZ!)GcF zSPD1vha{K(7;~L{iXJ3?tw>W1b`$X=t}Gyv(CZbYHT1wLOlGAB;8v03r+oaZtx!~F zsV;OR{&$}(^8wfG`)H0V|C@4BzTX5&+MPF`_z0+dTt9nO*Z=b6D#xWF4OD*tAAw+a zw#M6tkP@7BQB8e}PFn7P(FSSeBvECQ`dx7Uumb3a2(_D^7Ysav%IulL6W2hi*i9#X zWGb87+ZV?1TL(G57@t&JR&rSc8jhw%u5`Z`*=N~sHl0vgu2db^EcPSm_ACChc9YRS zSb3D&&-zAc6#}|8mAZDyTS-At@w^#``R9%VA)%i@_ezamqUP=tnPdJQWzy38dGUY{ zPJYVXEFi19J6jRsx`~6y$Q;zsASd%7E-M?&Z7|o3+h{@N{J*Tlm2i3c zWrk1L_;cukU)juTf8kAseSTy?hf)DXFy8K1 z`tA=l3djL+A)XtT4%t2ndLGUOgJ({!_sk4z6&&2#F9ifS+ceyOiNoz3R^6+r(m=H? zGm+Vk|4qGYuCso-8t+8t^GjV)lYJx=ar^4mhjK$8NK10U_MIo(&6L~<0K^sQJaqgY z!KdsZHT2YiFP&w|>;z_^2&*Zjzpp<-pT6)MVCAK8Omt0b#gvc8GRmh?K}0M{71cZ~5>=G2vb zZwFJohi{^iWY^O{nf zFV?{rw(s&TSvzRu@;d1E^qcT||6YvjVO?+h$Z=h*P4Lym_mS@7+?Iu_+~7Be1Q==f zq^0ZGU!vYB$;{$Us-**J%%A-ui$Q_^5MSR+bDE1hAFf_BnQJalk)a;3O<~DVV`bVd zNhkd3hs1RO2T;5GGlsH_!qO65Rn#7_6(3}rZxYzsutPw}(raAa=i11+9($_sXlzTv zTA&GW&3SvXBG^wsAm}S7X7e<-+(mdiyw}h_)GP*f+DLABvCZ#Qwr#kevFqQZVbDu9 zBdYF33f<7r5n@wzwt%whkmR|cDZTcJyW!WkakSW6KdJ50@cgr)BSHHtL0^o|eEvbn zXQ0mDaVsauW+!e;2C8~Y9bA4{M^gwAhUVCjevnr?c z?(T+$bW7M~U+q52wpL=n$BX-M*A$sU*uxm}bs1tbGKG6)r*M*SPm z1S<5xXOG+(L>52}=)@CHRXLonp1l3V#b`|Bs`{#uZVd?)cJm8=-r&4G%E8#M=Cmv{ z<*r&ym2LeGP+|FdJ;Ho|%^ksYIk4_@&wnfFS=O4E0JL;V-q%-!b*v0c=4u`72_y2| z(qruEEYHKBAiLdv+0U)wE2u=DiiOowRyC+ps6=n!H#9xz`6;Tf^SFCrEqQrhYeZA9 zo~WK5o14ux&XEt{cDW69iY4WohCXe<*%R+*zW`&dL>>@pVI z>gO;Vm#ppcKn_6gWnJV!Bn0yJho&aauo~2SGYs6_)@UcFPD(#KTBioJHMoj%RVIx|w@#8*-z{yIl>1}FNb6~)Y`T^;Z zgJ!jnb??sfnBB7heb}jWtdvy6I>krM9&Xbp^R|>a2d&23CzO!|ci;S6p7M6LARoCv>gpp-!-4Dpw^e@8nqC1Rz$XC$9vdkZ+uk}MZBWRTSqer)@5@tZJea(}>NfZIG zi64;E3Qk3rFAuAh%HUqtymEt^brct*YG?KQ3DB-9=-tY{*d9#R2SR{2N^=NB--jQs zbxITfBYS)F*Vxgp<~4q{T^C=s&PTUGBjJ-S`ZbV=4bkU^IeGCLu*{S5@Wn^3L~SSl2GCE-WW+J3Rk+H&D1 zu{KyMGORupB|3oaTny_vT-vk+P+z$Dev@15eSLFBhg-Gjs9LHKVSth+4RnS|*F^L^ zhR7PUD&~>BH_#T!plnD-XblFqop7*Ckd&6%TxMyM$KU(8Eq?2 zH~#jaDBMgg!N}00=Tpi0aEacPM-pI{euGefw@Ifhdl*D45IJHQ6>+Aq3G%B-wy#Hr4b zq;iM8Df0r`kr<=HD%IaQj*ul7zy*srvO`yS#ea?}F+HPZ14Ks9`Okq{pmGlR_Sp(C z29EPg8%Td^U3X-?9V|~PIxP-pRna5r^(Y73Oz?{)zvu z1Y%t3P*%9wXJ+N+tg!|9`CRpoM3%)a-^8gHPU8Zef~Witwvhp)Jut8@zcm;0A4~{q zE+-8c*U3gy7(#rnT{x@}nrkT~GcG`MW8eFQ@7M`|%b?a?=ki`sHt9B-k17{F0B!^b z0H((7U8z-!Bc z7XOJCyxi_0yPEG}3XbZ4B3^h{7HBUA-^KHC@%xic1E5Ryl*j=-0Ny||0jD3O!XBJV zaMQbPfd(9SXmKoiZr~^M9c%amAiraUVm>17o2jJB{S8%3c8U#N-UV0>U)w)HI+mBe zk5G4%7|nT-_)aF04I~aQHAmtn=O6Pq$-eLX@guqnJIp!pvH2WyT1=2qvPr)~G7*+$ zA-Sud_UUFW45AQwabz3r4reEr40V5*7(N~wEjVNSDX}68z#gxs7hk8jO7wxYja6MA zcb|da0qLQ)d+|wzfa~;m^w2^%SqHS^v~jDtbvxO9ME4bP7qTF{kQ5x0(F0=rieJIO zBvmY_z&#n1C|6UV(K;EKA7mhL&cjB{=)OWCaEbhQ_H4Y4a9zuZIWz{z?velBHWEyG zurrId!EJ9ob|0xLjppQQYa_Z<;it4hL+?3TLS&~w`)_<|6d#}Y>Z-chqj%K%`@J^ZrSpN;0D_)8u|JkxUF(HW*sq~!J&V=vwwLRZ& z7Y_1R&1QXWiSwt*j$%@W<~jkIz*8o>JxUB3K^)AVOL$r{OFvJgY8ei&`z_)E9J4Rs zq$Pgm;|~d`@wqS?#kp)ImD}cJF%#rgQBnx00lyBwZGqVMh)9wo} z+ThmR4S@KpD7nnBFBS~5al&lCZ7hg>-1U!hzaKe=A4~iwt(Tnq*2-X5;`ym8Wm3x5 zFmd^)_H)HWa#1X+$&h5_7UjrfWu3=u64K9NzUt^5={ukE2^Deix9h&YUGK$^Sv+c= zrFQ>PKPod%^{Rvt%Qid&VaaaGV!VI^n~;A8HuSCrmsIW&41<(6|~b-41Rh`QAKDJXa7erveq5Q)5?MPD^0r*z?#5jS1`3 z!pzrGBRc)27blk^TcR$Ec?@sD9VJAS*4qcuT3=K8??Z$>o~a47A2A#5k8kDN_kus2 z#a*}(V#MWQb@1a6%H*Z#8^tDscLrB8oku#_#Jv~8-uGmFom`fdw-yuzx5gBnNDnkP zB)Olj%=H6eOn9Q~3YY;Tf_p8;7HDbjv^Be$UbLWdt21i*uyu6saqWtY{0SH0IcH~| z>3+&Y<5csS;Uma*)Yr3zPK2(OvJuW7+&hTgVLz&SKDN7OX`y^L+#H5Gle^}0-?8P5 z-hipXw7^D4^>(+_^)D^K4KfMCRR+8M8oz=y(Wp-J8_B|C<-E_&R>)mrPv&I|r%wD1 zYh0Ip0qQlkc{s!0V^A`H|Mu};;pK~wmr~0yt8PYuh9ROV4tJ48zd^h;9zJJkSOx|X z2gtIVgzp>oMxMW5Z#u2cDCpi)p+{5CM?~qX*sQ-ARzIS<*}V_qb7?4hRW(OGUVEK$ z+tuF7b zl5RzJ31=GoigVfr5&Qc>vU;hd4ZX{<#_Ss;B2n8^$-x!vGpd-yL7K$Wx@7i3z0F+U zL`lp-J@r7QYPcw*Q?IhPcp|w2BkJ|Rb2Q*=;uvYkd2g7%-k2_81oJT?T^`fO{@u$c zu7CtE6@0DXZQCv6x0;b1NlXUHt#nt&lpR&+c$T13W$4F z@ah{frrs@?z8tPhUzt9MgKG1@lstA9GEaL zHMV2tueJQ5eLM`=N{yLM*t&;Qszd#3FLc$^Y?#5Fm9F?`lXLP%z_A%K6`!xU^h3Ne z1IPmA*J%A>6ZQ=}vLEBPQZUPQebUgGK-sRBPg&hU5}?EVV~2wqQ${~eE3qcY()4yL zGchnV57xi>DEBvC=FIm4G9>I|cCmYKN-w3e%IuKXv};w)vs4Ub;l%FXCn5XB9T;Kr z4^*h{gV_t&+`|>r_*xTYO%wii_!kkxTU6JNBJe8E%=@g>U-KK_P7Wg$aU6>#AsJs{ z>u94&C=x@~ZTDZS`%oWKv~pj!rz<^d@t8d1gM7R}L9H7h)qARyz=$1Z4P)+}A(QvU?b44f=`wNGX8&$e~=t*+|oVi?h%*dM=PNEef z^E}sZ#!{tanWSHV(&q)1fi=7$*EwR=JU+6ed-`~=EvI*KE3YYLePClCkSM4P>+x6} z_wbsIkFBe88z3^b#ALRY3K#`g)}5t@CJJ%)U)Trk%l;D+VVRkkYM5d}t-8;QnjF^Z z5;lyFp9 zKsSASWT_QgSykmh_9Kpsoh;Hdn<^||&0Z1j<&pgvtsS4FYIPgU{FXSX({bv-{kc_r znVRJ;7;UT1e7k_XI|4X|ESvt?<<3qXh0!HhAN2Cui1S~<+n{B+>x=BdfiL%t4By&| z0>QZ9;}d-S8uA2X#A=ZI!L2RdJIAKA3d%1+`5_EFXoQeY*9gUHI3i$XN*LYEnP>xOXRbcjZ@F@}5itN7=3g z*=2^zlN_g(X9D|c|6tA%Mk>$6QVc*Z})_eAXhr7_w+GxK>KusI1#0BoqdVi1zo}^nSm`|P`j|_+NBcT@R;KQ%`oDorvC(`Lc3(gbCK*~Qm)zot+TcUV zWDS2R&OEDthP#0{>r1t!_!P4p{OZGkMV#H-ENBguxRhk3H#9nWtiXOhRAv1GVXX2T zln=r%lYpexJ8eZn$3{o#V(=5SeFp_QQq-QC0wQy-?}Uqt zvbWS`7^lS=nDl1rH{xul2%$ zB_x|htG&9L9cAL>F7-2X<@VwT8Xj=twRt#jS5;M2PM)vy=afV~79brD64;_j(&4V7 zEN@&-K(yA$e(>9$qoPDl?1p8Hj#9qY*LzgyeFPr7uO2YdLbTVnuloc@2OjUtmO3~hF0d@J4?N(fE9cS_U-ffQEjLx3yMdk8 zbP;h-Urtvb1R~es;jzDzodtcbUqb%)lnny^;>vmd^j1t&Os%w%IBhOm>JWitF&&U8 zaCvmp?5d^qrr|=VfsI@|w~2{&2iLqo<(xbu#;@jBqAWvfy)(LAvTZS4eA!{i4}R>| zwD&XG3!v?M&})s2HD-U;Ehj2Te`9xri6L#hE!@iLEGnKkdpvTSB^x|TG%4*p#qKZo z|FQ|pW1B{$ZMsX88MY$gZWb9^JuG0Mi`q!D3y6LCb{C{GzuI-SStK`wHk56Ra5fWvdSmb+ z@(|dpf$DX46iTook8gawu_h2)PQ>loAn!mz$&_(};fTAu0pf2D#zTufR8?)jYUQ>o z20D`6zI<2)6$gtqRaQeEz>W0&MDhZ&!)lA;7I$yhlC|qTE&Q|T!p5d!y4?LY${Q7( zc-yBTFEKSbGE_vy7blj!LatQ|$FgVtxbO$jF_^;qv{h1u68$*0VhBABS3X<+rt3CY z3ycE!Z&m{9BG+o^PWl$g@&5vVn8ulv#CFA0tLBJT-+3@AUw~GION<`8jSe7^v1!A9 zrYmXZf*?izvz>QI*>&+ROBe3Ubhvk@t?sic(-4YvqrHl_alpB%y6=1M_Rj>t`m(Kd zoR)KB3($kVq>i_B-0|5u8{9yJnXZi#&csL~56ZMwxo-bU!Sy@j9^#x{OyXXNIqNNw zy&8~QGC^yUZ+1m30AGo8K=O}dot7c%gX$Sf5c2cwc%|(lgpQ8I=1sd{ena))(NPWg zvq^VZi=7D%R0LAk9#eV81JDt}*iAHC(*ljw0~ocfvbrz+uD5ur$LfZ3tvmY8bKnSm zzFp~lkGfo~0>!eXazVdQY?-t$%$Xg&)ivQmCDA_7RJ zdW|Y*4nuF=-ZV_DaChi=A2mVBgBXUQ0Q>rHj4Oo|$2vYfL0SGQ+*E%j^ASpIIvR!wl0PPJ!e2xXfQ zj-uxm$+l*%BCCzYoj_+58~pvTG0S^0I#g6V?1VKCyh*?-o4-P-re!-#j0oc zp0dUH@6O7NE<`=7Qv18AA&nG>)Ho@l^4ygc%JxD0=bAT`kakboKlFscOG!SI=Dvj# z2c-StQX1r4UFCE_TT__S0mAqI<4u=_e5FXbPi4t)ZUfetZOZ@6KEFdD6gbq~4SOnD za>c{vR}29(5G%l5*{(>fakwLQ<#wG=HrBF7h859rYPisj&;Y}kl$5SHd6SRrfiS?S z2U=B`)II|2^Sb|*rJ3$#t^54P?If$8>V2BJ_PNVZY*C$laeWKLh9>XAjf*eWqr2>~ zLP+_+lNeo`19_2eBXg3suzyafv;nNXyEjw%V#-aPEDS?*^`xp=v)9|3TMQQD=u$R9G~k zUHt}aEn|RRQhGm-+8VOjBcQ5-EHc8{By7NzA5i^Xsu>=EtfH*X-yl77y@zI2>E@AU zwcR{&tICq49Y(xCCbHlS9s$wWaW)DBa?aB244wvntFppR_D|zd9niFY8oDS%A5uRE zmVUo(y4}-S8dPbC;ZMK^0q=g&W=STb8H4TlyTwciDID)1}Gumw- z->8f#Ea(-Y>0B_uu(pbnFHs4Zl(XIr7_gxcia}>I7 z{D%-pJA*mbqF^>wXglsAz5^+|8A27JX^fB>y_i5D@xYP zQy&V}60#gk|1tezsNu?+&my+UwJ0pQ)~fYG^`jfbMj+>Xa9+bd)ztk4nn~9!u(P#; zF+6q7T)}z*Z)R7@jjz7fwYZV2XFkDXT>Zz|t~|4O(u00pLp5w(#d)Wwn^5K;JT?I4 zdb;I<%7IqR0HUU;^K-xq`1&msmt78RuG)OB6&rR{1p9R9fZ3P{RQ~UV*+ky3Q?`x= zI8f=otUL=BEQfH_v9@jeUf)xYB_B^0g&(dZ;06#^e0u){ZuR~@2=)I*)q6%YxqNTK z@mR2<2Ne(jkEp0rK}14{ii%1T=`|=-DWP`~ETD810jW`XM?g9u2m;c3htLV32M9F@ z@7#pne?9Lf*K&oKx%cdH?Q8FuAvX^IC{|{(nv&=9K_T)R@^%?h+CN_VUOkEZL&Y1k2 zF0ty;za0yurvD3qDkyHt6aWH`vrbLviKUh`=x#P(rcjLKkY$+t2SDPV&K`g~au4Su`iuj&7oyS2XOKzP3RSw8n9=iwnAf?}GH}LB$4MK!<(uWg%dOTvT8i zOJn2>*0|&B`T(~|o^-g0!3m4IHhonY-OlJcKPmtfCH`-CqLxK1-!|aZ{7WT#DFeYW zEai16qg66+jDZV!>Do1J38&33Pq<6tfjVjNYuqZxwQ+c#bq4lb(pjj?^iS)TB@gHL z4%QanHR|NuXCns~IIF^tarNu81cy_1LVHBT()-;1RO>&)qH$T|UY^<8K8RJ(LVi%G z1d-|XCQp40zxJ)oh2Wr)tu#W`LD->>)UrWkjIoLf{Y_U3_bWJhivpOrKz5BYMNi~z z;9h7dZpcDO%WuZLg{`t8rV%v^)&1b)4hTv%8YYw%jfy<@Xo1ouse8>R5f{u;RSbzl8jZO6&{5}dNWHp9Il#- zL<-|BMNBWt-O}%Mp4f=3QXFN53TlTKk8a;(*4_hexAb2_ z>4DKJzVCsxBbl73tWG^XM1X{)XfLmZY_7G$9vL?NeTB6#;+7!rV9~6k=4PM5;UQZ5 z2WBgeVgP6qZa5luNaFO>go<2d{#X#3kGEj9+dw=K4El<^FsZf$n1X?lNHwTByhoTE z;aI=$dj9ad{x$CBHlyE0laa$q-QCXX<*f8pA;OEYYp~T62Q%X5LIMGr2e)BoCf|@c z3y_FYthq#0<(rvfDuhRb-W+10fTR*0O)kpK9ivt#0^E-5*JY(Y15+6;?J?5t#dLY1 zgGy{nO{Bo#uB}4uKw$%inO?s{O}#S!Tgn7D$kl#UL@lC6MoYpC6!U+fN35@gzIJgJ zKFN;TOq1tT|N4PgdLb$HV=Zg*^vex5=Sw(eC}_N6T-SSX_T;TwD1^f;;R_%jI(Gfr z*4@_E>L5k^0fL=&TzZx&Y=ru>(76-8*}cFmt+&3Mp4!b^;1}Ee)3t#Vn6TeKV%-X{frO3K+k4G%PI`vhCjN2tf(D;`TG%|F-?te@7uMK2V(X-j2PzR%v@pN83 z`j+xy*$aZUo>Nek{Xl>x@yj}C`Sbjv&7GeM4~>6n8`ipw zPe>6Kj&3$yz*tU_dgQ{-G;@lAB?AZl0qV~3x_5uq!GF>R_&rbZHL!To*jHZNXY-Qi zE11pp*wIA6Q#8i?5NSb28vERs!GI{hj_)`Bqr~c`A1J zmj&u-hy-nGEW)T#TpJ$`4_$c40_~D81L+#~00vP!-|+y%5@&zAvz(E0Bwmi*(n9T* z+*uC9Z_H&Yv(bKg07wYp$^*eOu#Y#mxNZBYN6A1@MlOhK6%T~PI?A~5pDP8#CAc>h z;Wj3;bBCbrLP%H!4NMihTvo3zRy(8SV4X17{+L~hy;yoFMh(|NCQ>u_OciNFZDg8s z`yJqPqQSs%HzGue=@jvSV6J10;?{)cPHlt6FYali&sbzdi&1jfRSkyAw2QO8W0jqqxLjxF=ejz?tH;SgnAI8=DfEhZxC}iU^J@)7pNoCi z^JwOr^!4`b_I@k%2!*RNJYZz6H%}P~DG+s%OX6RTQ?FlGFGpUFhgkYgSFWh?5>IfR zXKTKGqw&N^=F5fp?$r(Jv`J?ADj&$v&j#1FScO<52i3PcIpi}NR9LRxWn;|@DZ(Kx z2HGpgAh-!jc?@;>EiEvC(v~mpzdVAa8{lS*%1V`<#wfeRp~O71wY%z`ib^69j*ZjI z#ZO*XDVS&N;y`Kl_x=Z*^KYfwja!Q>orV`ENGG2GY#bznbP>27mf}QIxTimdJj%LBA?%EK*9eG9nFj7kN(kvJX;N zx6qtfO9~ucE3;L$vUfLQ)S3TVpJWO4V|;6;hSuU&57FT7+J1fY!!$hF-7$+BCD zI|MU?@$og|EdhZ-oyla%(}da*TGtsldUI4*P&244c@x7M&xb%Na;U6Yl&4Hlx-h*U zpC^=|H2)izAXS)GkSY4>*o%ozZ~be+po$cL-0fr@AJ$1GA6?1kLUUP7VDmtM3Awkm zC=Haq4HqqrJ=E7l3aW`6cL5YfTR{DiM?xX^beN$RgB^VAT!?fs4kxvF{_x=y$Q7U{%Qp1 zhydr07$zXb@IdZ}F1JImVUhhHiVv+UDZlPU^t4S})`pFQ3u1+H6E2Di0|nb`k1g3# zNyWWk3@HVN&7uS&C9Xz%G|T?BkF=DYUHdXe>#98{3Q055iq?t)W15<9`e$IRyc1Vh zjwNgQ5P5LLkUsDC*^MJ3RsEQWjb_=?K~IslMDNS)&(WIu^E-{DODvfl@g$j}&~k`2 z5)1%S>dFIoA@B&p>S_P@=%@JnB(h;VG8PO}@tpyIH-2iM0)-Q1;&M#l<&WlRHhQT! z+m%gcgJ^zY(UL$Lsd5y;eR*v)znKQ}DmQBU87C2%IJ)_G5d{rW!2nnr&-&r207^$o zukY~tiqQQ44d}7sp7~*>q%?}8!09?0GlX!P0N)8hwR^5G@ORoGqLsScAkxF1llH`X zk0BrC$wX<#rumpRqae}LRJZ_%IZ|QDMia0D7l+zZc50HqU_~I3xPQL}`_5eQ8rU`n zxHhV~wGHm2w1*Jz6TZmMW|^;{y39TwSesKCpKQP{y#-~cftla~J{|M(nG}jPcu;3L z4}{Hw9ehCw9_v+n}%tzZNgaRKKuHJ>k6wE{%<_371^lk7rUXi%}>mj}A#iA(@o zyQa7rxAdMLEoWeTn*|Lyb|H9j?k_tnl{G(hm!SFHF7&FF3wpZq`ld-0l=8OL267lk z8Lj?YqP~`e?k+GC-qZN_wPptVkv9u$GPt>4`D$nyh8B4E*ckbAI5INd4(3IFLCQER z`>1C=W#Mt+p6w@ZD79E1x^Fd^1Cl}FABZ2CzJ-Zfny=05 zgKc>Odh7-`b9P)j->ED&TaZz@_hbOfkqZyuRSv&b{RR_+F5Ne2C-I=bC8V{x@$?JM z4Xof2f>#0*|6R~s=XPu26^5gWw;+8ezSG)UmY;M}3V*qtl=6qgH%DBMk4yZvFcR)= z3VI1L!VbVzSw9m>37OWQ+u#zTBL2U5^&S95Fg?z}@)gM3**_h96vXDdvP>={=-qMa zj0hn|8~0sdT~|F{A1HW@5PbA zVUe|(L?HRnhU0icB_)*?${Gh@tG4oH-p$v8t6y3aYC0#hLtzuRSRRIp{fsMGe`c?1 zwtLfO+7q*g&vg+eB81WHwF@bFw-AL16Z;GQbuBhwMfUQk?}K@Ei>W?3J2iE{CrU@s zpieWL;eE>)MS)Y=2`ke?<@CP|!7CsFji1# z&uIw1Y-jIYdI9!b2+$42I-9La)W~a#E@1Y%7zW||@jFfwhn916k!d&QyYysY@@x=S z*MK@Oh92NYE35v0l5}Luc^EXeq!ee03hPBH)N#p#J_ z&rq73hza6l)HjXOvB=`C-PiJjKW#=qU8bjI{%6LYmF^vc-O&f#9VMQ%3rrY~>FRLR zOe@dyT%) z7D;Jwye*F3ag%pc1oWI+dK%s2w|MkInOD-G+ns!?F=?kIO7h7oHG7}7tSYrFn~1@eo)+okgc z)`O^8;nfK|VTCFm!F`$3T~Z?Yr$6Y{g@OFi+O(OTtSESiusE-jS z%h2$98rFdz2)`wTx=P@w{iDGP+v~|lw5Zi_Hdrf80j{6#HdKz4>GrrdojDF1x7qVl zOHDD@u9RiKWwY%JA>Z8t4c5b-$0eCLkF^MS4%a0Mq551wDFjVx*_kR4+9_nx0HHB8 zXFqKEzSQT(&OSk+!0tE|YeAf9Fp%C~m#b|AuEDlA4?vCC?#pQ33-=tF^<>!L@rOjU zupj{e8A=P@6TDo`T`-@$wJeTz?=z!!6msjg4feam${&Dj;g|V@g1=^Cj8sc-Jo446 zNB~1=QH$vDAGON*5zlTLgWiEr$qc_`fVcrfWMyb*o;m5URj)QnEOM*-w8p@irZlCU zV-fGZwDfsrEr#1*RdNTU4NDzcMvBDDr?Brk4MH3;4*i`=9%=dc)9C_M(56s2q8zqnz`(Kyt#j(YQiwmE!VK@SxmG8VAG}8x+$ztLu(EUI z@9rj$g_JXKGb

X@`appYLb&uLiVZA$qwpwL&aJj+HohV8JO4XFt9mt9^a9%Z~9d zvX^Mx1F2v%z>I?vLghAhK)cFPNub%`!h*tK(2LO^vx1e`=~=fTxR1!5JqkO1xcJHy z;BkD29WgNix`k$-(_vA|zF}C3I`I%o4@Pc(SX|7?^4!Vf&O~RGl#fmj%cB2KNoPj~ zvIb{%OWthe481eUO<(9GY#nB*6^fuVbSUkNCM!E9HOoZa0uMKoS&vhPw>#3R)8S`?D`-I4s+P_M=4vPR3(iphxevsj>F2F<__H zw6&grr1X>V!l$vem28fJC7;L1z09!EliePZi{;Mb*>cC=5Au+`36e$9<&4aM_uU8Bhs-ZiyXR?m|D&Jg2E5kw0ix*2Pwy4 zY^{*j&iy%Z{Eac%U{hUFshl`|r6Z|kjLgNCA=K;o-ITye-x!Y79wzj;cH7un%sOMW zJZG>CfIb}p%@K*?a~)%lXQwmRlh(`=lCS$EWtm+#HNH7d{#g#eM(OG;xGn@KipJyT5y#*eI1OMFZ5y|PTzXqi)0MKq!dt_r=Uk{~LDa%rS zOBX)kI|)dFr)DjUoI1;I{HshAuy%{J4MhFVjV-gGXM`~9wsKNR9Z#FZtCOc0rRq>%OrH$CRL2R$vMxPmn8l`52iNkPV3&5;_{%eEAhlU+r`0xi^E9282gd?w zg=YkVyFCULuV0&fe65wSZ;TE=ulVwDDxJrROXAq#@l~j(>l4|zZc3+#{*7iXQ?f!YDMy-8lsp?3BhJZ zYZ>T#V=em06N+|{Q=HfWV|$g?4jV!LGS?f6q!*}p6Iol%hba6}7NkzeD!&)Hps(S! zI5vB!hY8f}*Xm5fLBR}ELqNOTUt^IRE&hm)kd}Ci)(bGnVje@?L#r?LP`}%(p{$jv zJk)$D6ifE^d8eL@qcz8_S8}gTN}?KDntb)Z!G;{I7ia?Of)+UPW>gzXL0QXex{@<) zl1IGN<&?{GyH4f6!Jyw;7;xI7)lUFid;*dPZH;KmvV8(ME>YGGvpw~&?Z$rCh$nhI z?27EsW0fnz9viGEi%Hp|f-%A(yUUALhw$L)p1VY<3=eMgLkvr9pOG@UcVl6VRUE~P z-00Jdr-+01Rri4=Cup?M%@ZgqSCiT15Uet;+S|nhsbA&0W?l{DZk_>*+)WcOIH7gM z|5Sl)8iPBg8+9$iF4N?tPIy�L zG*q!Zas%zbz|%0Em8=j_Vsmr>c`{r_Z5!9wCWz)AUyx_BuxY@A3)fCylsKVR$ zb0*1be8FVfdTzr``;9DmA{$B*P53( zp81Z<*#m6lOF^^Q(eQ#xcD6J{(1a^1RPHfCI?EKR)8=&fK8GN{Z{NgT%n4{B&&6VF znpT*YxqYi&+TZvPEFf@HFVweM!zvXXzH2diok6Gkt6u^}fdZNqRvOHL{h@?^PB)ke zPE>plqV`J{KIG3t!m0HZ5o$Ni`HOMiDO%?Z?zVI(UwLn<2fKUDbDnS*rOg?Wir*%; z01*Kv2xqQ9DM z-8QfB=jz{BCb0tez*}Hxp_h~7IP9LIkVH)X2hdB87j>-WId|60TK>Gu87qsPO$s=P zEPC1S`)}y3-7uOVE*1dfumCDlo0Il6V5eVR%lvNO+E*F=H$AuI;_IbW@s=%v)ON{grcmRWi3Ux;9niq!p>U$+I_waN2%pu z{eM5^*G(1CM<=4RZeKpsN zT=mNw(9c%_`bIZY%bgaj$Szd9nOVehflN@r@%xoPt#8N!@2(5q0gQPzxc1wnob0lK z*zr&V)eh786tG1V>Oh&zoV%mtp;nT+iwuAJP6zb&_Ixl6^xGKa^a4j-rO9b&Nq9bVis7}^cafskz4?eH z5HwhWxo?&v{LIIJ%M6#*Hqz=s;}^!%aJCm48K5Azi^<-=5Ny#36R3m6^YZ$r4H zNOJt8vR59nwFuPgbOykgqrJIH>MfQsY&eJ=`QF2r;P>njxw~f#v{0j>rEj0}r)~S4 z_;5bRCwmJlapH2wXa8AEc#v3rceghYK(e-jdAl?Got(Oix9brY-JIF-0XSRmoWDS@ zi1BKurz2<*zr@hre|L>h*d-H$m?K<%+A;|vU&uWDl9D@XpLwgeZ<-qS;pDR-S@yX0D- z@nh$RIElQmI%A0MIj#iN4NuF;L&1I;yj6lTp895diK{4K^uYkA1!5WBrOYS~zUvg# zJ?ZlyJ3{KU)(Zm9toTBD<}oD2ox8O7qL7f=E1E&w#FLOky4GeHAHdSwMWLc)w=mQq zgVduiHcP*w%lOqcj;a+9%`jVY4ORZj08DX}&j7`W3*W^R|1kE6Z60Cg0gl|b&}$^d z0R$9}3t;6mcutk%);@##weM1_LYThC=!CnBjAeJgI#Q_I+?t;Yo_h>jLb}x`An$XQ z)tk7}A{(428o@z)u;JNI+I0eSlgBeAxwSXR!}ABkasXe}R)q#hsy>rNB?K=x{Er=t z3%~t+;>=l%L7Sn3;2{+?ZE#RxxhAmgItO9k;Xc^A$4^v7i6{`{h70gBzN`i@`q~f! z;?d>Tbox;blm*}(?#7(saKP9C2H1xf-ohSUXH0K-7yLo!`t=)B(8nAfep`4l_!>5n4WWNM)$~v!B5(@{iv$`8>3{qpsOB za`l+KeHIqJ1r{T4SB+Y&Tr*#m3C;r>;#Dn&xwle$- z>lu&Hpvg9QKwGGA)&^^4>Xhz~vD~iPLxij=rBJ=}psVZXW;SBU{GO5>)S`I>*!m}5 z1E}`e8p2ro$TGuUjc%Ic)$TG23!XwAb&G`Dq7385tLvw z9+c&bWzf>w&c(0cCuuRk{6||*{rRXa3zQI6RM4aDP0f@**9mB0;IA34yt3)V_JQCl z<=nV*v+5|GUJ*Yke{^}doZ1!@*K-ioDjVrE-?!4LJcGonbUs-HO%)~K$oZkP-1&8c zlRes6$%UTH<>H|Cs%_4%9r}(S;Tq^tqG?w~usW40NnilrK>M0Z7n2U%(lu|P&6p_G zu<(G0 z>AB#ILwIH+CKZ%6{$Mo-IEcSakwX^Gh7Cp=yU;N^OJ7bNke*@w)|H2uTttExqyz8<7&UGyRn*$D}fM->`lm(*@PR4x_ zp@(3f&Pr52B(1e_Hv(LxW?=ycQ*cJbK>P)0)?r0*#A0k$)|{OdBE(arJnBSM2oeyL z5X)d24|&G`Y}f@Dz2Q4%dMfwm&O0lt;`CvBk;Q12nH5LVldC%;3%UrsKu{^szQk+R z*`@hN2Raj0;N!#J)xqj9A3N~H_b`TQE1d~l;Nb+0CKPsY4e4T}-1MO>@7~Qcyzc$i zo|628=c#D`m(%h}0NH3^r%I@7V}56G!Mi7V^j5nvKMqYzIn7=06r2IcG_Icjoc`fs zA`!AJ_;2}kZo?DxD(n1y!p6TG9+MMtJG5yI8TA$n=+H9N}~{Z<k?t+iH$j31Hib7Leb*T0$*xa(Y z(^uNERFbu#v`YNW`tRJq1IM&3YxvH5eegu>zf@Bd{jgf4xjWT8#HVZmWEzt7N??9Hu1qm3Mq9ToL2aMWLM;bRO?QQKy-9XzLhau4^8`&2Hr_$-7u$ zU(4c?1Ov%u&NOLwmzCo*u?H{2OBH=s;-csz_P0=J;Es9#>j-ZFMWS2`w z^6^RX%|>Byi*ZK(z#f<{i)oq=iA?-l;NF)hX=m^APvLV^!uaf%CyhBv*L8jhPydbC zZeHY%lAH}`IcArK!a2Attzd^$qs|v|76Ne#D;%VW>^_*HV3i5)>m;20d56nCQ~UY3 z1Um!LFK${oa%akH(cOKW?waVSeEA@Z?NaWsWnQGcdX?_tDl$wQP5s4@Ep&sAGg^(^ zp{}w0gS9q!rDvEnT??8-b`*Qivt&nqV)V+)X1=_sbwc&bOdArw zK1MIwqoR>T3V@ZNdA!OTx@=`=Yf@)%qG}a*)`rb;oK;8)hr&2_q{?XK+1c|VJtsF3 z{l~TAC+!MQ(&Y=j;slVhF%vw77NyIr+vZk0EX-?);u;#RE@aGab1zwP@V#be)~CJM za%ZO2K$Z0O?Bem;24`S~8@{#4LoS|OTf}CA>)OJYdOr(0Kfgl=wL|)FiyAC?a-~qO z+<0`3eP7{Vv9alrPg_iWa!{c|Bb#^$9aOMjhSxX*kRedHqV1LHH^7sO`-O!o1_&O9 z-8DU{gw@D3B=BM zh1ZP0@#pp86H6I2?lScJSgwl{mp(3Y*)Zz~d4HvhXq}X%mY2NYFNs>Lm zp-tZCuNHmRgGYbQ$`fY?KL=x-VYs`OIH&JflBZWsc%qfo(&XiNn)bs!*@7BcNLI)b0N2 z!QQV{J-*#k3h_IZ6)P=K0&WHi5aydwih1^x_2(T1i?yz>%KvE0L zHvc7eF2lva6|_yg$juu|XAM7?jiKDt*F=ewK)pA2PcgPE!IgH`b7`Gi+^6l#AAR~2 z*n&r~UH`@DeEdxyv|JY51T|#Xc=7k;jELByaYJ^$^VK^xVRg|74zY$662TyWfC52v*_B zkltw%AR=U|x5vzezgk zy)dX4bKqYC?vEiE8Y4O4c_61emjBN2_iT^g^@e6Yxo|VBX)8(l}@)^|4qpVYS=z6Pve7YKH|Ap8O<7Q z+l|nH50#aUP4BqH&6}GX0#_0o=Sye(uyOu5m^|V!xaYW#cXC8mB9dA4`oTu%PhHgxs~6{&<9YE~#pslu)V)+6|o6 z+qHlDTPQovWmp9PmjZ*?2r_i-aw~SuwXRqW6f%iB@1B(wXa%xRKKlyFXhx7ZyE;)+DT4wcf zyp|_7=DIjJJpkJ7Q(7AC!)A!bm851}Y1MQFf9ti6fpUCsfiE82Qsi&OXL&qzc;Qp- za6=uxnfXi?Jcn@=>1hJ}`6I7cq9P~q8?YeNZ~HdEUsrfBHn?gaVu2ujvWqDjSz5#| z$;YK1`y<G(PA_?(B;4 z0G68omIw1vW`O4^Es;=ynhHl5ed=IG?YV%NClTbixiM|vOwA@I6!cv^A=7^pU<*vM z8GC-$G;hQN2||u>={jRO*tSQsj8xqbQeb0vr z-)^cTgQ&*7U;yWHA%l3xoE{l>4Ei1qKZa`5#180lmbttlz3*e8$bgKd_nSl>QD(XI zeWL%iPy_bPi^|-@cPvL>h6lchyUu~#f7^pPyz&Za=`4E8SV|Fmu(t&N;|lN-4Ue{6 z+LY_-8)DqXDS3-K3iS6!h-nc{EA=j6h*)sDgH22BDcMKsono4|V|;h@Yv~CAl1+sT zMem{F(paj|vFu%ES*14GdEK5%M|`tCeY~#^t8*T2tOEXv{mDU?u!p{+S$)D7b%esf z$EfAqV}x6u#Hk=~&)=;B*?9XW+8Q8=#g6jDhKiB=8XCCK-_0M9YMJf*{F3zC9S;G0 zKd#!RP0p9Uf4l&*@=R9VOc@e9cs`rq(_WCgart#>a6{XB)@$>}%pOFV6*X{Zip&y9 zld?;$OCp5M`77dVA8HsFB!NQ&$K{>*BR_|;te#N26zcYBn9T4o+I0D6$g_@l?VSwprKUMfP$ga=(Ad3((jC2OLg0Q)TRLpqh%!#O%r0+bVa^FhB zn~oX`w)d?xe`aa(hMbJdp0FYu_zPY*J1%Xdn=0Pm)I0-41esLeohA{8w%nb&W>vmZ z(%T}OyrQN-Lgi(aFPFAXl%~tQvJe1+9KXZ}Ta9yB(&`<9TxIlF;qe%t7KXlSLH(=- zGW7Oz-{$7v*k})o{9=S?gktFRA2Qw=xAW)I5u8wbg>DV3nO}CGBFqq-vrk#f5h#HI7hpgT$bC z5)QejJvUKTBRu}Fc8W;IHFR@$0c@}s+|2aLN^Y_xb|wQgojmtPa?#V{2`wde=1V&u zSG}r9T9zPi?wYsZR|e{+ssYZXhq)U#o4g`^q1r_{xcFuIwWZYBgeY&J$2XjeBa}bf6Z!o33g+h9)mW3fIB*U{_^Ao&gmNi)>zVGqpm0F&6pE9Q z)lO+i3^Xf|xzo+IyW4C{i~uS8DX9APTpApuJ^6bm3h9wMHT_0D`DMH?46%oH6|l?TqJSDm3d|2NuCJbm?Zh!w48)xlAND{Y!I z1Ky7r;>A*vdBySJPfMFvU>EOqSeN|ACnVk(R<;U%p_n~WT`bj)xEabzwH3CKR86t9niazjx3^e9b z;sgBg4UX+>k~u0fRca~qgXBqW_YG$H+?(MYXKt=L|7ycwUMg19N_qdM$=E`EJ|War zT9g?f|7voP%cL51-#lA zwWi~a9L}0p=SR~&qz5`kYFPOw=LLOQ(;|jEOr17V9P%>T4`Z7jBfl!l2p}4-tBRPe zWfTX?+*xQp`0m{6X%~>1m6lU#u{*ypDbluM@w};OGfU+w$JrGVJAkglDMMxyzlS*5 z`%76sq*RVKnY`Q7^LPzu|8uPBqFiD-3F9#uXn|fq;_>Spi*x&6MQki#0@uI6Csmni8zc1Tf8Sj> zHf47C`62agae6nFHlLQgGwQGFw5I=Ai5ou5+uKZ7!Jwdi#lw5NseYZB+xX_fn3QAO zf|}7sO_JzU<+9~3#jN4SU|z^`!OGwSpi8%qL8&p37)~fp1Cco1>ZkcQsT)Hp+!-&) z_SiPd#ziS5Z>LK2J#(KimfcCV8q|+bpg2QE1WxTmWN>eo+nAcWGvXjgYi=Yq^G7qa znU$-)sjj?855#R9`g<}+qAs2D4-~+v(x=~DSs|Lh+YARhe{IzdZ**f^*Crnk3xT6Ou;`9R3qibXU*!me zb3QXalxaI#8}%1r7LK1{#DX)NAQtF2=3?JIK(&0{FDV4T;biR=%fcCf7BJ`_0@~*G#7& zJ*VUB_kos5+HY3wI=|X?J(|0|YC3tOYrmse$#&FzNZAhj*lnitiDq5vT)nDFJ9B|h zDiEr02(cvZJPglv=zmE32e50U#-=3JZol4OYD z*XrfxQD7X^*6x0fvaQEU`#~Y0oU%dN{n^{CH6k}ZINEN2DODDX!-L)CtDc#Te|=7o}wEkb0N$?^G5?Mc(^*wGt*CPf|1~vfU)< z?X=h-t@ZvXHD%?bJdkyuk(iCxCs&N#^@w-(+!Cj(AN)ZnO}p=50ZHl3o}0N}pdr?k z?+|Sv2Iif1UTW_vr)@HUj|8jpq5LYiUA}&g|D1)i%k(q|;3?9vqz6ESYJ1}t4)Cc^#7aP<`mM=^eoDpR9or*WZO<MDzib!x1s{zRK$uwfvoc+nY< z^2b=KZ?`8Uxg|gH=~d?WKCYRHMOwd6u|ywh3}2NJXh83?8B=AB;#=c#A0uV41hV@c z0O>wp)-fB^a*T5WqyqnDzyrbJzcRew4REcK+uTy@Li5^4a;BDD zoitxo+4M8^ZpYkIQdRkYvAd2=uyh_s+?YF3J1>IN;NtgfR0$wxhzGM5XUwx@a#?&l$%3*xY>9BYQb|MZ~?NG>EI0bEbmZW0MScx3*%D>oJeJaa)ftwC^N` zjsniwSe@aaL8*_xnh)OqCH9>L?1}uzzi;$$(nCZY&utr7Rrel9hk>LYGbDYaWj+nu z5KGjN&PADtv~f^>Ir3%WOxvh${)RpY%5rGG}D~lPw0NGT8!9uCDGT1 zS*n&hbV>7SK4`@v=%4<1C+4YGd12z3cQ{Yr0a%6i=0Z4EQ}a=>Qd*K7M$Ub&a0#P0jOu&Z10d{fFF>RF3uPraaQJPM9n zujex@M9bKEENyjnD4yt&YsoJ`o2kP+vwWU|VZSr)s^7(sf(w$`J?-m5vvm)~T4R}I zW7e3E9tjtP^wK9!-7;;STmHa(EmGzDPc(JR8^Ewf=a0a={591+?QG+>Y`}`wJ-$7? zvZa?MF;t#;^^bEp7@Ltde7XtHJFPj*J`=)?3p2;j{mYy7Tn3J`yAz;)W^7D*eNe)r zI-i`eLY=>qonQ>OS|;AJAVVRM2Q&o*uxHE4)AMM(KX5>`O>1-B9Nx7?Myc}eHyS0G zIoh0LpIVw8zdW+=ESZMDZx&~`cwDqQae}<@ry;z_b)>wEOe`?@7MwV+)mZ#O{9#Li~x6kE34 zeScnOnO8A-WyEtloPWXIu|2fmSh6DL#AA>z1?Xn$m25>eyzAi&!F^b>M)b^xmNF9P z@4HU=u4!kq^)LvZEs0=H0Dxse+~Aemc1OBddfAFRvaX=q}xj!RSWtN(jzMU8(^Io`3VfKFn)CPd2Onp6$r#{jIP2 zlH`DuZ&^s=Dl&(Z?~7|DFnAbyYbOD>`OFh5&pVSI6}4qBqx!^l6i;VeXMUFTp8!zi zDSeBi%(DMtW27gyW|wP1jp3(ZcOm0s;jD7WopLT;dS-j?_vS3UFsY`b#;0E<+yJ5F zT#{$zwQD?&8M&&6Az+D((}IsY0rk`+8T$*5$|G*3%TS(YU_p-D& zh~1{QcQ}+Rg!ZUPOS2z!%;7S~ADi)B0gCD7esXc3jo9up)a6?)m;u3j8HVf+bcY2O;)lEY_1stQro_`X#1X8)wM^GoLHt!qOD1mcWq0ArCAxaT{oPukQ-`VDBgyAa zfwrk&%((pzaHrVNFrnXWZAEo{2*vf9jUjlEJ;8&+0X>US-L?1Oo`yY4Bw;zvwKb0H zGUJ8a#ebZ!yrTkkbKoTRd~(wKW0Qt*8>IAkc$RM2$nPl41KG;S9ox<*-^A^WIcj6G z5ve>DO2PN|pLaxBea%*Pa~>9(k}cDv#Z8TVTUG|15Rp412rXU-9ttmZ)CF}Rux<&I zZI$GrlQ@>^y_(7f6pmV&ju;F(#H|_2&iAzde%3Pc^?4{EfC;znHA8&~s*WYJ)w;BS zm}0md_Dqhpz_Z@?P0AM1U*U<%{R8RPq2ATeH5s{Au>w%oroM)M4uET&F;$MD4loa% zeceDG(ggs%uLaw$^6C$Ss{cnJUp`wK6&!6Tx$W9DDjhRV#Ga?*v_D}%6MvL4?Ji$g ziqO%1{|IS2e zd5!;?gCkd8Az!D&Fs(iQ;la)QXFz=TaSik%Idmz$aE>9A;^+UiU0Z%&rSRf6H=5iA zEC?t`$B^UNiVVUL67x+4=DiaXZ8@OsJ~K!Bux2TL)%_jTe)5VvcQM81O~XN0#VK_u z_wM&5@|6o|!&D8F1-I(_hw|D*E%2CR-|tzVu#i*S-dvkWGD^PRxCoT*|MF*_j`;88QfWXr+v>W(R!ZBB!+N+R6hI>P6eP5u#Mt%+~BVAvS1RkG}$pFni%} zWM~LW${jw7nG-#sAUQ6*h?p@vtqt6~CtvoFod047_!XKKoR(UP;+AM@?Uwjd2PQCl zzz7hZ-A&E9l94Z=4pz&tuO#s-gF-`csCHi;Q5wY0MR)vKFO>EhUTfe$SkDCZ0FuFZ zuD5S?A?Bwg>EZ*w&UHMsk2-kwL@xI$Yj~RtwPWQ$2WfRHMty(eZlb|xjyjbItSOs2 zL$c?!hDP(Cclgk+tv95+sWnXVqKut#--He87f=HFCqUQbNgdUdb|xT3*MQzy^7eWN zlfZL_DTS!ze5S>d23X`Xww9Uk2F+~F6v?4JQJY;Sn?T71KMPky;*o zUE)ah75yvYTh>QnZn}>3aF_GG1u5?F{ebGZ3BDo^Tbq}coLTmwW@aFFdHE1R{Xsdo z7uRt$2!Ybp(C8kN7t$@BdXt)%*K9Dq>$EuUK^^IAHH<*`zQ4pBIjGC=(}kLlirnlH zqIdP+rA$2PlEdiJJzRW^+!Bi5=kLFShD(kI>5gmTS9N$%dUes;2vKxhoI;}CV-QZ9 z@vG)LVyg0HLpHUvV_|v`F){90ks!JIwSM^!oD&Ri+=!tM_W_Ag!csRvVb)ind*>H= zERAEffmrJ6=+#4!Jpu+xtpa>;M-Bsq_ZbMg6BgO@joL2WK)7jh<~A)?@M*(q(mpCHdf%@6rOUhlEe>D*>f>zatYE-62IJ<@Fiza^EQ1`zVsii_U^9j8G1=+*w&pBV4|FFN8-Uhr#=&m zXZrO2tMPA+y)#v>9ny@>(mew>eiPO+0Y27k!PL=kE`b|=k-(@dFccbMr=OKKG$640 zWlwX2-tF>h8~@EZt6xzi{S^T?qr&E8CFB<$Koz?t&LL1)M#|J?0#zh{#J z1XNPu_2!8x!S*H`J(!r)Wjd| zGSxl@vmr4XUQ9H~;jIc_6=-hI2DEqXop%X&<)fX=`VmTi_PAz8{1V|^416qh(3XF< zaxBcxnCi{1(zVVXHQgf=XTcNevF?YTIyhXwY%+MDR zb)l7SbpSXl$CzD);r2hp_HwB>G5y069VotkwB)}dbbOpqU*cwWST$>{}WyOY#z@PJY>oAg4dhm(_rl#6GI@*EgKxN=V_wyVYi zAPhm}BDm*ETeO2~T=&qR-cC&vQOAmaOWx`W1l8By0U%*D7j;$m-E=I8DSOy%&bTX8 zbhin@>&G6I5y0!Lc1Q?Z%rG0);>#~T@myNE7U^*%^zo`{2Vff@IM&(4tOIzTM?aXt zT8`X&dF!0JU2RTE99U09>mK&H+eBJh559dU8!3V5|CQt2HtDMY*9VMEY*_coxvOx= zba6{~zWw^e_W!k5V*AnjoJsWGqf!RHUJV3^ z)~3DHNbU$+^t7QSYO3OJDn4L{RktO-<&kQ@abMq6d$v#p!mLh1&3mkXSLL^6>yvjo zHDVvfq^8LL?9{7|GwUDMrXSr0yL)*`;evhFT;1} zgLHRy3^Uw4Gx)#vo-dw9f3tJNyWX|--cJ*jp|gtaTPNW1oESb=O9xkm0WC=4%4OFg zx97sM2RilveyieY02=tpfOL2)7rhHQ2em3+;(RW)_i#&LtCTSOo;CUkm;TfKrPO3& zP#FX0eO?eMA4Rqd>8h!!-_g4d?lEtEsS!!YA)lrUERjSc)|!68C*N$RL6bFwHS8|v zZ@rg6@kJne*S$vxYU-G&%2WRj8GJ#^i9#UvnHmiEO8^31FZ;;Ux&85YZ)5d0+4&|5 zFS8WZ=sdXiWAbWDGRuNEg>m;>P?0hp23|k3P2PR0qH?p^W6)>DVo^4jU7^uvelC2%sjZ({eJ+TF8R4$R zDy$r9@DG7xC?I%1co$N0B)yu<7~OfJbALCZlTriZIe}lL5yH2;gAZQ1c{lQwSBSav z_kOXo&ZZ{$+5IkjFi$G-H9j#B8;k1x$ZHJ4(sQmUT(<)UYPO9vW?N*LuF$j4dUCdZ z?Fmj0&)NiALr}|!Pf-0f+kEX)Sybqt+e5sYAsJ=z%HPBU$M;g?>~~MY_q!g92nwHY z#mf#Nx9n0<8H=*TwD7h8DBT)-|F6|9heKgJz0ZihmWwDE6gG`*kj+YD zM%>Da<730h4W}Y7X*^vuF6N6H!Wva~6b5Uy7w$<_QkLmHac}+p5hT$!eylvfK3L&( z9bd@d^Rpl&L#W-QhcN$9SLYK@nCF$8x9HGTkU3bUF?68P2R(WP=uGe1%M9~|M!t8R zj2Pp@{qHc~MSKNsodJQzY;eU|i&F?UjC&(F7QsRYWM=w)bp*)t{&6aPaw2}gVBkS| zSO5rZ^ZEYYA^cYYhJX;P2V?jGu7h~fELdWo0cv_wgb@F%uIj^5R}EFtLN7^MI}M`S z>WHb_-{#|ukR~25e(jv7|D-qYYn6$7F~71NT-XQ#kYjMMX zSp+6=X(`KnI$f2aeh)3%0*YRoUBA<(>LEZ`LJ-cR8h)kF0K07K5s&Z()bYn51yG}7 z_0|lVIezn|ezwmB!SC5y{}Tn(9)-%6iHDlj=IX2RA~}J67~mzC0WZP3qnb*66EyEU zdM~ssQi3;BYJYx>2vaF_a&&t8VvDWffx+U~S@g%2uoM{{uN}L>K{nia65uud7*x+C z5OeE0fMPIgtp*kzTvFfoK2yl!TwnArg7-0Nyzn9hwbK|9C@?^vjR19%41QqaL*72W+FAy_wGE)rChQOtA6!BJZIx$9?3_ zvWGak_4T?w1Za+^rvUUu*9Hk-xHf|&8o?VBoTp!^9Ddc$NA0U{&R1Gst45~o^(Gs4 z%oO5KSJ&E)bFnnm#Nh9=S*QpAFYa-V>(TrJu%*5=R#ocy!!7b@xnYCDU9*KhoeJedg>;bNly7u!7F}5@(P6ej$t}br{oE~;T&1YH!Zzv?@dx$9k z#1e#+wLbw(GB%J1k@vru66bG`cOW+>3g+o6+59p}0^1tN7cS;QYKq`}cuB!0)@H&@4v%{%Ol1_}<=aNg^cYY5gYyPK|VpqqwDRq4iu7R_N6ZG^FW>!Zi|DP@PLOrY!nxA^y4 z5}z{P4lxmEs1+OngBEaHd($AuAp(OJU}pW)qz=&`L#3tE*vk0Y&-kMdCtLk~Ql(a| zMKu8ql_$-ZGKfcI0a5?}6x)Wo*mZfc)YjF4^gNDJ5VEu|^ElfNB79t$pQ2s%mY#WS}Jmd~_kaE`r>`Okb$_IHaLL zbBs9Ko5a;DT}!Ht`$3rZ2wWr5AqTFPwLE9fXBUMZQ^Nvt~i7M*^5zJhZZoCuvCf+tLLgIDpE zS%L4EJDt6nPbXZ?0 zOxfZo3%*ez*7QI?L499I;O)~!lMSMhc~iN4$f>0PwsP`s5jcRn4J1Q@XIq&Hej`uZ zchV-$BK#Oy?ca9Z%`tb`jTgS%yL{4N6F*jI)qN9$b=~`Z5I4h>`pe0sr&VXi^*xn0 zug_y6s#kcEuK73~)0%j8KlGK)$o{MiM)IwPzIZ6RsEK>sb`&Hq9u?4@L0UEh-aHbB zxYG`jNt}k{6t_+@J@;3WOZN^QB2VhhX5K-;06*b_2QpO4NtEz&+h_feRT}!9yYqpJ zt@i&^#>QGCcrwS!9zX`|rrxaYa->6HxJ=Ep_hpchwcypf%O&$@1R>__Yz}^aOE^6C zrdUvUXbW+6(v@6#iz4JWHvh~VES@MRSL5kId|g?-tURW#q62nBT*{;$#A|OfkGA=c zs+yX&%-iTr#}z_&o=S#eDQX5>Zp}-HEkgdR6N1rmwnmbhBpB-dQu2I}<3O-(-puJp@UQ~rzJ)7RtlLeJRwOi+Ht~0Gd zpqVqGS!_|dgz7kZ@~;Lco85fz2jtH1Ik+$79KHx9r?N2;aJuY3wxc#1`2!} zxrD&j>hS4u$$UmfV$VI&Y4+5vHjbl1$g$Y-6w&DiRaIen;}k#N1CB8$UPrjr3{2A{ zplR0g#M7OgBmZ81p2#VTq7Rrk&N%$4g-d5BLr{Tdy#qHlo}37(k9+KIzyN`8lB+%~yxbNkc?($iPpN{DofY#LI$~DKOLq7{;R6TB?6cGMz|D1jO7phj z!kx|MmBve7DA2Fum3r1t8_aRSY;W9KJ|3&&RSERI0wY+fHz?SA4qfc;9Zq(#ny5J3 z*$=q2&zEIEMp1{Ixy zi{|>TTiUAzjpr9g>_CK0DS2CguI8XJCqq``Yzw0Rb?*95<9>4d8SFi{G7|@4YL^N# z3l|hH+bxPZJ3Ciyb3nF_cy<{Bo_?L#29>7qcH=yW&^Q&%XS)d{AdN?L85o9t(!*M0 zr9QiFj2z44X@;8J77h3H%clDnv8kD0`KLcRChxYG1Z7l-Xg9A1?CE~ zo;cqq2(`I}v&~G7$m#2ML{F=+{8|NG!fqY!dP0qdLgBczQPEb%{28!k47e5g{wfEX zj=RotLBWK0Jpc_cY5vjjAh<;@Kkv~j!BmLDVCym*&Y&`dw;f!5#AmQD_LHK|M$l!C z!N@v!SBo(z$sGR(<5Vf%J56nubA|Jf3Ub-gpAx)JRiy zJ3_w80br^n1t}}Nj!$yg2?^jdjQo9IaI$l@4KM8i4#F)joP_6ZEkNIcbeX(zVLlFy z{zlKkGa5aw?Dk0Dh}YVz?t#AD2$8e*Pa>|ASZwc*OZZBVLU`I613i9ZIh=q3 zZ0>ll6esoznra{(Q1-8HQcy-9c&H&u*4CYG;8OW9I-07*rpNoqP7l7dg-i)6L-X3CG`;2TB9Hyj&(Tf_$w_Xk$g^T=us1W zqLK$3HE()$$dCDlN%fUz4-S6$?=b^lwWnRb2&8@Ke;0@1@6P3)G?V&R=r=i{)^@X_w`A4nTa~wosVBA@Q#qNvC z2vpt1inXvFdTh64W8)FS{w65P1t@-gVSxi-XY>bAgVOMvbgASCz%BJZ_@#aVsy{q| zRT>%_q%|M<;d+%xo*A&-A-X(#98ESIz}D72WYvokF`Kz)EuTsFROTLbn;}}XfejDk zVwKcA%(4(nIwKy3`557N|36^JxaUaeq#QTipSG*#LO1maa~G`J5Y(KF8Q&+wWV}SL zJos=w>OZ2dWKbIlF@l>=$A)q**ssQ^hkV28B~T8XMI_k}knIQP)}A zB01*T?%Lfc)#oQbz=0`I$Y;|+K>g~uqQr%_i-(Q59Jew;)X8B<0`k+&NB5M`?3&h!vxK5 zanJM;bd%CNVm)51nT!Z{BsTXY;Rhe34_Q>u>w(o!_bh>+`-lxIS*+-!3ND^H{qPw9O)kB%S2aW_q^!bYTJWF1b2O~CuN`b+Su zVakj*U!r}4uO9wbSMKGNEpe$Or$${9Pa>;Un|DCX2FH64xYE4zgMT$be|bS2)PR zneJd`+07&4pgN{iH2P5dLZ7mMvAoKCQnyVWAZseOB#4q9Ngph=Kv0W={&)w}D!tCa);>nLhoEbCU_cY%MoA#5kEV!H< zTJTzV`y?YWmd>+b+0GTek_45%aj!%ZB#9jDADggMFFGgxgSoTn&WfaBY>Yp8=4txw zYr`B~ZuVG`Jr*j4FN?S-hX1%eD<_OpX0aSYoMn?n?zx%Z#_8aXds&=7RD{dZD1Sv*9g8TRn~T3y!&8CHB@e9S#>7 z$8VV4U(NRv_q*h2dlrAQQK5IavT|BZzUvBch`{!CN+|Q~)QQv}ejRO{)>ffP?Am(i z&zd~ZefH$IzNx$Uds?w<&@cg{Eyo#sl0B)P`6xgt1}Di$H}Mav6P!fI9nWKW%qsd8 zPA>lEs7Xe4D<+bEr@ra?y-6*q0$QtRRsdnI*m_bon1GmKMB>Ra^-j_$>v zQ*rj|`H?=Il#0r9ic#r^c2u2Gv89BCgzw@3*06S4e1VP|8T87#J>S=#y&phU_bKFf zkItD%()Uo>8@J|hU(VP3tiV!1Ny5NlbW#8zY~Zr-d7E2qfo}4I`@V@RiZ3KX>Qbdex-8jn!m6Nw@{_OLUPJ~6ev-vfXJb(A{{xBmG2{reC z>C-YjvqAx3;dy6kY^MZ!B!6w)3p2gl0QZJ?_Z*_@iBHnd!+Qb}6+4;v|E|2qB`5a{ zj1th%5oEC~F22RCZ=G+mrHGROXop(GvUC+BBifA>^l^nA7<(q!M7r4U35>Ia*ynjz zK1veQbn!?fyZuu>3U)1H@T^-U z_7JEjT@=|2pMk9`ie^ECP6 z&|)zdB1FlvC+n7iL$4~ptd_oQ)zXvw9(AfU@@wZr?${_{6(^8hDqMKyxAjilZx_rwodIZ;(DKjb zgd2jePY)g|^QLp(VQdQ878k+x2@Pt64@-?r4`iq`u!gI`N{aCv-{S9;zbLMCSNq#@BggZYu7Ou>Yu^moCgpeRs_13ahq zp1}Odm_v3mlVHeT$)D%_*t1FC<->DRIF&nrTKG9I-LEh5gr1d&x85FI%%#b?ZQu3e zD1M zy(W=w;PnU11bGdAOciA-#%dm))AnEE~ zA!siYk}x7>8(C%i*R8WteoI$GZ&&7XNHmuk(Odrj**HD`hIj29u`)1qzcglKW*$;` zH@Gwey!`yJE2=m=!r61){?kLBUU~-6CbRtx%k;0voR>b+>1K4F$bsC*4RN1h*JFB-Jn!8VvB>Q zR}y*AoUgVO`LO?59oA;eaq=!bw=}QsiW<1l~h1hz%8uc zW!WsZzQ~ihW986{-zmQv+H`qiVSPB#!;29? zxg)DD(e1l_EkfZ~IMQ9Cwtk8lXbGVP3h%J1w0C z19F2Kmbi_p&Hn4C9Iuwq7V_UGF}!=1>M66(h&>uRuPsUBd#=m7or9<&(~$2kU(OhJ zsXC0iC-GV-I+(k79YAyHjt@%f#>YU`7uf!=znHuaXt-r7M^u2W;M=b=$v6+}!kxJF zvwpXe>yl~A_|v1~hA#e8LBF2Fq(`kKH!sOZ4AKdBB>l)k;USmpxjuU#+m@9flMafH zpI9l%YKtfN;SBQBy6lG!{)-6)Bv;ofWpVcR)32`l%mbPmhK_byz5$jnq%fVsw#KN8RzqvGzMrx&W)jHobs z=v`k_aoYNc2PFe5#lt1h#`C2QF*hx#DHDP`E_`EX_c?#~C2q}@_#7S@oW^lq=o7>s zwDyXbkp=O=VU=v{U5nLkUn_??Bl*V+9rs+Aa7*^#FT|$9;!0%&$<%*Y7w7J~hbv&C3mE2W&$G4xi3(Bg7%C@U5DD zf$AK^EFsnY81@_xLAR_DLt~JC9Op*8@6?Yk-P24VUk~mTz3|*G2i_?F(Qt7fh;{`x zKhC7Bd$`!7dofGw6xR2T+QTQT><$jf<(YSIO?mpx88##Ud%B7ayOH`Z_;Al@R+*vb z-N%xlD%E|*78E0HKmzA5C8?={#HV^w`==-+Q)H@bwFj2E6J zyPP(PU7xAE>`fjW1Z2lrKzE@c64%Uy|L}(03zKl}1UGrKufhot0B{NLG#{*_4`;Xm(zP0c_EcZ2%vtnj|b5_MJ8^*_Tw zI0%%~r2FLIz@%lrKBUhQeKg8=4n{c1{xllfbKt}t&$mqW}U!2n$+hi35) zJ5*T->cBY_rdRW z?`{`N+YV3kYG*g^-@L>U&^uhlUWIUJfWzY_6U$R7bsw;3jIOMXZ(`|X0_aD1rMy^9 z&Bui~<}}A?ctH>~s6VN=H9P~H zOIV&@Zs`n%dZi_AHUisfQj?K5p@Mu!WI%Pn@td6Sz5umBhU9v*9nQ7(BrUGPt ziaVrwci4-C zPWy2U#(Fa-1Ti<)WQXmIfc{(%2}qAeEjHZ|_FeuVfqYgXtE8l~Li+E`(;wI8P#+{7 zkf*Ib_;ivOO*QmOnZ#r{rer?0>+y6_!AC{k@?k;ZyTn^x1JzEDg?KoDiNn3?ZB8fD#UOZ5{*1iNwXTH zWgUm8GnIfVMG03OTVGSG2gzLwjO?cq_~9O3NE{m@6Cz`U(`O->e3iV!XJGfsijC{0 z3pfKuQ}-jH8XGqH$Ysgz4#7sFn09124TZZw_ip)s5%JLj>2DM zH|xZb@{Zok)X&e#6*=PwsorlGTIZNJXkQ)OncJwwE)4;i^jzT+902P=K`Lb7{0xL+ z*(+z&C!M(pNOO=+A=|WU1Ln^HGWo6_5)nH%t$}=BaNR(vjd!hBI}oY4TsUm#jcu&k z+k;DZ+_KvuKi{eVQ6_Yj7Fe}&)p*?FYym+iUukXsEDyRBoe}`waKeT(1Y5@E5DzMA zAhSyD=~*dVcU5pw5Ak+m{OnJ0%^P4?`)^Z($P;h#I3HLoZ6*K1+@gH-3jHm_#Qf4! z12+2)qWs^dZtQm=Sjmsy*=&cl(rwlV>(p3v($TG1J}yov#k3M8SX-AkWxmFK?WJLG z?wz>f*oT5bkj0ytp^Yatq_h=F34RuEmSUSw$`uhN7UXKol37>>J zJ8teJQrJdnZ!Rp{ufK>g%hyobA0S5Q!B>k)4LUg>R0QLJNvA zR z!^onr{=?WOltFb(aw_3{?OvtP0*?e3wfk~j%Dwndz@6cwm~&ZLWonn%oZ6sPFV zo6JhCsF91!)qj$e4eX`0G_yWkXY691DAt3`wUFMfse*bt1Y(zgV6*AmH&+dAwpPs^ z^Q9RCJaK4Og`C}ED?vW212O!_(1DCB5uH$BkxdW=12DwRuit*Szrg-_i)>(-Rl780 zDKJ7lM~!GZ@cr`bRDFZe0%R!?sqWM?n&9dVUUe^I#(wNo_IKad`~pMHW|B>4iqYx#%Jn(1RP#$XD$00WdOThZSpr0b!n`W9&m?teBE z)%JrIF-32k6D+%%X80JKE9LWtG(9ENbpZ@rV`uvQ(K|I$f$QkxVS6I=Q^TL5tJvR( zcG(SEHn3>qbdoIatdi35S{*?>q<=Q1I|$Tmz2|NhzCBEf1ZJL2-%UkLZTKGcH?`E~ zcF(ry<|YSbvvt3a+4~o#+t{_Rh0O0SZuc3b_8B_!zZSJqZcV4qW?-zWz&WWsN;NjU zBH$*whYts1M#er0Rb0wx+;10-ygqBPLagl>>-<{>;)Y&pYBN;9c0^!v4v<7gq#!mP zOSvIqM8+X8wRy&pko0r)&cO6{6A_O*ZL3=` z69jiC??wvQeWUIeJ3K)p+Wc9N#1;$@OzEAgck?iKh#Hv96-iEurKRRS_t*FN3+Ti8 zQpf+`$mo;8g_&=yHcqCjw2XJGRb}dYUdp^z)wMJ3e8i_+xxB4`Y!O^LZ&TvD%~#KK zm7NAIbp5#-L#tNG$I8OO&LaauyvVG2+e;?lM2#K5(&$||xd%Blx8WI4pGy629PAEA z2OUann+@|*MHlL6Ssk#@x~wd1UpZg)z;l?@4TmGAdtr%L)~4aa#+eVL(t>UU)SoUM zGk$yL?PkP>^@(0cSx13DjlB1zrPArTP;{nr`QT+03I99KpD^+(m6o+uev;XMRc9o> z=Eco%>-M=-e`;1ToOgukJ5Dz${N>ZUMW33nv()krH z<&;Im&c}DBsMr5(H;IHo zwBeO2&$qe$yaSmjxiE++s5!*n3t*lK;J*dD!v1J7}C zCht1G?d~jx41%G!*en}f_a_$UMcy(be_^XwI+5kj&XQs6JW#J3#Pel{Ytz?pc>%|6* zQ#5nVI6d`Uo@e_Ff;Ldcx__$r(uIt=mpyp+Uxtoj`CfwRNCg+oosahDurL5cNUjFO zeTA7LQXcWiw{)-G--rWLLk%CT+k9TEUwV9X+j0>v$_Tt7k+oEAiPQ0JzP}Jn^tI8x zgeR;zFI$WEI~mnM=cM(hTd|#uS&*vjujaY(H<00VY>%}$%d#2e+{Tjf&1w!J&rAEL zf(nX^9h|h?#Xe8E*3CZ~`qlRDv170!F_k<#-I`!9C#oS?4Kr)0`L zxp>h@srrq$o$S}Ku5~~#cE8(p-$V-j>&8}yAdl40bK9H+dBpQog`D#oQ%pa2Q4yri z5da)ncAIu{oUU$OdQguned}4Y-sHXJDAqxi>8i3Er1IpNfVC1<9j@sLU%&qPYG+`= z6Xttt>8sMI`p&a+^vZ#J+UsW%F85gYF&#ChjomF(GF3lOuckR@p@ZhmaY!6I>h{}y zinHrmjG1kYvj!YiV~EM1HTyEOow9u6!s(7x(_?wvYvjSy;=|3 zb74E*OA(j3_%3}&X=Bh-iAh)a>^E1j&wRWzKWs{_(x3XS+Lg>aFKNB6YsDk{yF^r# zInxkp)AC!o<8kTHHv~J})Om?n%Z_PG{iT1v$!|rX_e1lGdi<~e>R4o<>3kR+s}mzm ztCy~xyAUG!`kJUb%#f#uBcqG@#%C#Oq_k2vjj!4&2@Qpq;pYXN{+Vm^*e!p{bA1D;+@;J)T9qvpBa9B5H9%0vxHvOxa7 z8o#7o|5%|gbs9o@U&g1yi9ZoublW-Pk28Ur?kN=mkE!?exoVszX_&b}#XjGzDtb4tayjJ%?77BM-Nf5j%^SEl z@R={xxOH-_%qN^6ig~+MY_HJw&ZbTx4xQ-2_Kr#Aa&x1`Q1!o3l<}ZoYVkaueNFMA zQN+~^*W%KG*Sx0PtCL5&Hj*ULW~g%8wqzdp<+7e)%h456vrxP{lPAA92V4HGn*GZ4 zWt(RijWr4;D>+hg<`AgQgdY0|0LDicEgL-R8{VdQoWp}!QB{4FvZ(~A5RIYAQ1^pF zzVhZDu{A#LbKCjt^}GNE>!ejbsD4*pz(IQ;nxuIq0)$AC&=ipJ+aR$UEl4xIM^Kw zR_hv?I8H_l9OXK!4RKqFIOi29HFe?8h6@Vog6eaU2ZL7^PK|#JGYPYg*<}?Ll&st2 zq_{EsPFLqX(*E+#Ki0*#-#$}&mv#2>dW&*s;it$mYazFp*>#Gps`nU6zS4;Zi0!hw z!qYPC@n)PufD+?%jPvKxt$EP?_iLAir_#BZCOpyUOu`-zUBr|8H1`+CnIZ{O8iIWV zd0FI^TaC}NVP5RC2;%uY#g*S>)qn+@01L=t<;fDTQ+Bnp(s1M%=&f?ITa8r6phR%& zyf?!0-lp1PIZqHM>$2~1Ba9}&G??~H>uzR|yVid!?W>EOCbNxL!oQlok5N*M@1YcO zR0dTmAPF{tgQf&=kpQY1nJ@Um_=5B`tMVH*ZizjMi4Ba(Eob4{iP>fx`-9H0IdlV0 zgIWKFUruj4j-dRU5!8&?ORoBO>Q-`V(Kw?9lc@vjfj^6lrLg8e|1TwPr)0MjpPYCO zBmZD&V(WhPD~Xq@zuEkJ$c$Eb0gDE6M|UW_IQ#yjHDxG~ zcXT4P1_=ev+9~6b<)Su!l`X4)YB`V=V=r#|X2>Y|_4eijDr_ip<5AY>il~{%ev=P) zjDfI^ML}-S1D@fX^kDyBaXETxC+S2fI zWVyUjLJc~KFOFL#PYJszqMLs^&5H~7Nk2Q0(RDF3x%gV?I-SUt-%bVU zLWc*WU-@#D)};J*kx9?i8W194J8#6Xjd-yFf7@0pE3trSgE&?qCtZ6RY{RyrFV|rN z%wHw7bW02-4b?auvPE^ptjXu&exiRK5?wPjd*9PWi%u*qUs9E4BxaR^pZW4S$ED+AkG)zt z<#!CDkg@NO(rw%5NS;6+*Lb2IH$F+c$iCSboxD_z#+qR-eMi74yI2wSEq-2*ElCgj zs93c8fh#&>!B|SGeLWu-|H+!OPVOd>P4!gVASZs`#1Y0`pNU9x_qG!4x%)L#Lj4!-q2L!=PV1KAXD-^ydIdjd<+!1g7YKb4H9O!5EdF%{A$WgL6$Q`zP*`p=iW zgGsnpbuoK>kNFTXN#(O^oyxbmf1#DQFxBg!+4T>L2^()tT+K^tm_Wh?i0P#8Q+M01 zo-T^Di)W{O-@g=FAL8A+5J({67E}~6y=vgGXjA6tytL%65tQ&#Am7j=IYXl}?(5wJ z&tJ`H39C4Kb#FaIiCOSU4j|VBPkD8$I&XIS5TG7H6Egl zR2|@OpYy~oAPBwjWWA_H9Q%Gn{(&})e0D#eUO>g4P(O|;7p2;AYOaURRk$Z5{ z?hyK#JHzd`eKIVS5t@O^cmGdIx+A)3M4XbUg67IME_UWFq9~Tz z(*ZYmvn5W$Zd_3Q<}RB-i)UoJ|7OJ?Bbux{p z_C$B`mbQq@(=V3UKc#!exyMkPWk16Fh#&X<4 zO8;Z>rVRIU4=4sV!sPS>-zt{ZgfQVNGWI@a5w!8l5;`8KMROwI;v6bs>mu$0OP8)6 zjg>thR)^(3#fjwBdBBo1sWhosKsWSTZ%)BFNMcYz2du;BrnYY2%D9+Y)TNoSH z2TK#JZm~p>#fsM!Nw2+lYgVPqb`8S(3uxn+USj6KyD;n=2o%m!iYMe!j&kcUCHsO- z>KlK|a8c<{T2P3keI+ZYM7!u!;7#Za?*Aoc(c~37^~IE%o4&Pbb8&)VwzKJkHRE zNvRbT=1uZ!Iqm>dxM+M(y&xcQy#B=!WQHE&;-{sntdey$879mDb|<|~!YJ@Q;mZ_IrwqMMuH@^ok%J)4)$S_9j*?)H1|O_>9WqZAr_XO)Pljs;s72*i&MxF#QQh~= zKO89elLn={OYVTNt!N6sO%1t_651#Lr@v}x1x}9lc$;Y@s zEwve6^Y4%g{u=NnJ}*;!vs56C*8DPdiruq+8%v`MLJm_YhsNl^EK3~M^G{)QnBGd` zYzc-_cMpCuA}Ji)74=LZdfylRMNyW1v|Wp@$L04{6w)g( zknx`or@D)b-=3s+8{yg9{I4`O?EtzP?mx@x64alZ@%PYXdAv$GFBlUWl0Ry@m#PqZ zCGdFxj%T`d_gr`=xFvmJ-=$XNZ3p?w>)Yzj)o(+KveyGTrlEEN);V>|B|}qLNmr#Z z%7-6e$5l(M`$T|8h(Ymjueq~u3AAi{d1c$Uwaij*yR0Om)bu#YS0=JdUG?Bd68kyl z-|Y892M3c*kE5Ht$<}UQJP+gBiQ$FruLnbuf82g1RTk8}GI5jpG}+NSxN1nsgi{!o zn?SFGPw&n|&I~QQqFzH z$0uo-2@XmYjf$}b4^~=x4`50SDIuA*eaD*m9+z1l39nHU3z{ zzUh^lmlyc&z&w0B)_D#=%2G2tT{sNGGxYzeJ~C3J zZB2eCEXN7d8Yl+>N2|y8-nQ#0F3#P$F{E(k#?3hvaMCu3bc+~ z1c}r@*(8nY8Dms@v=Vk;&xG(ZN)q8@dhp*|@Z}ic2C~~DS{>A}q_nx_;o5^)L*u;M zqn6#yRWGnV@Zu|=+^!_j;Hl2dsi=>C=&+rb+GMW3Vn;&x6Ex@^_J z@#8u8IIo|KQ`KNA{KVU@WN7tEBgnt`kg4qxV@btPtmpZ^y}?0@Ug3;3K<7QDuTM^y z1t~RE`H4V-hnaPD`zVLMj>x=!o7K?Xm*ywLq@ zdX?5=V&f|eo#~XbBRxnfz#d!q&QcpHo^+0LT;hKzy#VE}5puZ`kez`K%Kl#P6Q+kt z9S?)%p>&B~lZQz%cTYSKKW9ZT8;rgt6UVh5e%}}t#!mFj)HzClww&m>+GCF10G{~u zP|fKAYBa%JPi=s9lB=e0dOxU_!+|P-(xbDxp4R3Pc9v6!PMXMP48pR!`zxQ&O>pWG zbr$L7?zM0kjw@6#xl8hAWZaf>wheE}L5@}35|y_utt2rJCn8*I7P1$FJt7Y73dfrR zQJbT!oDK@~egQbHKvLswGH^mTar)E5*|K;fQM06N+U|8a$d_A3M>0Ei-^2bgsYV4* z3Cmi^9>&?>`;Ar93?am0f%?F zmz1R>_vHzs4KbH>wO;0=hQV=koM_GUC4*D+7t45tL+ZN1lSm5W1PcuQiR<1ygZ`C1?EocwLvsS&N;*UF>0P0s?(G&q?<~^q3IAhJA%@ zu82FQO@ZdEmNT_~YWuWxboAnDMrHGdVms_=qzR|Y;P4#|)+BIpz-ag+2$ZP|o16Ql z95pl~XwTXToNfJ%?Q$ztZTpzxyha;G78ZRgA3U~j=Brm(v$pzjUVG4NbLG8vW2Sg( z27zgP%}+0lpW3;4lXWLYM|;L11oAm`o^KuRkQ7~-`ef@#7xtnor(E)}n(~lk|Els! zcR`k=HHfBnzD;+MgN$lgNk-%F&TJ@6#@DIM4i7%z13QWf$ri|Qz47j628JYOF9^m` z;pQ@J3c;<@5X~ggl@nTU)6{#?t9v}BR|6B{rx&fU^CzfQ0JXLQ!SQmw5=?ph8^aU= ztWsxvXQ;tHy-=`L`6Eb~*+Otw==6vs`NKbbpG+Jx5r}!>z{Bv?jK+r&?H#X|I&r01 zULH1>?t1t15)d|~DJO2Q`;&4SiC-!&NQJn?L3AzMF`=zif@{RYVxLdGms`+z{Bo?M z_>8P{QG4q;kmEeQ*7O6%A`{U+`-Y21(u(hLuzS~v}Xn{iypg@V{cK^osqUG`QqxMY_x>(1iNoP7{2ZPkc$U#87Rwq}?@12x&wD#qOp3_H+5}Ee(4SFZT zF|C!*^=xe0>l-xS{y6|_x$$~iYxeZ^En1Z2dvMAF99pP)WY2$hU~=<@80%!E{e~WC zLg5w-d|c> zRMfog-vfp(v*CWKspV_=Gp+DsO+^Z z7ChEQ#vjYhbcuA(a<>PqCBrj9oT8dDZit-%u=;t7{v-Cs1VqV1?`P+}l)n)fo+7N0 z4p!x>Dlh=2h*CT!Xl^epT&H4JL-(~^-GnZ)`SmSN;4s3}`Z;Z%chuN$A}(&45BYlI zra5m#fs(mw|Bloq75}4#AWONxb4SvB@f!68Z; z$X-w*J8V~+H?Ywdoa&dx=DFwjE%m`hpTf?{j9S#hp`p7<;3(dG9iAgwc}B~$dKQrm z0rY_P4Z||Zu+Y-e0vMpWjJ(B&s#M&K+6p9N_fSgK@&AXauYihj``+eWMNB{`kyN@x znjxhG1Vl+m=}zesQ5vL6K)SnITDqHI=nmSXNgv{K{vL9<2}AGO!n6fFzuWl$GlYkr?)w&23?EZ)m`;f-nS ze=m&v-wWG>*;`1Tr8Rnr+7*n+N`m9X;L~DGept2kS;>s;^)Ld0F_~uK)rLiB{m3~l zDs-ZZVF{dAawHYJx0`Al+@qqiGavf6e2MThT+3t1clofF}Xx7(#ze*tvk!_$B%bU?xs44i-?Md z@7&Mna@`?^xQ^*}%wG+sG&*$zjzI3pSWDAC7jcCdMDErfdHud{6NoB-KoX%e`;)6* zOWa^*?tfMt9&sEc?W5yUm(k|1RxB>X`T0@3ar-u>W!PhhgWPRam#sS4F~;~7o2zz&Sv39rFZ2YFzAk*SA2%i3jep$x17?vw^?|KiA^T&d>*;q{isrQ! zicv1#wofjMnh?WKYtN;F%YRc=&zuV&_iu~-xJG1Y)yp=)o7@pEqzt1Q&@Oc-nf@sn zqQvmmJ6!nkPpH-h=-;q$jRfdCcPHoy)0LVPRgkoKbfz)2R(ruzt(|%yIrM=@UZ)X=CHj%*SNCIqqulx`F>W{`tyNj9M|h~`*N~TUX}HFvWpoIa)vn_$G-3g z7_7vh>v6N)#Dog7cHLS2bO_`=eEt{P6iVPd_*Hw=D z>pJ6wvkR58hU=&ydE5ND;rRYtI=X_*m836vIVD9>o0>}O67+J<9d(7i*k+fJz!c>* ze1miugr-EtJdueg=8h_W=@9J{G|1oc!f6`5G2t(Gn2QPQjrQ+ZTI4k~-gCH(Hoe1! zvItrtj&OoW##B%5J7#Ym(rLS`9Z_6MF=<6-d@r2+SG{N5Zqj-loVK62gU%;$vGGxd z{9*hq<*J-Po`SQOJWq~{-4Nx%NjkV|vE!O$pWzs%CPP;XCOaV*oz15+6Mx&Eqb1ofG z2dT`5ee1%Sr|0?H^~-;YKVnDKkraMmiyqVQJYfU_!SKC>^8odvg{O|>IdPx6s2)sO z6Wm_BiU@SgzRHG26R}?EPke8Eq9Ib>n=5`0Pr~Z4*V)Ty=0GofI>y~xoAz=_-7MO9 zJ>wr~S`T_ZbmC1Z!eG=!hIf^(tXG1kqoe)qz0=MvWaig+j!wg7AYDF2b$)(%3|y7^t}IF3uo>2B+pbiU4?QDS2JJDF|2 zw3_aU3F+NE5w5o}Plpopq)I3@9L$XhdHv-sZ=rMx7c^AH+jm}xtt3HSw<{{|=3uA& zV>aUL`TDLzKI$R=w|wC)9!=^L?jEZjif5CMM;Se5KU14t z3CXkl#=jkYu1=3CwLhRNjA=?0_GG7BC<(8amwn?qD@q0oUwM4re984yhx@L*L5&Vo zJTXKv5%_xEP0(_}#`C{_gapOZSH2Z{HrY(ba%HX-V#(Y}iJqzslS#j~T7!DP|II=w z_uhJihR_&4pW%Fs+QIlQ#a`Dv=sI@bXZuHh-NHR@T8YQB?{gz z7h9gAzT*~4F`;@KY7x{PyiS{A^(oB7=06(!fxExFl+|gvkV$$16_44=ySD8`=o*`j zF9|D<{m>ozhR%^OFs38k*45KK8p`|XNzVt2INB}mHO{X|Gwu4_EtF!?1eOu0mo%5v z)N=i9IcT)wqD|icCv1W#KfjrB%9#sjawpk08koD&LKj~IjH2llpXOeowyV?HHbrft z_H+<+XMD5A@xb;#0`>R5lv@fAMiQ91GPVAaGL_qB1;t;r=%OFvd5>IBv%517F&<1) zQAx@0k)StyAWyQ}%w$+!Fi&s6vZj)@{dCzQr-Eq}^52#L8UMgn$j}&ZYsigZ4EK%? zsWqC(9T@9OTvtt4S|0L~Rz-Mx;#UEdlItXNxf(H^$~;nUzLpkC{)|U0o=%KF?v#ko z>gXaOQd?u$s};Fe zYEw(Owu+Qk;o9ui(eckoSGg4JRfs&E#IAt(!AQf$Ohas8& zA~Rvx4pN_ZL(fOI9J1$5ZCaYj-Vw(0n{Bj$`^viCs8YW#A3Zv5U@6@D<(7oq{Wfj} zvf*cgdKiZ9xVpy(mQgzvq<8I5K+r3we^rrM%qn&O935_Q=r0QV+fgVq+w*$4sbO9k zewo9WAl8)Gh{74YO(a{;-}FnR(_0gk^oXVH9-3Y<<#9h88>PvbEfRczwApR=G;4(IPe4um1l z?Z}8eb*(6WG^G4V^k#&ABCioKaIBs+mbt6d>XXFk%b5bG1@pUtZWB{EIPsal$%MiK zG4*zfm+ptZ3(vIel4Vj~$w^0O>u8tcXE96#9JuyBN_X8D)7(IN&a`mR^g3ImFy18o zsQ?LZah)o@%>9mc`ARsNo-KaJx^9CZzp?=m;XcS&I8oB{G#`<|zWd=*kN0{bA~WDL zN^m%ynE=}Ea9vIh0}nBSG-PkhJZ^GPC>>nA5B~*X1ew#e7>OgHU)dW}jX*@fuRk_4 zbacIW0<6`OeFNs(4mbQu~_my9EPwPuE zyDzqo6DPe^UkPg!q=OwUw1&*$xvo2;IBLHxPL@HPn)rXATx2D_&cLj14FgLSY;hWZ zrcx*sJ}G1=Of7h6xU$f}*1rYi;y8Zkm7w$PbaVp#idI{Qx!x^8x`i6OaK2(;2BS1$ zD?76Y=$c1R5F`HEk!+2LrC9Q0PIq0fWHTSxTvsxIXWu=zy#4Kz95tKXFH_NJgvd$& zqq3f-_QG-@ri2gvmi%X69dUfi%r5p4ir15w>t2@&mIp@q{_F@dIHC?`;!o~3K`LPn zwODb?8@>%!h^jnNzBh7o<_J0t;fbAKilb&9xL$2@Lh0S}qNA-H9WOSegz@`x&r6enk^Rep;CR+Ikj%h$Z|{do_4nFgA_ z3~)CCHjmZtZmK)qJdd06%p3(cyn<#)j+cM_G#JekE1y0&s?ZcP0XBf?<3~xw(BskbT~itU9VH@%=57vFC&yA+u$p6 z{r&O^C3qj?>b9j$hH`Si(Wc!ytUj6=A+h2cn-Z=jTy+IL|;HGfE zWdSB$VQc#(teOy?!EWxJ7*-!}3A6g2pY_Y~=v-WqO+Gyl749-i99?#EMZ|0^K+@wX zwn!9q9%p}GN<>#(-j4di=2oQR&|mj1XR6A&5q&-^ti=k`0<>Qdg^*&e)9<|%|46x> zOyuKxl`C;e$ra`gUkaxvsVK8*s9#UVjx%}LPmD=2J_T}m)BopZa-Ij?YvCleod3Xl z@pZlp?!VW#GKY7yO13*&w3&O949-$!Se8&+)J_&^J|2nKb=$URkypxZCy`ortlEf1 zUlfZW0_pYVnd9Y`BD>xrt~UpWd0E?fELg9=B`#z6>y!Aax(r$h`@hlIDRu)>k9+Ri z?Pxho^E;{+oJdQ$^7{GVaQEzyMztH6Xmb?`MOZi&`Oi;B{FszgBD><3(0`SQO)>(% zw!cM8dN<@Fd=JW#)vke!Gy@)AR>#x8W^gZ%bfcJB+SOiSac#tv*xp*8RzdqCE>sQe z|NK9Cj4T(EC9>%+eZS?fUo@X<(~(1Y*XLz{(_Wb>MLe&C2#Nlsx%d#`9&!OhYqm-QHRY_&CUvFM=j zEav%@8nIG2D-puq7XU_vAx`$+&|=%Ec4dl3Od~H(HraO@b~v)sTtBPkm2NzzeMt7w zzEd5`OI|_#`k>p*D$%j?F~x&#d$GHj!j^)R`b(hLdhq@9odB9K#R%upcOFnvFP8GG zc7ZjJ83wLDzAZ`<=%npDai%br6!X;UkLngv0%go3339Yu2{EF!Ml(NTPPtS9| zE+lcu-tNiO8p+7}*`tMLm6u0;pbszjlNmGP-PX=q4#?_;cb)B4-L@QbC#w1XISkSi zPR8-1Y;5O^^+$#wg`#p%w---VF^w9HY*b`;eH>(D;^0%lDagZY^!%a{oT)D;S;QF&u&mTbWeU`y^}}fy+*35WmM-T#}x&K7L#H9(q)5 zudp)-;S(CLcEEr}PA8TaT+F8pX9qjwwSt41j6Bk!!PhJn z)@;Qltn;&F``)nSi*40@w?MqBH7Uj^+uZ3*7rni;IzqlejbhRyr`KVe9aQMq!-Y$( zXK3v1g-z^XJL-k>ADkB_8Yl6M=?#6SQd3eSIj)V>oYK@Bsj!bNuPWMY`Ch@P^~4%= zJ|hMh5jvd~k$NG0nrEhQpsmp@lydYZiJNqsi(DgU;>qN|aHwjb)jpm*PqfDFtF>g| zjH{?7^*|}qZ(~rZyxmQ)bg1!~D+7yaI57cYo2ShdZsgv%7kS>u=98;q`JK^OW!O-K zz3Nf2Udr~L#GgapbbBzR3!%sd=zPhC(%GV_bN5?SBaQY|DHBm*&{@_)@+s`xP&fIo z{alyCv+?RbagbD}wct;D|9f$jrof9yGbc8f7V%CyC@+l(EgG$RC>tfoLUk42q(sb_ z9_LixNmlF#4=GjTS2ipa!vYzjX<{`{FrbKER^W~Q*lpQA<+Or5ep3k?ca>nr;=t(R znnr{%kp)z1lv#i8uT}13@FojmGCI5TR-?M#dP28~(=Q*+UY*l(dEIJBo}zQ0H2hX6 zpM_7bEGs$2{@{4*lUM~|Z_D6vozsVHhwy$>=|fp|6SVnnd&rcrK7anZrARVAKb5_} zCDe^P1^KOG)={bFg6p*ZO@qg4ugXAIH1>vZTNHPU@!&K7egvWGiL0+{SX`x<_3)Gi zuT&r*ihcFjX5brQpg1K8B6n^ijJf^Uy{ ze7Hkg`K;r^jgoHn@%MxOldTc_YORPR7o@YP?Tw*t>@^Z)05ZCgKV7-a&AYwQV1|Oi zDDiI)EV6H`42mgH_zSw$=K1M){9w9dJ*6+33BENG^j?f-#+{s{2=TV$d=Nl`jTl{i z)RB9L+^>;u?TV6AcXD0b#^ucO7EP_JPgkS!>mmr#*~}QeXaZz7KOwvuF>lzZaL$MW_QU)9K_f%OH$!oVQ)DvRtpOX5~5R_u+dFDbbe1H!aJ z$9Bw21eR3iCnf+ykZHfRcd^sE72RAJ6JxK6@^N>u&;i>UTRaxm`iQY5RXp=@dRO?1MYFF>s~t?*9N!Cj=SKc?3#iGQt~=)MeM_ zqZloT2jieK@5u!oEbhl-zQ_9xR%u+JbIaHUGsS57d7)I~uL6VrG;HYc!`%eeqw}UT z`f{UVJTUO^`r2t_8190u*vCBX0n!Q7mUEG=jQ?_nT^aKLj?Xe6e%)&DGCH@l4lI{0c0QP!yR#J5-K zB;tcjAZ6tal<0h+W)Ip*h_b_tA?JrEsQ)wXL9HM{<0WHYR^PxuEuSs4KL4c7e=U$b zg1Yf+w&>e8JJ+E5J~q2k*O9J{D%|K^9}Kdg^M;4jlgN2%2zst^bs~xc*uxTrZOWr} z9=Ml$L!&d40ynlk6ES@A`Hb*-wmP@v6nf{Q?`q%~5FAueKYtz6(+H@aRR1#N5gpn5jEvr=vaX53?W- znI1ce2pW?Vb0hyex))JDf9^cG_aqVOa$&kWb2JoqBs((86azF#GCbkdWdn;!0C!I#$vtxN)sI*H+aERB~}!=vbca+l&p=}Z2) zHJ%3cOu#c)GBf8@u2NE}N$EqJTY!V#RcDzoG55G$wiftkw@*ZVCQS%GChtO#9X5^Z!$9Ue;BH}{pD#6QP9#3gk!2M9D z7P_7H5EIFf;!QKEh4rr$6h5#i>9pX^$o$TQ%EyPo9sIM$z+XgaTr9ZFMHPF$ys93b zIepW;ULLF3?yx;0)bhdvET0zwMn~dA_KB`$kg%}9;7~gKa;?%U@13(dA~x1Sr&)N2 zj?|CW>0PyHn=AdzI$~T$)88cu`EzoSnNm&mgB@PIWL7-rHS6p7EL!HkVs|+lr`fck zlKi?BTnc~GyYI3kQ=UKscSB(z7Z#A z?wT!exMI(jz%iTFdA27It~_Z_53j_b?RP)+A5X)AUR-vO??2`*kz|RTJlpXpEX$V| zB%eA-dtA#tmx3}<4DYAU@3+#>9Sfv;RW)pS?c{q{Epk^+7F*<?+;+~hkHn|LQ0DMII0bVfGLqBigZEbr zoT&Q|_!9!*OD7le2$y01?Y#?Ugk5fbv;HEYjK@oJ$g1VFfse=S?cra;1a#os!Vpu^5oaqlGE@_X6$&hjmF^%S2@0th17N z?h5Y1%ci!2reLx}6e$8GBGvYTJ+&sT*@{#ln@QNjzqp@bBXLnO``mbqs80g}_iZvJ z7i}iGEtH7+W2_l?FJk=mJhn%(RNN?+QxMlzhy3w0al74X#{#F@S!sFRGhO6+1^;NV z@qID7$x&v&0>}EjEVp$Ft`lp)G7sy-FqhpHM(#&~*04%D^H24e z{4WY=SWQKmi;Ppk-MYVR>PyDI;<&AdfBSinMpaJW_0jg$xOssDM35!i^bgAA`bN7> z6sU&}VEkD>yGoK@*AZra7LxX7*_pDAH%Y!3nKOHqGj7(X4NG>xAdRG!{`qOOlpyvt z?|XgDgjXD`&$0w}^Ya>4SI@|=&S&drH5SSngmg?Dpe}SNxJ|mL<|Yn;Kr;BFS1Gu@ zl^>7ejMcuj;3iYu`VqjvjEkqqN@T1?Sw(vAFh9`8l?ua)Ae^Is{_fYZ_d8bmdkIFw zqkvyY?0qKbsK8+|9%%eQv#|1_j85CZrQu8PwcWv%58P1f$Q7XVv(Gh1ls* zZ2TVPuJv9|(=n!#bn#8Hk;ZBn0iZxgs)?ooWd-{CeJD-(vP^OeER7?m`A9>XJzI$h z{a;(Ad{Sm4m@E;gSbP}dKPrxHLb3Vz($L7CG5Yhd28Y+U-7iju^C254Gc3Tw0eZ#r zs0-6-zm(z)sntNjqX!d~@dA23mRj%?E$sym+iTAfm#4(SR(^^?S;@m?pQ9@`jBvY> z!5kU2OuwvBg?mAKxarF1?^wmj|~j#M^fM zLGF&-5qqs&{3aXswx|gU6Y|K|=|g0FZmzA{mz?*+93%beT76n|8y_O5o}#?Y-N&ol zC|!I7CWSrS-utW8$s=%iU&-1%9uTa$0bp5Nzdk=izxUt70Y+EyT|IUY=7US0_ zBc_;3`cMB}0H#S+VZ-J0x7A^mDi?(O(nTzuE6;klV7hd>mnQ#f((0kJ&ZW`7UtoF` zi!wU8#Uf6(3o{MsnH1F3_w?b2%d~hR!1nP(#DLDWB4?SB23|5Ff(*b;Go2I(LR-Y{bB=2<0h8SAHO8PRN4JQp;2 zIGFkoRqX(pfbxDTOmZz5^2Vs&L@a-MF@^4HnJsqvt6XOk;LuDaoH-gnlx zaPDJ{Zr)Rx3wIF6s=A!XLe~U4qI*?TSha?Qa#4@N{BK~Lb6oyD!!ft)s$K`xfS^bu zcsSyMBcNKce|MK~<-&cKF&h$?5NyR*=w-2&rBdBjl}q$!FkYwtYh3GcOBN*B7}DaR zN@=KPVu<4?;<7#qhj^IaxQuFOCQEriD=HgArbP(^Y4``OXCGyY-8A z81mm!D+k*tji29|f7A7IoTlItc*y_g@OQzi&qd8kZ}U!RYj2)8w)1b6u?#RjO6jBrRf-hK?FqpagPgAB}+zX0IYu z5GW~=b=?g_z~yEhB}ecg5qbcqXU58zIT%k!(YQ(_f0~?!BZ_6+J>#RJ{7B}?uK;c2 zzPZK}$!wH4@o@O3C6=~^%EFQCVU`XT|31h~qC@^0+vmMsR;s~UG}c9fY>j0GR}Ex= zmUU0~gSyXm)19#YDDF7=POiHd52T@9amdpwKK}jXZhB>f!0&LguPr|!NGDLNy$G+# z3p926E_mf6;F*H~M_hUNGbeoV3y30TmQ&z%g5_R9p@NJBO!L*nHG++(*mEgzTKSO* zW~^K=hp^2Brs`YbVik#Ahy`FRn~Kh}3$a$@h$IfaM;>;q8`3AD(^m|7D>I};qa=JF z?*%biu#C^&mIN&ozpK_ozO=*Pm8an_`vX~=X5{t=op2I#ZtI!wd=e2boz;3W z@w7lz@I%GI7D8UpSt>5(ezpYE8v@brhQ&Wk6b%wki-8brrrADsB+hrJ}_2J z=%R%wE3;h#Uz1y0yBS$XAi;F1)SXzQ5>Oqy@1!SBXLwUtdcTa1OUa$g0W{S{?1}}) zA$-jv#BtI=|7bifhn{#WXM8e=YqKFzQV3*3DJ+_~V`T&mk9Zo7_qJh!i4Lp50d05u zyWBhs%++yuT7ZZ0MT3mELg*5d^7Q;CtDACkdfJG#;)(D+JSYvetFrkyJc!o+StSDp zSjV?1KMnR0$YPTWH=<}eKazZRkO1Aae-mL<`$~?}sV;njQ0M6%+JaG9+~U|_`yCRq zRWUq&5{p1jMckB^+N9F|1SxqoTV5`o?rGSKT?}K>zbw;=21^rq5B_N8uC>!qc18R7 zq*eW8;Aki8Xd*k&F_ym40yn(_9my^Am?&I{d6fHnnG5RTzYo70=UJ*J-CWxgGvS#7p;Np({v?U0s8-3O9L@bAXJn z7Vl4`D<7}eXTasxNL8Ubts1D)dI?ou~q zl?k@MaKToZ6g;}X(P2?%v1Y4E9|lXG;;{vYE4q0LB^z~#D0PjLgzC(q4hC!2pW0W& z3}0QdI+*^mjEclBS`iey9)CxVsw?UmUuEqVmJ9wJ{q7}492KwoULeteQL*9kVYhJz zF=A(3xPimCbdoNc^wi%IVcEuJ&aEwAx+CZX;bCHt0E7QhUNx}qh{ZegvjdIt`75(m zanJ%0_$d`LpZsejYg%0J&^&JWJxCYktA)sH;etBM+L;!W8@X**h|^2FFf9*7e3c+V zC2pbf(L2-QY0|XN0uI0TEND9xDd?3|h;vwbH?8&B+#(dqYv!Gjp)$Af#*@A*x+3^& zo|iE9rwt6u*b~_i;|HqP&8Nv%u#1L?nSzC$@bQm??ViV3tUFR54tuL*CUcpqWN=^{ zUcf!GkGzr(NJ1ppdrtW<7e4dDJ(0sr%K782jZK0_7`(L75ox;*x2w2O_$BeCJ#WP2 ziK3}VCdCg)jct1!g!8VwHA1^&c3-tjsX|qyGm!(taO-v2t}cd}g7+u~|LMT7`Yb0q zyDGDb1kkxA?QVXgM-RBFj03b zWFxt1Q6x!AB}K7%u(__L&fbR|!mwraHG^6$D@@qdM0+4h@amZ*iww*5(beQWvnO(r z20Pa6-QeDxB$eD~s*Wi>XjFVEJ270lcyQ4~KO^UTW|*L&QvNK<>>_n@v&*Dav`Rj= z@4-PJwR9*Fu59xiGwt21v0AiD2NyH0C2!k{CHkil7U{b9{`Y`)V5hs^t9~t%Vreby z{q<4O$Z=^cgS%VVG+FULvfD|yH8V`}*FvX(4<*R{jN$NBV7zszD&Kv286}?hPAAF; zsg-LuGK~ZHA18^ObDZ>|-s0w|gC!W)M60XJ7}!!R^tgCw$cH4^lgV+Trn2f{<)c*k zbvhBAY`Nn(?Eq;WK2>m6#J8{i+;n(+ARSY40y(P@unW`+`?Gvf2r{6yT3HWIL=3h4|Dn$DMbvyWKX5d#CsWOBMG0eXk?)i;CP4dfTC| z%|C^g*G+7f1c3mn`|kALNIODGT2RuqlMa;l^WK+yJPQg5J>d35`T|<*2t!(iN*vt0 zzmDG#)12HXSqm@){c0f;Ye@L!BvBD8ZvpRLQCv>5lM~~V%VCe|V6q>@p*>6*VS~uE zz}8wwk3sPd7$1Pvu)0Xn(k$=XJQk%95?*`{yv0y2_Ko9hdsdk+T)QcuEO%1K>cV7E zY*Juui`^}+C;@9e8fP5$zn<%rCt0_1-LO3eaRYTygJbuw$4U`X{&3+Q%D<8 z$U~4iV)lrkJBAzpUZ-K(6UxQ`c+}nI)ej=5@4nXaOlC;8H^Ad2ik<3Z0xg^k+SQf0 zl?4reVp%@@S4twYYvRS5h#3=nF(HEY1OK+)zAyPDu8o-RF;QEw3rIJ9Ex#jqc$p!t zn$Gp31!QqH>j8?`u~(ofYB=0wbCBciAW8wPDO6r5;j=WY)xER2_Ac6LHH9UNzmP$p zCgRl<8VZ})qc+26V&L}ygM6`v?$$yqku^;1Bb)U%!+J(@%K-@8qnF$12YePX4Xc~m zY>k(}0XU7w@oQmjrW!ks^4&$8rpvQ4d+QX>HJAd0_0T51rhuOK@Q(z&H*(VC0z>-; zym@&Vy*=rRat>04eR&-oaIjZ&lmu;OCv;z$k*FA4A_ z+V&x0mGt*Xago}vtq2d2)T)k)F2szedUwpmRN9IS!$FMcvSiX!u~Q48Y^#$NQ?&}B zCChDf^?6aI@FTQYs!EdV2r7xB&Ks}ubp{f38U)+mOXpo!7Ooss3ig;+L(I)EMN5u1 zXwP_$g>UI$pkzd?Wf#&CIBfq%qPxci#k{Sur(}_BtB7WbH88D3S1@=QaHl&<>ZT0V z^Da=({6sz~tTP=QUD=p+(2_Et$^!`%Jf>%TIs#89y)Yw?&_YEp3{oUO^uI@5{REXj zd=ll|Xt`4?&zX1crgL-|JCX!)1|wpP8`+O$`o;_lRg0`j5Zk+h-!<*e5`|f8>Igg? zhyiiHwm{Sxk_7q2g@PCLuy3-iN1X$r1i@uYjg)s=w{|5yF%pFEkWgG)ecPUQbp>gg z@-URdT2%A`P&w6gjfYu5Y0kS-^Bmt-#ZPo@AV+!`eBU6c6>R|boj&?P7`uK@n+PC6 zdSY2q5c*77<4&xF;X?$YEHXR;1y&{VXQ%65i|SAY&KEU*kVR#$gn5wHz%D50E)B+o z8-xZKM0BYc%DN`wg6n+GF|asnJh0V#>*r#ACQzKM1vJ*>u&4vMO-= z0dnYS*LAn%-Q!+(vud^?l*{yY#x-lt9WI zz5`Pg>AS(PrD!kUO<6|kO>hPx$pTHCN2fNmlvg4Kd-*0w82T zUWYe7wGp!A_D)fPf?l%uvTJK}yR{=`N^Zw}sylCnW|tlI?0} zz4l??Xp5SjjtWoZem29Q##z7Wle>?sYhS&065qb^_$zsX-pA&>>A;Np)wdq846@9r z=tsh|D(xE%bUxg13RQJx;|A{nZ?kvJrW0^HEy-T94EMStqDX@5KiS_(oy}Nfkro4lFx4B0*QttTMC@I=A!4S?syKYxd1-Go$h1Ut&jY zjROfEjV+VXvnJFvwk<0uEHmnJr`JE{g1a|@o$ii)B9nBucL2(U4@TeFskHQ8Nl+_C zZU6k~44`9JeEFNx`&5T+LZA&|81BXt$5?=vQoY(Y#6+c?Vqq_eKePhJ{_)|Vn;%*X z?`3HtpUs1EKf!Wcb6d;u27lUcql2Px} zKNp}GSa)wfksRslIQ+$KdRvpc9P_J#!51*-Jf-gyPjln}2`K^ri3DZ%a3s|tJNXNbonKUs6TV}H6H`q{_c5u%}^f`cwFh}Yb`JT+%m z+aJ(f4@>oy&Refirb#~!{IVj#84L(8zEP83Nt;|-ARe9Xge~#SV*k+)ed1fpv%`{G z4&`hrR?Ju7*5>t3<8>Gt8kNLGI8M(P3n4vqlr2k`Ovbh}*y5grT98EwE?}o$My>e6 zq)zxrpM4cwPywe9iEu8egX3RB{AkU_E>{cy%|Q7ziAxmrSVgma->x%fHaqEH(}zGC zR+<=Wltl{)SUv!C=a0Al77G%N1{uFjO<`F#s~cuCy*5YIS^M={%>N3<KlzAl9o6ftwmQL;$~b_QkM$JyR**&uoUJNEpM-oFY_w_J z*pX*g?43w;*3b~-*6{usvKbBwYqHpTtzcg+#MOa{v9eqlSzAjiV_~2;5+@8p?WpDF z*9S=Z14%NjN*`)lDK7LUzsK7hgK%PR&fk#P)I_*syBqX$&GNpYUz#F&hy*Q`DWDwPU3 z>EZ4|PWtI9XAs7G(r9HYVc;#1&CZ-asJxJBac*j`8d&0}b}A7m<2SN+_nq#%8rgTO zPfYk65U?2PYg40t8Lz|qaTPLBxH5LT*K%~A#%$|$y7nZZ<@Mr`tWE(FLVb_h1`E^x z`|$$wDj#p|q3||&$;-5gve8Ce*}{GXYfQhcv(_}rb?hx}eYMb!1RT~T+YU1%1Ig|e zE4KTHvh#6kFUyk33ifj!+jP5EFJSA3HL2|J@1-8%-4;E(_*v-yx*DWF$y+zGe@ZGe z6-U14qp0f9wy0d_Sv{+*Xj+^jaNdO+3(Lx)#n~waj#7{cCDi|9+lYF0t}7+Sf|<^q zCncFpoE?nNJIHJHjI#)+cbFM7ABZz~wLwMjmOH-<-V?El89niiaC4OJU_km7^Y^Fb zc{h;D3s$D?>-Ook6rBo7RfotO3D2oAF9pk^!t7(&mz^VS4WQX>;z5=+mqRPWo)CUj zUmH?2L4}>jw_MHOTfr@AMGlXp7wi@HDwMbo4JV>6csN3H&Qb%8=Oo zqNv6{r-7YrUTRKVz6h7id-sjZv1}#V$VLYn)`A1}`_zvw&yKJeNCeIM{?2Q0P(>Hs zdMp9jAB1T5O06kGaRpckL-QEB*(CU579Rf6J*EV*Omxl9?f}=v9*9Egys;JVADQN! z_T-6l@|&5pl3^`I&SoBAE=#gZ*TC0~vNi43#LJ)4%1Y2kU%F^)5^V?Ks5JF}9>G;W z=rnpc_U)YAG@hqLs1(-OYNqTM92qz7gE*F!I?lBn8xkA5!^d^UT1D+`C(82n3O?X$ za=X&)N>GWC7*Cw`g?zpb`W}q6eqpA6AB!rX1t$Dk2krZDiRUL&j6J^QH?@op{jlxf zWls~teq?I;4`FcKvqH}>sZ2xUp4!Pd7g6HFx~D7zz{_^5y6C$se!ul)-b(02q`W;K z!M>K);GuV>p&?Gd{5VQ;HrE;Wwc!nM3;BT#`mo78*1WQL8#{_}*3;xg@*Qs1-T26P zq(gUeb0P$E8iL9$9Q&L9ft$ddq`CK32Gpi96NOTzQZQ89AnIlq)Wm^{^E&%YMH6U~ zf?rtn{Ajsc$++7IxbH`wbEx^uw?U`jV({0OGP1#8pKo8FHrzBgyIBTtL`l5Dd+Ve? z9v80r{$@89hBxJ1vGNbeyv9@Z52}^9rw!Q-yP9S^PFS4Y?xaM5jx3G(0FGx?jk;T0 z#%}?WN$$oOsxwe``5S9{^xq~35Y_v~&GfOJ9^OYyUuugoY@v!<8UPKF{M%bp8ZXUu zq6p7*tH)(p=x5@orJF6-;O<(bgKSqBf*-g<5BCmAEt5ItKGgHE2LR&?k3R| zLU$H0YEBT0RT1|4fn;S2FV|`Z_>EnEw5r<-)6rpRzI0iDI-60pJyQwiST$Iwz zs~^`2zGp^Orwy&1bZZ-fX7T!F4X14e570}*_!P$k>kCovv-ebu6phqe7SJLE`4Kug z)4sL4en4^V-gKk3N~A6SeSU=N)|roZ7f|n^ukpk1KDF1A&t?tCS|_s1w-P!m68e&3?J#g@I9ibk zMX@+qA8?u6RUmv`E|Wbdb`t!bhq zBN9Td(yvAbxlp&QpO1@KW=nIG5Qx_RGcQjyaC2D(Gnv&%j312U8&J+VbeiTv`SgX> z%Pq5WYaXoT+1;ExMpkI#QpnFsL7_@T1l5mA)}Be12vi^FIY-dJKm zdHIt&ucp*txRZ?jQ(Ob<>ET!>YZM+FS4fOgz;* z-DGD6Dos~7SG6PxMnnrS46&e8IgJ=yihiOBtXrWrmb0YP*K#;K%ltPK2W$@k8^v-g zZNJyZ4_2Im&05A`|J4_Qz@!E2_x=zOSu#X@2C-phWl zT}SoAIhFkS(r&{_uqRPHTVaBxUFv0o(1MR5oyJI4mXC*F3ags!x`Z*H8eSyPe0PB( zthuAEYYdz558r2>^w;h9CV#Ay`J#qiGmIYT@~7m2=2KGUPHfD~IEG1PiOZ>cB!eV# zmNP%d&6NG!ptp8Km2!`zr7tt6pBKmejlEP1>BgVd^(>woB{g}(Lk9L+{60YMI>gOy zaJ=%mFNQ-H@G%km^*O3H{0|{8%ZS8(Nj5DlPx!PR!@RKmF|%@TZ$3OzAS{@wF)yaP ztDY2r+DY-oFHjll*+)cUfv%UBtpE1Y%B^jMEnskT5~v%#!G~TxUqy=}%gJ-Sy;_y9 zwn1om8#J6jvpf=IwynuwJWRs{x~>}MP`?%~|w2QlGa@^hh1;=rmC$7%Gm+j%} z_1Fy1fbChOyNZ)P!3W(F7Dk%PACe66$>DEq;F2~|_fM-_j$bxvHw(9C*3oo9*-O17 zU;DbLo*BKT(;Va4^%;(KGB>T_`syW5%hlY~1THA=R1 zti2rPrK#BXPF55>+zzgGC^b(+@q;DBzA*t0zkvoKO1pr4yk`M!tbX{}-bShf$k z)pZnFOvV@sbCDpk1EkuFs z;<;{eT8Q2Bvg?V(ijU&0KSbK}@6kY*UaNO4A9*!6p4E9&@`P?jTBSmahNz`44O#-f z3PUva28jwU-G}pj1|J8}g`iS@)?CqwTO!PMm~)?$^ttmt&y;-UqXp?5>+>&`Jz(_y zH=~z|jngg8d1#O^`wS$p(el|LK}Qv&4#k#=nIkkb#P1_d7#NK5B+|p6o0k{Wj{uoa zYiAx#Eo~Wm?F??fle|R@NVe9)LB!PZ>Gv76D9f8oTq40E=3|p7Q7|@+%_L$jRF91TUq}^Kf)uo_y@gI-B4IDlL_KO6k|)XE-C-)W}L*CCitfQQ#p11E}~=9kcABO2dTgTjw;UCsk?1 zF$Dh0rJ&XiJ9g_eD->AK4e(b(g~{X5FK@Tu{;^c#8^p!CEMTH>^a9Y(3qI_ z)7Wrb*PVh-sJhC~&D3Akve=}-94uexj*D5!+i<&5eN$WBW{m?k$~Ga5n#1yMOy!Ww zK3>D)Z`r|{@#D23x8R`D?WPxiZ0Y%2gJb>R=6w*4`G&Hed|ImFCOd&hA9BtL^jCp> zP@=d>&*X}mbtXK!!73K~w~8KmzsMvpMQt<^Uue8cnBoyGwf4MyixL;KHI%DfBTgd5 zH3H9iwO5uedW(eg|2`pFYnnvAV( z>zll#jh0+KbG=2pV^)z+UfxP}k3Fwr@!GJzvp5z}<$i?SO#Q89<}_lY-|h6#=D1k6 zMc1PgolBS5FV;LUpb>6Jl_Vm`Zn@jzNpRgz>zVY zkBd(yrsp*kYnoGOjx#IF#xtqhk|)@Lq)5?5wcs3WG6p?EPSp=m@{JtH|J^KaaN2GB zD#i26lN4*2?>h%+gjk^L;Tv*=kJ7d?%D#H4Zv4Agrj^-(n@g|f1f|E`zmN$1o<=Mi zO84c9R2!#-n{|&{YBc<=I3+y%y^yzZ?t4(k$PDuPh}q@MiuE)?xV@v6-Ze3&%5TE9;Y6h}`{Cd=34t$zpjPjE-O_~9iLU;Z}(laQVU84o{2 zD;la9Ag?Z2>jM?=T_Y2|I+Q#5o`EDmhT)qA^c@pT#K$|5_g;JGD*02ryst`NaPj9` zcnY}y;&OO2;BD2D?DOdsJg?JTq9H|ZO8*9Gz&S;`UN>9qRl;WI3v<{6Qj%3`^C*SM7 zOl+=6Ps+3nM|ZaX0Vje8{WjT>iQNyzR!E4}_w91i(i$8;?VZ2SC2Qw*o1fw4i`W4K2}ER$9CY%3sofFN-r(=8`jksrhwI3me8AVm2`Er^Er-1 zd`sPSswXeVq>Nmzm2g)Fr^g3AD7HACkBiZ&T;Jmf8(ulycA{_5Q(J6mK1di-<&|L? z2tMo@$i#hj2c~a_+f1~9Iz{p@y9{LG!}vLwKL zC>lLsiJy(_8J(i(gUFcc)0@T2^1bS^f4Ly=m19vP$M7@9>5*TTi*X}r22BGK&MH5z zq-VJd9$|OW^=@oHOqZ|(%OCl zIYnm7gyJbL8LJ(8ov2(Ur+mbdkj>A3a&?uallJ%BbSe@;`)6{!%Gml^RODuqm}fm{ z7avatCT3|U%`v)#rqZM-%$&KscXOlxh(D)zWoW z`rXS-;VQug9Wq~UdKTtDB;NEhdEA3=wTuV>O^JWqYYekcU8M(JBTzAf;cfuAFdFq< zWG1UTrvufd7$0N)XxYU4!S@g%jjptbMIRkpD&CYrqz?8%MZgcCh;?mPc;`e7QtA`N zhcM@LpzWE`;hx6LRhwo&ScYdC6ptlatSdQ}y?jRK0(34isrr%;^vvAb_Up+k!se1&i= zeBoMgXYa|IW#;S4jo8HtBVXgjwEGNFCIM%&@VggN>BS-VH+u{35R*dKpQuuHQ)+wWiBt${SSyjb@Kv2sr9Z7t)sB zk{W%6_JTUWTOJk4_oQ3Bl7Cb0CNt;fR4l~H(uyZ@z*Z$>$jo=Ib%9x+!O=&PxN(>X zYUtQWetT0@y{VLtZr_8%T5A$Crfr3&dNGZCre_~(e;k)14``zw*k3bG{ zbcvkI%hBwR*ar?5+&*lzs_ZzuLI~dYAcWk#UAMZ1H#MdCw^k_cD%9f526 z=nn-i<;jDT02k?@I2As5T8tchv}n%shw*AIBS91o=~Bmi1e2H^frZYM=@u5!v&7@S z_PueyBu8L~K{KMD2$jFica!~!Y@s&Oatc|xAuV}+Slrj~?8ceVYO-o+ehyYhDy;Zt zT-B);D;}U9x-&X0*EpSB>O9rpe#@ODD zuH$LrCx9oi;4D9)yQ^5^KHWbI3#r{_X$t;Y)P1}WnJbNh)|GSjfW9*RZSPW$n9AnU zN|@ztk*(6|T_c3%=4M*0J;Ae+>`Bqj+Ru_`yT9<@&0pJ4XKg zK=oSAqucP*@31-Dtm*O2Q8n$!GG2imAs583<=)Km2$}%zgY&j#kMnQidP%l8dEe#= z!vnO)*rghAr<>Cnm7YIooS?!vW~?S_`7oF^BA%lA{j~gzJNpAcQ;sTXXmNhu=!7=%9vEl(`*%;e z2#hd2;fpW8(^eN3qDz`QZ4tDrGYdE8l#<;5jXas&yV*jMWR$#Szw!{e{R$Bz_Mvqa zG<L|9@4(0Bkv6)irRB&jk27A1%anRWlIE zt=?R=M79XcO}Ts2!a4Tt6*aadcMD&46Wpw9Bgk8LE)xvN{gA!IU>?`Po}AQ}9{fEX zA;zT1fU8C}n8tZC^U|EHUMTz15MFhoFKy@NsN{+*T;Q6Ou%@%`qXcrkrNhUZv3rrg zXvXGU`GJ*)^K~etHdNVMSb?s*1a7%nM08IqzN|0rBHc?%lWeKwI`;OaCrLMJeOk)H z;p+Fb5B6ibpK&I?l~|H|-dSyJm}N)Va?M69H5S&-MYjGKITUl#mCug*`!h?M*YGEj z$xmmh%Xojq-hN0?+}%I%vzCI-<-HzAtBriwcb)EY=D2q~aJyUT_$2dov)$A&OMph& z2KLTl=TQGTN$9>vV^NlrVp%XY^!~)vyD}L#sU#Q^jIRbfC@AA~xwLrIsbbWx&8tJ@ z)^x;bKK0={lP@gmo_+O89(KptHXAHKg_ab$sr6z7DaYq(!NO~`z@iJP$kbXb@Mj)v zIsJQNao6_Z_@wJQ@7CslQCzp%(`dv({S{a$EJ9kFBd2Pjl+L>vQw{ZXXmKM~brSN6 zE$i!rYV%XupZr;L12Hy^XKpGjJzCiWt|DDvt4$>?p5FpY_|DG@3JUA%2zl+8o`K2Q z=<%bk1+`CZ4{2H$;C^tP^K-!Yq9SME2Z&8x*RYAqlpB4Bq|{C*2vU}yGaI+quCNw|9+AGZZ^w-J&d7j~q5~Y;5@RI6s-+{!sF90sGJ^kE|Rod~) z=RrRnA(f2temBH&e-62_NXqoud(}URl3=O1`5@AT{drCX)>8oXT5BtNEJf-6IT{bl zzU*MFv`gQBxkc=Ku&T5)lYqgB*Yh>^JZ*`~ziavY)Ys95=bwSj$Yea=;_D4F`80V1 zjiI3P*7^qp5;%v(qH4{Q7o2FjA5JZ@TC~s7PlPplN=0Yp60w!R%?BX)SE7)+2c?d) zq^+xwX^RIb@A5~b4ee#}*OdSDqkwF#_PXund=;)|_ND$9_)A~!C8NwSgXEIQ_}p9) zqO;rWRKUF$cAJ-b@7coPr|zC{g8!Un0)Bl_jCbizMac9GfUX~UdJ?>f8EgygZ=(0~ z1h`q>V506`@i*fVVfpsj!+ej!(c3OMLn41}lzvdW{vDD~C`B_+ePjx+PdGn&Tq{0Y z+VTa=tG#84Vu+NY)q=5F+-h;a1)b@4_6Mk@9KI)o?OzEW*ThVH0enJ{@?EeYf@S*n zL6Veg$-1oCL#Pl-+AvN;Z~+7*tERD~ab#ETp~T(~A9Qa%$c*s$$xXXtJ!~hm{4WgA z3Dnw|j!c(P%)D=6lwkt5RStUi{l5 zz~!R$*oAq=YH4xjTjcK&sSy+H{sd`Rr;T$p44{2JnDVc zvlA7<`w|mn-`-U+#fgb>c$nnrmib;rYJSk?@wtR8$ssU|8NC2Ns&v{(E8=#7JkTL8>}xRW23OC0T=iX=a-)u_N(>D2Dr~oYZ^IP5B?0}7szw3 zH4qMxZB$$Vh+gb8)2%xsF?NgGJzg-_#^j&n9yg9hM5nb>EcxtJ-MwZ+HYPg6E6GTk zLLg9Vn6;&$B~?Fa5lMUwZ+bLr#=*1o(|}BIO=1%fCFl4R2i-mql2r0JRC$h?IdrGo z`xk9jZu|hAOXFx^7?z(p9a!6Ji0|M|wuW*%#!N=W>xG`=*DKB(J-l@elV9?Z&?Gtc zSo+f@+zF{3ipdrNsNYcBfA{)O_(ON-sw(DuL6!Rbj$`?9ORAuxlKc_hIZPgKz z?PQhV%#2q+$`e%B|3()@BLusC6#-d1yxF*0-^RqesK=k7vEobrUgsWmuy*o&C*@N( zr&3`)6^~yDPbATQC}F_QcCs~+^DL!D-GBcTe?2RQ{>TwZN!ZBt^A>~sceeVy>Y+8W zlI&4iF)Vnw{*eiJ*6|W(z(+egX=4PdkE9BHlD;0(iZgkaxC<|DI^0+XoHmd#QQ~H# zwwqof##M?NNhzUT1JPA7q!+~rRZG+2+)w>WBT0}LZclCc+akr;Dq^-Re;?*^DGay# zy4`SiYTnSU#)BN)EOt5Oes1i-O&jm)Dc(VFITtOkX!WP9WiN4M$TrHCCf08HHj6zf z80cghEyka%6F@-$5P%uGrk0P@er=6tVR*F0JAmVkMX4kw=5sbyW5RblWQ;W-6BOx^ z2A+LKmg}58=aafFeg2qw4agg4v44pLd06iL58rN{#1!#XAN&kNEoXU9ODg#&_>)T` zUOv}AWFBp|RYRYCAY~sBR#abSnq1k%R#x*f80;^Hn4C>1cL%@CYv>f@C+}(d&5+{G zW`OIuJ6wAilbh3+FXM7^W;18TX-0EV$?~=vQen}9K}7#&mWptudYuBiPPSux4j}yB z0nJgbvr;iZc~aLPytFjA)pGR)j})H&9(DGdyV~? zn6ntiNKmU?+8g-Al7(n0BoVsg@z0Mq(QMv=l5zsoiGAGgp( z$cj=wACk;1B9~Fbd7n6JMF?#3+mGYE3jtHED#=&2TuEZNQ6queZ&6+!o$m#uEDGDO zKPM-fzwCqrp`u5yEXFjk=Z}+6&&-Z4&J+wim#0(f6|rc9cKF`yPhv@O zV4@WfB42IV7I)BA9vaAayE8ej%_9-t1r)cDQ3g_=5)Ig8wPbbSl8Zn^`TqEB0y@3w z&gNo~#d-50#e66&`m?bsUwm$&F1CH+8ufx;Y3UyOnYAv;*VzN3+XBs--?8qF8y2;1 zOQ$lzjgBlW3lWJvD1tz3A}$OoU+o(jVu;=Wab(3H*A)&)jq`<5M8fUv9}5MuYovGXX^eJ3p~vG z+Bj-t%@}-Ou$J;__E>a!7qv=bKnj?ZhT zd(3wOVf53{R3^p^Zm1@?1<>R;a-^DB;c4gff}7#|h%vX5x#7PIEof#*plQ*1UA@qE z{WE59RrH>e0r>fMJ5MXF=JJt?MtjBT+`3ia^jm`{DySBC4A;6UrDnG z3$}?30a{eyQbKQE?}1DtE-9}!EpX{{Fk5rEDf8}spsJ9J*sGxjHA@nT~4AVxW0@1A<+vV zEt%9SU$gO*9(QP$XG~o7G51|GCl2dHCs?qR&8S@;Rn!CA$rmj(O5n_!Bvn!5^EZfr zN$+fO;+cSVt`=<(uL{5jf0c?6h8W1^Pms`+`fnP(h-%M1k{*&8MYVd36P?w-=D#yK zefZXtpkOT`!g=?t6mztV7GYwFo|=Ljx*-`PGrHuGwN)jWYuRykYkqR2v&-*)_8C~4 zw_tvgKy!&0486VR>{Q7eOc|5Al#uR%^Z7mR}9y7UVl^Ns2Tg&vG0*F5&=($tEC%zkVl)6uSp5$X8 z5)2THi>!$$bmNmOgjV_=p!o~__4P6kpfnNWcRqdAa<sF7Kj3 zDJ57XUzH>M+)>)Do*M^1*7Ps7EIJ&fM3V_uN_v(#-Y(Z)LX0l2k~BwzuuMuK)5k zUkdfOtU-6wGv9zKV6GgYuc`mnS`=Fx864E13j63`!&t`al@r&OG|3*mK9wf?vtZG&>pF)V0A|Mps2cDV=}KY2q(6)qHxICtFr&xmj3OCs0)!E>-gH zc5A@cl|$){L>xPAu$Q(8)(!ZDQ&LurD#)eRZhrP|v_T-=W~R%p{Gu&Lbr+F2{kRgm z-iK@KWd+Hosslj;OZ;*;?}yChXQmoql`dcEU9#Z|fn?+;^kr7QxphG!xwLfEvr7bN z9)#C5)>(ju4Hlt{pMtP@3Ie$Lb@mR2m)!>(2JRc}-T^OBd^BEWy|Z&DdR?o*)K?Hf zsgdiB`wznnkQrx5^D`Qck}DKc-(s46S7l(LZ}-ll?XMB`-0EK`jtf_P^(>`ey)uil za&aUQ`Y>uTH~-CPG^PuB&vm?BS?A?r3BjhS!_;!d2B&{B=YT}0*wDH>o|_}vviJ1z zJS`u z&!s)^;Yau32eq!B!_y(DzZ@j5g&1VUC`-+6r2Kr8frtlia1z#3Ga5Bi_X2Alf>pD~ zYoLuckt9paWrbeaxa3Kc4Z!zq#j_rS6Wfo<_r*|)s?Df9+$27?~A5QA>sAM?hhC`<3YjTETrj3Sp{jKftmtGP?uG3f|6o+p* zi1+_S`&pglapJnOu}iqIxv_7{$=es(H1couTrlW=FHB7FlM8mVn0%Y6-&PXM9u{N8eVQ|2W{W?+2LqCKtxsQQPopXC%~B7 z{E^S%^Sol#ywcX`AcbC#N&U0W>yNRJlyw&oQ9^#LxFrxHh zlA^`fv%E)JIhuU|Gaa++E<{AhV<`@tKP zrpoGYHM9%q8{ktqrq-zXrzb=hZEBw1E`+2Pb`)o2K=@Qs8@XX4C$~JVt67Q)Bpddg zMV0N=<7@?}^rUdt`k;|*x(GJ5dLFj=bEt<9#Y3^4cXNEYSMWJd>O5+VJq1M`$tXvS z^b$s+iT1juQ>r^niBKWM>1s0pQDXKAl1Ce{Os_Lo?#Hm0P3vsXAn~CL;^^0cLG{=Zi(d&(q6`#?A4_O!EUn|AIDn^;uS)L>o}V-xrm`=qu6JAh z+LTMO=>w^j8_%o%A|DJ?K?q&_EK8_V~}pLJ?`{~VEU*I!E8vwCa7 z-e%ixSS~;q0bq@6#>=D>|91{+Nk3=WHKw4%L{}_@{&;}hv-rL0$mb((fE#N_#_xZz zHSPnSX()%4x54doHFX0t(-Fqv{ zF33gtdmaLr+^*~rf8GN5 zRYUR&jwFV93k ztaPErz%l5Pz4`Z07tmCZB!$@3Sn@e8BI(~JgRY?_PzecMR#HAzQeZCRv)`Q@3lU$9 zZG9$q-L1>g3M2E`+Jt-#r!1M1g^<(bz#{71>Ku0M7A9vRe$xhqjmPF$s?}?i;2<;8 zYk(o(yixY6Q+G4V73+K>_OZ)42I>{_iwDesWQj05qls^&HYg3eX{9;5`<$xu&>Lz> ziMad99aGs+Bh!~VsydmZM)E4S<}YwbAsM{Fyt@72HV~Ya_Nuqgh}<8+voVAAg$D%a5A`&*=N zjuN*=u`gM4{4hl2&=U4znbdRgX=QNWbAnlOle52A z)KA|0>5DHFuHFm*C%uyZ$`PzvD9WKHMPyomEY92$$(zmd^F{alkQOAV1E#mM4OMc# zUaJ0hQ-mU(eEt(`Lm?jD#*^ZhWv1WDx4Sjj;*28ZakyQ;^N6AiSDmcbs~AND47`$gm)HvdSIO1(Y6=@7LjCrAYi*pG$59oub7=%x2^N1pk1&@> z(^yf&LXE?f*hbbU^lZ4{hUl99H5tsf%UJuA&~1)^S9Eudmp1Z^!f&H*x7#DDp`KlE z#3-(pV&OgjF>V^sj*EYcJ+QW9!ulozotv>6R{0n~200n%lD#i=9RK@fWAqC8R^ELX zRS^|^<*!yh4n}sI1J|@7 zmT6<4JjrW35$2UXgUTdt-;qG4R7niqE)5%J>CP! ziPoD^9PyS|rH3F}>Bgs1X)5HacCep_`(ed8+Bg$w?qaq4H=6Do(~sL+43`KV%q}+Y z+%ER2NPO5D>|qn;5xRjUJOc>+3cd}zyEO&@Z>gEC<+kDN-c+msiJ-f+-3#22ri{7i z`Nd$&A1ER?Z~h7z!T6+3BWb0utkPvB8`U#GvN_*6Q44JwMWR^U3sTm4m1m?CN10F2 zmGWCQM=3Ecm$oln3pYQP5)asQ5}7peiC_2le4ctHZpSCweB4MI>`5M${_3r_NwvGu zQt=#!;xf_e$Px@|-xFhdOq4+SxzUkaFyX}GSHhCJ^@*EK?RG$@1YcbJ-jwV1=EcVu z>8&3Px4mW*ai!gr3Z)PqSMlWzVj?+#y}&=Io4^w1R9C~f1>{cMWPJrgvzPUYq!fA& zrpBU-j7OOnkF=5Vf|;#8a9>93llU^8td7%Ksr}no=-D&0Dx3(CHVzOGZiK&H1~@{~ zcztB36yAu6q843MB`TZ0>T58(zS^vmD1@9!2ou+M8?gl|*Fl%m{BEqa9e1+j!ehmZ zVM}-q`b9Dik-@ljgeIEj=wYT@_G3<&lQt&lxP&dT8l(?`DQII4ajA#4fktHF zdH@}THbve(Z6V(&8nW&VAm!}$+R{qfFZE+4N{b=)OL#iim|U7sH4k z)8np&nxs8S6TGkfjQ>}fRJWb=`g*~}#)}`HZ=)k!ZpaGg;hBJ1#D500gN6geHif4z9zqj`Rj1d zKpgy*{g{R+Hsxhr>V77#f%ayQ_C~U`Mvo(kZ#zgZkHtI?+Tw+DG9KX3$Z;1ik`R?6E_7})fM1> zm($Z`_1D0Lh(DujBtaWbV)qX4mNa60h6dnym86N0Ni7JS7auVrM?l#peZK4HzGr)8 z@91not;kvRxTPHC24=el#QP(~$9$)g@!plbxbU2~zMtXXTZx@6G?9iQoOC#&OT;r`p+EnCz#OUl&~)BgH?y z+tD)jsqkH0uw4Ly@gRuSvs-luHzG~shK z;mfn!Y{x%?VDBeC;1_?vt7DI3>KVHtRoo{BM?`$WASkr>AXykDN%KLH+7dOVKhr~1 zmp%G+9z{ttB3N1_v44=Zd{g=o&s?`Q^SA;xGNQ~K^U14CV=VC!l*x}tQF&9%_Jx<& zP#uJqCLq#$DFrXX?tQhX%ZJ(}IM`8}26$YFc+80?N(Fep2OBITcx{ib!khJ_9Sy1XUnn6jPb^r=7 zuf>;%mck*}qdw*60|xf*W31oD4uR@7m_qDunjM zAlAWZ=Tzq~;13y(GR_f`BQ&OZE24N^Bz&{B8k)eKBa0|z?)w zt|O>ROv(_wQe-jDH2^Xxg4Hg>qBs$`a*XJTu?i5`}mSXBt7|pr>r`kW>}4SdPCtkJk_eUp8%l0fmAQF0D<9hd#C-R{24+~UIGoF1a+h7?`> z6CS4J`YResF;I);c)P5>&5*nS6ca!p?x>5m59l0SXcEoAL!eC1MLX& z((y9N*ZA1cS5Km^+!$I~`Wj&qpf1*2D0x61MA;YP?I_i9hWTU%unt z*DFSmqpqAcT7kU|u*Hs}#CuBfpy`%gk3v%HS zz-&wa6||ZEb==v>hL@!U_p<@E`O(Fk|NcsD8wOtTeVO?5Io(BJm!AcO=Fgid^WWK8 zZr2S@+Gmy%>!f??Me6yPXd7E``Py)~zN6E~#73Wb^~l5)dMsk-7myHH;6(Qyy*$YP z4*~+YI)uHwAn^I?{lKqSO(oT+BY4feMR@ddT=5F<*!1N?gUMe!!w>r-UIvELOVrP|8SyX@?$&vEO_@adw&{Pdh~~ObLPAWIGkYntN<% zKt82&?R3pHNEu?zRmbVLYc(@EQe6wHt<3-X(a40%i;s;~mnR@iz$EZoWrCt^r_6gV zXs-!~2n8)#sQ=(z6cjab`8bgN0VT+6uVo}3%q$w`i8;>KxRL8?uRsY<#L09R5Q(&v zf|d3ei;*}c{or-?(VRQ2sB;A8>x$w8t2GF)3xm$_w{h?^Svwm1jdg{+AdmFjbq!B% zSXh*z&T3=f^f0#ByQJ}ou}3z}`9kXW6eAI1TQ2nzUTK0AM3?C3fwTFQ$F*$-0-`wY zbML&9gf>oOFzs6tWgN4g9hRN+NbI)zNUs+W=8w=0jd#WP{sLA;Dj7LSpLXm|EL%(b z`7f0DmfT#l+`}0Wt4VUmA-d&tj*5aS@6*@&;WkAbK;x9PxkM>Dx)zfRLInM2H-?b9 zq0$tkPt1%xh~ZF0gv86#Ic|9QdzH5%pqtRsMpXXeH71!WC2m*SW0)V;U=4)<`BKvt z!t$fFnK!h&f6KOVaICUzUZ!VW%U49ZxyR&`=-!{lK(OWiw%SxJrif)^$jr)UVd3Q# z;B^5Km9VvuXC6&wFFuZL%-5jzUqRmaqgdEb>C z-<4k~a`BNmNk6%^_x3B`ZKcEJqt@#GdFHPr-;~DpxDb0>inK|$L+3}1-N_xBHcOkN z3hPU)&F8195-~Yk6EpSPjdh&7ECg0~CeOW1ZO6JN3kb+4fozLjmaEcFkssMV$6(6) z6p%qN`b6*>8HjmWa|K9{&n(m5mq~A_u&5j`=8Bt!JP72Jzn1ov^`qelBvK=Oju|+o zBlAHy8WkFL$tUiYS;q1bT-{kdwmqYD*VoWsBqx z!678kBucFUZEs4-atCId3+Bk`8;uTGp0L@8t;ROEgJ~w#zt1WA2VXe!+fNEEEuGGv zPJ+xom>F3akJQ0|-v2-_UUu>q4|5l7rYBeCXE&yQh|i6vN4%6tXiat)Zrhc7_ShpqbD!v*OO_mEqt@c|WlB+w{0r;c_HkI8>BzBXiY& z-Q&KE1^7xdkscT$hp>gBsLy zgY>i35!k%&I-j=Rj>E;D)!Cnw>sPGpv|LTzlqI}=tiEu;^v6N}e`&=Zr?m0&qd%rc zfAoF~HB}7?S-z)o=ZquY z6vXs1kiPUS+nw+bFAP)1mX7R#+cZI@umVmxJd_{9P8yh&wezQ6aw+L_94YRp;nw9F zM`!aSukgehYqi9fXh$qtB{K?UH;ketgFnozIbt55H00kNL9-C|zv*b^^ml%%o}>~P zdYFGqkYWPx0s#TEuep1-`%&{q25|l^5U$z>Dkf%dfG4e?Fl;UJ>-QYFqlzSkcerA%xQcLn#r?sk% zed%gIBTF|S9ta2{OtkM|NgB)lGvj7$+yo9EisE2@2+3tR{0p>^vr(V(8DaTvGyEd! z!wgR^I`?%{ zdve?!*?$iuS9RlP3u6Qf95!$L>fkdT5;cN)TfFIwSv3h(Ag zvPvXS8ix_&f-e+@y{O7wmDUbmTUT5I1lP-lxg!?yT8>LfmfOcOIAo#eB{}*}Vi)>h z(&^wo8K?Y>0fY;IvDU8qwM?SrL`_rp^z@0tvFFR0zYkvz9Oif0JPLn`)~+;uO1-{_ zjSzuFT3VG4{MQ9q1cVVpR_<6F@S}KNZzf+?dM9_GmjrnBr8*xi0o4d7W*oE;BleRE zJ3k@aN<>%{(n%g`*L(cC!QIZ%d6YZF1j_kmBJTupg}h&zQA1|qO*ln$xw(MDfZlXU zQwaT1e8c8d{`!(I?PWa|A2`v{odf=u#K7@C2WBPSGkV3>49fE=77k)QKD_2HgcAb1 zU{N&@fDft@5uNXIk+vqqVfUb%?B#cdx;X@5*@145?Ta*F zNq*e*EJ*8{1>4@jIMhv|WLybIX+Hu~ETZ^fQeA}8tn=F&7G8Y0sQXWs+szc{t@KBt z2_t5K+gMn8Zsq>mt9kIx)&>+UMqtK`e` z=RL%{sU_K=vUbjN_ekr6@SYl?48dqUks^V}XDlo&Vknymvn>w%eOMjNO~pcpWrCjVSR?K(NZ$W)_yV zPmTQ8E;{4#($mpIOHxrw4AruDnMm@4x+gfiOUpuCuk{)Yl2gyg>t5?!$IUyU_}_|Y z#L0fR1MG~FG%W%&~2`$y93AdEsJ+J*Xn??DU(COTAxVmy%^|zf40Po z$5bGm?o*Q0>LTcp6X5^8LuBV>Z|!vOxZI5weB-~@mwS>iKs`IRwD}C<=s@gbTyEn; zkLOiIZlffID6rDwszE?1qKR&3H7%HLy6W;RBxBdlSdYFCZ0bH>I7ZxVo&mX2WLKz? zne&KnBkpG%3^}Iz1u6GnK~ACu5(I;`Ryqr{q)lejDT6BxBi-r<7l-sN^V$Y`{FI3u z&?Op?V>a&ELrkSz=A8WH_+)+of1zZb{!Doe)bGp@xp^)Z(rl#i1>eHeC{rUSRervq zkCzU8i=d1LcbNkzXU*+EM^5C%2cIE)YhL0tsP|Rez4F(Q@J`P#?!nN-Tu+lr4??njQJIg`Bm*NHP0w?%NO}zW<9hos}DZ z#XcDd3$y6RaZNpYxMyGx&&=Gz#M~pBrGwN29Q%&SbfPL&fTa#B%}$jECBZa%eq1E zD+eq}q5~c&;fskvV$CgHZO&MEQ^%)87PyRVUHf>WqW0L?x;i+zJJ`DFxPrCozYY=M z{Dd~L!@|ig2Qm_Az2P00BV#TUqIV8aJjdr-hw-o_Gkm12|arS|B5FG#*e2BjO`{#vHgWi>uKo1{dK{bQ= z{T$C)OO%MvU}2&&spWd1D03_Lj4P*@4cE+I_w7LvVuE*ff(|S}lk9i1Ly^fuJ2@S zC^qRGb|tA_tprBK^eWx(O6FbTABvA5nS2uFCU)F7ee|QrEMYz1c7mUj!9m_21y|xx zVQ8qQg;28gNAoq)%`Q(3t*&T)$M!*(E)nS*Q6{Ll1PlMar)>I;JF^Z$Uf6+MUY*t7 z4#ZqNS-t&Vq~TMRzl94*DE|vb&rc?JX9dK$ryt9^t0r_zo3V3EM>D-DFs*zyH5<1# zcT%;UAKZ)^K79XQ><{KW;(o_*J7_I6K_s_+2?)9dx=eT=<4qW~Hu?Kt%8&E?JBl+y zob1Oh8+06vf9FNp%cHy7Sv&I+3l3A)myRr39W{Jsb)B70S66Pjb4U;u(Q;J%nZ<_zUaH(f;hvraXxl>W7eYtOPj zS^(8XJ+}0>7S6?XOi4pjFmj>ZmH3&R4^N!?Kn=jd&8 zRWL`6Zks5EbC|*NcOTlA7zGvDs2By~n`#p*{k`8Dl%h3_gLfW_m_*Rvb?jQhf2QkH zNE>hGkvgZphOoEA!#MgV{LY`%`yCw@vCPDL?YN?(v~`5*bDql7voz1x@UygYrpytC z(dFSQx8R&j6{*n$VxiOKT-ta&_7=+E!?c-nSbB8r=(GtF&dq4Rjcuf|BP-FMcS~0h zH}MI6$fDi%bgU`AlBskoKA33bdZW&T6e@}q%|BX3to(UPz7)mPqfI@b%z=DZKKg~q z27BfJ4Xkk+(s=1hpAHY%G0Dv4VAj4%`_{^FyV!edI8fxa@~)MFaw zyZ5*u8BUi*sc35WJJS|F(@a0{%%M)0PRf6<62%q^@g0znpn$9n+UAkU?@{NSQ5Cxv zkddYueoBHQ74D#INcuQTE>nFUM&yg{m)Z3Lw$Xy$B7t~;S?B+WvX7NBf&EdJjTM>S z(2l31>SkP{1hPk!()xx)K_}u<+6iBRfoA{bv=eecQ??B`?-rR#_H8%n7Hk<+u&t&z z)o=yur4$iO9&7ZaW;S!akTakaRIofw^%Y7$6jqZ9d2v3ytcsOmG8_tj)Mr;=v)=R; z?1Rcy$bcUc>Z9;SU@k zCOcx!#%15e_{yTX&J0@DmP|r0*dm767j(0hVl7iAtsk$X(KZKfmW0niwPI7B^MMh zen+Fy6#nMC{$1o*F?mV!To}bg8I%agF(CdyD#lZ8vK)}XhD|5oLwxlz>#W=J)GZyo zW4JmG#FEC9*a_f`7VZKGGxWQ!2=MYb6pn{mGfh8N3cKGL`mWda>*9euH28BL%#^op~d0nN$Y$xJNoG=6#w_PO<&r~*u3MBvIdI^_QhmKK3rfDK!1eg zwyUly!yf*Bv0b2gf0-#@GD8?0f+?Ki1^$+cI)4Uj@APD;I;9q+i+I|%@+$Q=Ucm3m z^|zubDd8Teu1pET=HrcW&0~2kgkH}OFJ&-R@uH>%7xl2*2wRrXER(`R?@8n$SW&*p z-}#o(NVQMLxt|I0Gbq+1SZQRvL3d8F+>|z|R-mqO*X?)BJ1(n&6NluYl z&@2e?1<7nvre=4mz{-Xj{`TX4&PB=egrTLey{fStP=$JGV40~Bac1~Th)H>`IBf>n zh&mOV2Mr=l@D&i}k7^$4y{n2`2t7Z}>7~*0&O2u8I3s5Lgrs!2;YnLR8;4F2%GXT52%u=l zDdWl{-&gLBjHi$Zrd_3?WBzzCy8J{Kt@uO)_YIu~QW1QTFJN^8rRi#>NcxuTrJNY~ zdRQ2cKR}_t3B(U0Y0qWai1?zMA1~Kw%aW6&PuSNtl;g)PY}IKCx<~dn)TVy24oL^r z{F0{I#YEtBXSE3fO()Ex?1bkvczd^Sg3)qcaKN=;2!v1dJ)@gdIs7#VGn{Sp7Oo};Tt9;^<50ZR=<`O>ra$J!Aw&<5T0(QtW0Um?Zk!Z$nAuU zYUpjme!wMY$?b$s`hoS#NpYwRGHC2fbgf?lZ{02!E(5g!1E{?@x%9O zT6h6nHa3)gyJ(VboMXeA<*MuczxRxhJ?tDqFgrT6l4Whdo>M6DY zzL?cYK_hKa4GYWn@)Kkcq(4jc-I2@oP-fJZfSh;AQEdFvoEeEI?x0t;eXfU zqf!X*Kb*xKdD*Y>lK*cxg|LK#oN+r!eJ!v3B+l$2+PEm3zK7h`^fEX=>DwQxBmDcz zCT}F97F02?4ehXRW?M+$-#*N&u%vsZ6FYbZ0xg6c(_I(#IlaVFpbV*cLz#-vmGIM( zK2cioX|WZ(e(2C)+UMf)TbRdsd%Py{`k+mh*&}n}xsh35To2<*)_lol`H$n3gc+gT zM)OaXpPH^HE5CZmC?Qhx*_m!cE&gQ^;rOROOjfIS8XI4|Qcs-wtVEQ(UwXN=^?fdw z5abJI!)^{s1B3JVDPAok`x!SGV}*#vEQ0I)OMb14ey#^f;G?K-I@Y8eGjd~+?6w@~(HypU z*3g-Gw_m5SjlwaKSGWGoJ#yv8t)+#7<3tMv-{Q8Q2o~gs;fZFopX@Ksfv~C}Q>ZR? zl>H1#ow={w_U|dIUAv97!;xw3zqRrn2J5hAmT~F|Q`-!M>zKB(D%&bdrlDIBvq#s= zz21EygS$H~;5<87)niAxRO`00GW4p|>z^eHC-f(jJ4V2Jxz~lv#{>s$h@s8$_9WAX z`u6N+c-C%av(J)RGJhfkZLm@9WJVF^zJd3kH1BhA`dIb1%M+uXwE_l=(co5m^-$Kj zZ1zT(kt&9XXYsvpgRz-sNAH2Dd&ZaX&m04%iVFL@JXPyIRu)4Ne6SVvGOYqK0~#Dn z=!Z01Rf?ZUPJMH_oxgRdTYTLfl}l?AEm>Y=_F#Fp?JO9nhmig4i)iJE=+9Sa#7&9s z{8`MRXp|_b3PesY+@ZU!OtTo;QG%vgSf_E0)})#bS!z(D6e3yFt{z4_D~6{g1eyj_|WGs-v%w>HgMc-6rGrK=(f96QS2P=$kM(|d!_ zQLT^Ko8>#*kbj!{&lHQz#+8EC#q7@VxeqTZVyqoOJ$5sH&n)(3?WTf(ac$vts8|Ro zAl`I+)pGm8+4L7JNqJ&7eg24zb(soLX|m+&KC65V9lGcm;y&p{4juV7Z)0D}kO zpF_D~nAr>5R5lmG`~1)gPZi|$Qa{fNv(|c;*dW@&uM@_us0;2s&B~bNW=&##r?siG zr1}m|{#4P(wI(3OC2cngUZNp;{Z2>+2MuxAw&Y`E<87Ru*qKjBMOTd5H~G&4D$^Y< zP=(7+r1XJ@tIKU6%T<(^6uUN317_3eDHbC}XR(>m-?ST}tc8m8()^|~x|Wg~tV@xj z3s(5>x>IlBV!YOL6Ke0Y7wKi*)41d5`cE@Y?ynC#<*s5GNzFB8Ej{ce& zzKfs@Vz+0Iw!y3x5Ns9uZsWm*HJM_^EVY7u6tTw1T9D@~5l{Vqx#cxaf3s1DkTQ^0{kl2nGix<^eJBOWes^1n0|w zf-p#4ySkV>m9l$l8H|}`sdX@)_1P0Dw@ea#nKwYwb@7Dy*uE8YD_8ua1K-5M-aU5y zK}FVciD*%gH`JcKbdlWDm?+zsaW~{Xv(HnXY~!Pun|a)Pi#A$n8wzp4-8HF};XjdhvyAN?nSE_nMD%hy^^z)gd?UHoyCTAGMvjWPtY=5Xh=xo0^nA-yK>0gAI2^lb zfEZD4Q@tj$*;6ZWiG>`Y!8x{D%V~AK2b)rRIV&SF{$tMYFG*msyp;@T{P} z+ZXG!;pjS!(9wE1=Q~%1G9~ttv4QiMG77#s_o;((N#7;>FHjW|73)MFL^53cM0#xE zX6dmv8$M!m+>VPc)G{tdH)_`VW@`_(V+Z-+Mnr9F> zY`jf~dm+ls8WEY@23bV@M6S3=j*u@dm)H?H;u;~*V%$xL>AQ{2W-i&tqnWS?Y8_P> z2=R=)B0kbQ*Qn%}BRrjC`NNG}Xv-Zxf%Y(=)}9*XV^T||#hPvFmZ_q}85icwb)9J)n0aMvON#tUitP4g znUfWO-6W+oNQSJ3#ySEDFKI2EFa?ZNYi?5o zXp-YiCWnpi7yeYntEH@ET&}eMkeq3Q&R6LO#@8-efcmT2(Wctg_UI8#wWB29$8Af? z!SIDdmU~aK@$s{f2CT#ad|1t{IgtH_e#@IiMlDJLPhuotX}tKJfnj6kLGdG!r{ zyOCyB?yDbL8Q%de3WwH66(yjkR8r#f4{NJL0uF#AE`sg^2_>t5ZvsREGY^8 zCQnHd-}NHRzsw((M+kLiT$~;;`u5w#M3>mJ9F-ws41W?n^viWUowTqN1=9eZ+UYOL`HGaDuvLTeqyqHw23Lfat=vOP;_(Exrj8?e7UD2>FVMShC zuiubIwDmE@2o_%!EPhg48j?5=vM`W40A7P%HP!eFVaxqc7Xi?ulUO zf}Xwm0rPxLgY^LwON$cnmFw;#N4d1JxPS>vr5F- zY{2DW4}LH6pzI!yyE2hJPK^bq5$-GTR}y6OKkEp6oc}{Y!_bdo%7DBYFa68_K}++f zZ;mxcF5#`-0av^-pbD`q;H`8h3y=flEcNc)D6opd9S6GB8L<$|^^`D|vZ-Y63ry56 zjsYvbc+Wz$7j`4z&WnYert*^qPa&a%FvkvIaq^kxM?iTR!UmN^(%3UH4oZu-eF;h@ znBCV`L~RUoUO!dDJyefG($k-Y9V{F9XQtDTwM9?%+mE9&@bB&&A6pH~Up^>cI4AA(Oln#({n?iYfELzFLQd|^9< z#h6GkoPN=DT}(hysNz&;Nn&<8s7b|^#Zh3nJHf}vHpK(aM0!fP9`y*>izK6!Z-RH5 zBoW5;5+DznY(i8hgua~*cKDp*C%M|uerp8+Df-(6V_yU&GHkcQ)Fk)I@vHq(8mR@P zH_F1Ubcao{?Svi7^<5X+k1y%G$YNBQ9SjA_i3v-U2Jsatv!oJ|KU_Y{V1Z=P;~GLl z@c9m{EjM2}Me|RiCs`}4cgBLxGf^v6)rQ_&Phgjs5>PuoDW;^XMBA)L+~=Jd`&d#xNl6M1J@lPlQX2osB<^e7)%6I)em+C&qsEl- zg_CkS54E+Xy;HN>xgYoBC1%;AW^FB{8NHlA*Gb~`W@K~tsU7RA9Lu$xA6Q!LUgy`t zr~Tc-i&%fxnBg1vmxntCp{`fF1^cVO(8_O5(87O1R zr^M!yt2FWcO#{cV3{Z92!=%0RZ9^uFyo)0NWKD7K zHaXKOD$!z{qaPqHVV#+wj= z-9#*Q{Bk!Ivcvy0HEib|6Ez%@FdRC32Rrab(I?c^;q08`UNOd^T zLKn=FinFjunz4zq@Q$0+joVUR{p@*{Es_JbHy(#Z9I(A(;6Iv4{bxm_H1;oINqc3-HZ%E8 zH3zpO2emQ=b0r70Br9+x2XQ6C`>n}}oKw9nOgk}$Qx5~>o`hzCnm2@8>m%{#8Zo8V zFD2))CfI=Yl{E0mUrDoPN&q`HkJ?0DDLp^(*V`5=%A#xBB2VZITn~5qx+GvKcCVH7 zox3Gli@0&c+>bXTaf3&CxK(;;zO8d7GbYY>@7a0G>v}tFhU`m=n+mN2;~2k^FE>~; zoO*Nj`tE$(CZG)SWicM-Bj3DsW>Q4Z-a;@bI@8Ld&8=vgl$glBa|)fo$QE6GAJb>( zrI(hLdhpr#V~ukKvGlIiosd_DTA-mu?2KrnhDfAa9mXw={&MN;^Tb_1|DPYe4s}5D z^Tg&xJ+r4}0=jl2IfGLsx~2@x&UYeIP?C;_Y5BFYy4^MI**2psu~)oPXLO^0v*>jt z67@J^wY{&}W%EV2;4}XYYq<1YsdY2iUN3tlVbfX`Q&oE=(1`x^gifiD)}3&g*k;ts zXIq;Zy=w(=SX9u9?K%dijB(I47%@_XAjO#iC4qL}>VbZ7Gkh((9)C|uNCmztU zw6kWKGQ0-8K`;fG(#j(kSOYR}MeHu-%`GBwVg0!Au zvh8uwTb>(|TVW?poKoG1KqfPv*ccQ!zk3_o{e8deM%NWCF-K2n6eL{50PVD&6v!LLb9n~(> zov5Ivwm0r15hzC|k8roH;Nmj`o-jxMW!n|;Znn`ty%cmQ_5n{3`;s`Ci;D_)?rZki z8qbgiKz=AMSnLcct0IZ*epZEEM6ildDJ@NWjO`s3&RdunSdYcRt=CWmlO4ey*1(}0#{b1kJd#ho4EcY zU2txZ9-pNCBpaUg#rC{7&;%`&VjsbR99^k)+xEQPk2&78iM_>nQL{uLl&E0h6UgKa zxS%h4Qi(QpvXE9WON_S(s1g-tjnGUNrgqU5B@}afOdqC#NimC!6N})wq!%%z+?`*} zS(JL%3W)i&TxZo8K`p7O4-3Def7ozI4t`r#Nb2pWiLxLHIhJsF-)v9P9kmq&C!J{* zay0iAY}F@v!2bvaF)ZUmi*K}VXzn*1g$&^p2x~#!h@F|@SJn%+uIqAOccu+Cy~Mi6 zDUY}Wkm@!aRkWh0W?zo9NTp(1(?snU1pn6L?bkTmKOoMSmgptR# z0AE1jSnqk}cg?){ufyynOlA0b8Koyx_?Gl)wn4WiN}UFTxg*xv>1UDRLf)vWyz}<`+;;dqa0?v2xOg-(7>^C7O7L7aV-j{fB`<=_*nNzw^4)mP-4KaQ|?eH1vzN?;Ta z#SI5mvh(hb=;%laZM_gUYiYDPPv6Yv^(7;b2E|$ybUaMTukFQgzH1{k!|C5&X3hD$ zx_X|^UG*v-xtqC}#ZKLOCx@Awr?~biHW<|}{tiGETI=kKaRFB)b{#92hp?xKQKm0r zUta%N4BWauWtg6 zu!H>j*Tz2%&xiQeb|U3)lIgFH4S|>8b&&tw7@Xhh*Z1^>ymKw-A@ z|6FYRCljH6Fb4V?w*N0c&u9le(277|AwfacmD;V*fIWieh{1I#h-uPesE}<4oK8Gm>xj-H6WYMKwJFwv zZNn9x{>j}r>8*R!*PsOLg8ur|*L?duGUO+zb6Ao4OxOay87|}PFZ4da$4$mZoUzQ> zM&2`qz&Isp!&UD1p;1zqV27C5IWR|u++Ict`8-!aL2hjPXJnBHDJgyW}Y08rQr;n9JDJSw^>OSM=Pc7v{}_n zF|TmMx1vfpp?ObWrOvYkddE%fEGJRPvVPmxk5=JbsK`13&H9sy)5yg#d&QcS-1Jn9 zqqV+c`?I2BUQ^+yyNp0+a<`6d)or2q!Nr6|&-%TQ4V=tD!}DXPqW^K+tDxj>K1UVQ z?UIHZS4f<|q-2cDKBiaOxOTB8VEha2gJa^$^YMah|lyMS%XyTjg?lR4ONC^!oF4EEPkh&cacS39Adtazi{ zhGR5&UDHq@CBJ69CE2mgn~r_B9(gb{Mj81?9Vy+O)v(5o zW;Ww;@6?M7j_jNqR-gIw739HQzcG^h_3PKWg3pG^2n7eb1u<;8Gg-$Ps;WUhd22Vj zElx-hbJhGuH&Q)!7jh!Q!vW8vl0$0^ReP?`1gyTq=T|!%P{=A$YfHtry73ohwUA9v z=f=PLfAbQ<@%Nq6d_4c1%5lAtqdChSx^&nBUfjC!g@RaDjLG255F)Z-vF} zoknojbQ*u_#G!?{{TV*wPOEWUM(I)6^7gj2n%&-l{C+&MubK>b)3X+DI0R_n;(|QF z53fJA`%O_g+Cmq5B;LT~`;*l5x4pVt(B^44;4ku`k2Nl6Ye)~T^(2R9sNC_^GR_E8>{+W;zWIGU6;m&GMhq!;ydx z9rc=uuiu|JjD(RKX<}{!@f@Rwf%i=8P?^2NdaiO-w>-V!Ccd76S2?#m2f!rLh!xs= z3=V#u3vce~ zI1Ncn0swQv?#A)xgX}J6Hq|S!*dr0<(vShze2^gGxD7L1(5~O${vC(SI}P{mo=sBS zoYac0-*bC&^ACr}MI;s=Yt6{V`Mer)b5ebtxdP%4##{B#OdCNfvp+!-X%Dg~KQ}iQ zMj7U6-m3WwHl+xUFRmT;a?Ii^TwJ<`Zb4X@f8mxGC!C`xYJQWKx5khMrcK2i;&=-_ zUtR6KV~`Y{aco-wySqXGw{w~gvP-XpB#YQD{v;9{k-oPCkI9yE6SH@=u`(3rNZ(gxe1#p*Twyososwf+_KHz9|ak#VThP8*v)W0O|#lKDwiQJ!xAOd%=M@+@G`Ss~qx#vmjQwL5xx4#3qMFFU1Vg%C5=XV4x4DMS? z1Fkyc@&J5!0J$Go%cXKOkfr=bY^COo!}#jzs=8sgg4xW*u?C+i05Rfy+I3@+ph`*f z)$g=B<~vzJ^Zqc*^S~k128Yz?gB|ePCg8xm!pR6`3Cgq@jF<*!(O94&=1Q^6h{-LwY^+rAqJB$8EF=(#_Y$*S~D#JcSX1L@mxr#u#k{Z6zap`kd%!GV%G9)WC_bw1=c-p%yY~ibyo)3~9W z{;pI`4>dTWIYR5V!|KJnR>w_=^flwh)%+KqR2Q*9^YrnC;EDB*19~2dy63G7mU4yq ztzQTXDAI6po!QECyhkYM5$}Vkjb&r$C=O>IMWozDim#xCD)IWu`$D1oJvsEqd~={F=-e$IeaOb+U}1WagTRSUrw{9`K^l=oP@Nj!Spjl1qCe&%EZJ(1aWVr9(j1o@P8ju9vqXG zBXn}Tl`kzdRXQ&KH20lz^HoFLOV9 z$X5MP7f?(hY9&0E{RVqd%Q`@c&?)!0<>vREc>~L;s<^6nUZ^t)&aY|M0uMoJiKLjc z{b_*8o2E_a>FHs7bw6`30A(n9^#^;Al=(=~@<{cMz^&R9|Iyqd^AaGK3o=x~<^!3|K z7R@y zohI!gfzRQPQgH@YTna{&8+I#q7f}GyNSIKoRPR|peWUa9PC^k@L?1HT+W5N7teN0i zKoLl)=VTA`7T@43mTw}d=zO+D7*zB&yqhfaR^*p3IS)xq~m`hjiRk-mP85u5s2WCuK9^5wz$@6x7fF zA6pT2l-&d1s4~C_XUKqE3CNJM`1}`IjVbF{J~T{XPTz0EbAx9}9b;vI6gy^9I*Z*?OH!&!3sXQd0ha^Y{a@==(Ja zF0w!oNM5CfPBf^qhX75(TPF@Nr2)n^{t$-7B*55A+6@6u0;w&Xx4oGoL*Bt51K|3K zP3CT;kU>QQ9LVSE_5zSFE?x5UgrA?y{I8sV?9l4DZh3sjW5bz6Z9^y!9VH;#8lvEG zDtrsLaIk8vnGvubK31*a5}O{_(!@%^>k!kNLp7l+(r@~vFKJ0PK!*tnhz7+qZO_25 z6QTxFp7+T(prZ2nRJh%Bz)F1EwzX8yrZ6yumuZt7nsQ6%#836-UDr<~wa?zIRm?Xk@XR~==BSfoF$fd0aS$eWxDE^dSZnr6+y2T< zS?4=gXRvH7$}=O^Y;@qgI3Jbj)y^i_MNGVg-WRlYbO4^sTC+2o9M4(?F!C&K#rPY+ z4kz}T& z+;?nm^j5qjp19Ypn1oWG%Pjq8DVjYBc*ozaKm`?%kt(xe>_vbZ~!wN zDA_H5U8c`&wH8INzoE1g?1#!y|01tYU;um>2joXhV=*$e)^IItYF#`G3E76 z`#4l<=H=yu2|5Q(Bbk?KF#x!owwLxWs9yDE8!lEsUceIg2ZRY9@ z>Ah$1Gtm1P_#>chAfpSMW*HqSOr4#rt>-_)sOn9$L7nul4736vBCB}lP4Xg8Xi8>z2G`q||x#O6C+TJRLW(>q<7=A9*H{a6~inx5} zPckUmz@Ntcvw~^525&NeGk8O93`s%OT(Qcqq?Yi22LhyKZ3=2hgMhT+q`)f5RDqOV zMl*ia3xZ;|`xuSnYUh0#p8WcS$Bu)ArWm;9`3!8NZq-B(K`$o2$N-jqB2~(lG9^PX zb0)vKtm-7=^RHI;!z?Jgf%e8)8JHj_x=QgEyhaD3aHG8!J>v<-dUsALYMTM z#_zpZKPzQ|wTjFOVc}W{1=fM}OMnaG!HI&Jn#T5O$HJz($n-$I@KR&?YnR=bt3d^c zL+->Q@2%&CW^98Z>M{4ulXn?zt6=Kd8#99&&?e)59}JnDolRO9tFH(E{2UD?Prc`Z zg}dS6UtRTk)%ANV+I22$G3L6YuE>B*u+pUucGR$HR5*115>RIqc##mEjSU*zI>$bbL!kqQk_Gbg`Kzzl$Q(B z&dn@7;5Iu65@o2KJOm>veckG7t9R~wB*KvX_b%?%+wANx1K{(UI19_(xTH!0-h+iS z%7Px65%P&V%vKoyM<82eWI)bTgE}#<0<#T=x}8~x<%&!*$IPyZWl(9Wm#Z@0k-Am* zMu1U6wNFC+7=V`0dsg`oBVYwck#IN$bO~5e9^uwRr=8+88G;g<0}8Vl7M3Wn-=IzD zLmvbHr41ZvRm7c~kT4Gq8ySP~I=Gy{U>Q3wN+FfYta#(}V{^e*pd^B+4|f0{LxIwQ zQc@#?TaYZ0@#@t>VG57dypGw2H4mJgntHU*=DEYONP`LrpT*M3>abhBO3?;D!NIf* zXqAYGg*i~(V6|C&Sqj3k|N0Hx75Od#ST+c3Zi;ah0JF9zYXIsyBv$;sHY!E$lN=97 zVMd!7;f$jB7am?MGaS8d!BCpqD6 OE6J-q$p78s#s31^R$hw$ diff --git a/exercises/_19-ex-inference-one-mean.qmd b/exercises/_19-ex-inference-one-mean.qmd index c8567f27..a96c6eeb 100644 --- a/exercises/_19-ex-inference-one-mean.qmd +++ b/exercises/_19-ex-inference-one-mean.qmd @@ -1,26 +1,26 @@ -1. **Statistics vs. parameters: one mean.** -Each of the following scenarios were set up to assess an average value. For each one, identify, in words: the statistic and the parameter. +1. **Statistics vs. parameters: one mean.** Each of the following scenarios were set up to assess an average value. + For each one, identify, in words: the statistic and the parameter. a. A sample of 25 New Yorkers were asked how much sleep they get per night. - + b. Researchers at two different universities in California collected information on undergraduates' heights. -1. **Statistics vs. parameters: one mean.** -Each of the following scenarios were set up to assess an average value. For each one, identify, in words: the statistic and the parameter. - +2. **Statistics vs. parameters: one mean.** Each of the following scenarios were set up to assess an average value. + For each one, identify, in words: the statistic and the parameter. + a. Georgianna samples 20 children from a particular city and measures how many years they have each been playing piano. - + b. Traffic police officers (who are regularly exposed to lead from automobile exhaust) had their lead levels measured in their blood. -1. **Heights of adults.** -Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals. -Summary statistics for the distribution of heights (measured in centimeters), along with a histogram, are provided below.^[The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.] [@Heinz:2003] +3. **Heights of adults.** Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals. + Summary statistics for the distribution of heights (measured in centimeters), along with a histogram, are provided below.[^_19-ex-inference-one-mean-1] + [@Heinz:2003] ```{r} library(tidyverse) library(kableExtra) library(openintro) - + bdims %>% summarise( Min = round(min(hgt), 1), @@ -36,46 +36,57 @@ Summary statistics for the distribution of heights (measured in centimeters), al kable_styling(bootstrap_options = c("striped", "condensed"), latex_options = "HOLD_position", full_width = FALSE) - + ggplot(bdims, aes(x = hgt)) + geom_histogram(binwidth = 2) + labs(x = "Height (centimeters)", y = "Count") ``` - a. What is the point estimate for the average height of active individuals? What about the median? + a. What is the point estimate for the average height of active individuals? + What about the median? + + b. What is the point estimate for the standard deviation of the heights of active individuals? + What about the IQR? + + c. Is a person who is 1m 80cm (180 cm) tall considered unusually tall? + And is a person who is 1m 55cm (155cm) considered unusually short? + Explain your reasoning. - b. What is the point estimate for the standard deviation of the heights of active individuals? What about the IQR? + d. The researchers take another random sample of physically active individuals. + Would you expect the mean and the standard deviation of this new sample to be the ones given above? + Explain your reasoning. - c. Is a person who is 1m 80cm (180 cm) tall considered unusually tall? And is a person who is 1m 55cm (155cm) considered unusually short? Explain your reasoning. + e. The sample means obtained are point estimates for the mean height of all active individuals, if the sample of individuals is equivalent to a simple random sample. + What measure do we use to quantify the variability of such an estimate? + Compute this quantity using the data from the original sample under the condition that the data are a simple random sample. - d. The researchers take another random sample of physically active individuals. Would you expect the mean and the standard deviation of this new sample to be the ones given above? Explain your reasoning. +4. **Heights of adults, standard error.** Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters. + Provide an estimate for the standard error of the mean for samples of following sizes.[^_19-ex-inference-one-mean-2] + [@Heinz:2003] - e. The sample means obtained are point estimates for the mean height of all active individuals, if the sample of individuals is equivalent to a simple random sample. What measure do we use to quantify the variability of such an estimate? Compute this quantity using the data from the original sample under the condition that the data are a simple random sample. + a. n = 10 -1. **Heights of adults, standard error.** -Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters. -Provide an estimate for the standard error of the mean for samples of following sizes.^[The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.] [@Heinz:2003] + b. n = 50 - a. n = 10 - - b. n = 50 - - c. n = 100 - - d. n = 1000 - - e. The standard error of the mean is a number which describes what? + c. n = 100 -1. **Heights of adults vs. kindergartners.** -Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters.^[The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.] [@Heinz:2003] + d. n = 1000 - a. Would the standard deviation of the heights of a few hundred kindergartners be bigger or smaller than 9.4cm? Explain your reasoning. - - b. Suppose many samples of size 100 adults is taken and, separately, many samples of size 100 kindergarteners are taken. For each of the many samples, the average height is computed. Which set of sample averages would have a larger standard error of the mean, the adult sample averages or the kindergartner sample averages? + e. The standard error of the mean is a number which describes what? -1. **Heights of adults, bootstrap interval.** -Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals. -The histogram below shows the sample distribution of bootstrapped means from 1,000 different bootstrap samples.^[The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.] [@Heinz:2003] +5. **Heights of adults vs. kindergartners.** Heights of 507 physically active individuals have a mean of 171 centimeters and a standard deviation of 9.4 centimeters.[^_19-ex-inference-one-mean-3] + [@Heinz:2003] + + a. Would the standard deviation of the heights of a few hundred kindergartners be bigger or smaller than 9.4cm? + Explain your reasoning. + + b. Suppose many samples of size 100 adults is taken and, separately, many samples of size 100 kindergarteners are taken. + For each of the many samples, the average height is computed. + Which set of sample averages would have a larger standard error of the mean, the adult sample averages or the kindergartner sample averages? + +6. **Heights of adults, bootstrap interval.** Researchers studying anthropometry collected body measurements, as well as age, weight, height and gender, for 507 physically active individuals. + The histogram below shows the sample distribution of bootstrapped means from 1,000 different bootstrap samples.[^_19-ex-inference-one-mean-4] + [@Heinz:2003] ```{r} library(tidyverse) @@ -99,15 +110,17 @@ The histogram below shows the sample distribution of bootstrapped means from 1,0 labels = label_comma(scale = 1, accuracy = 0.1)) ``` - a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean. - - b. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap percentile confidence interval for the true average adult height in the population from which the data were randomly sampled. Provide the interval as well as a one-sentence interpretation of the interval. + a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean. + + b. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap percentile confidence interval for the true average adult height in the population from which the data were randomly sampled. + Provide the interval as well as a one-sentence interpretation of the interval. - c. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap SE confidence interval for the true average adult height in the population from which the data were randomly sampled. Provide the interval as well as a one-sentence interpretation of the interval. + c. By looking at the bootstrap sampling distribution (1,000 bootstrap samples were taken), find an approximate 90% bootstrap SE confidence interval for the true average adult height in the population from which the data were randomly sampled. + Provide the interval as well as a one-sentence interpretation of the interval. -1. **Identify the critical $t$.** -A random sample is selected from an approximately normal population with unknown standard deviation. -Find the degrees of freedom and the critical $t$-value (t$^\star$) for the given sample size and confidence level. +7. **Identify the critical** $t$. + A random sample is selected from an approximately normal population with unknown standard deviation. + Find the degrees of freedom and the critical $t$-value (t$^\star$) for the given sample size and confidence level. a. $n = 6$, CL = 90% @@ -117,27 +130,27 @@ Find the degrees of freedom and the critical $t$-value (t$^\star$) for the given d. $n = 12$, CL = 99% -1. **$t$-distribution.** -The figure below shows three unimodal and symmetric curves: the standard normal (z) distribution, the $t$-distribution with 5 degrees of freedom, and the $t$-distribution with 1 degree of freedom. -Determine which is which, and explain your reasoning. +8. $t$-distribution. + The figure below shows three unimodal and symmetric curves: the standard normal (z) distribution, the $t$-distribution with 5 degrees of freedom, and the $t$-distribution with 1 degree of freedom. + Determine which is which, and explain your reasoning. ```{r} #| fig-asp: 0.5 library(tidyverse) library(openintro) - + x <- seq(-5, 5, 0.01) z <- dnorm(x) t1 <- dt(x, 5) t5 <- dt(x, 1) - + df <- tibble( xx = c(x, x, x), yy = c(z, t1, t5), curve = factor(c(rep("solid", length(x)), rep("dashed", length(x)), rep("dotted", length(x))), levels = c("solid", "dashed", "dotted")), ) - + ggplot(df, aes(x = xx, y = yy, color = curve, linetype = curve)) + geom_line(size = 0.8) + scale_color_openintro("three") + @@ -152,10 +165,9 @@ Determine which is which, and explain your reasoning. ) ``` -1. **Find the p-value, I.** -A random sample is selected from an approximately normal population with an unknown standard deviation. -Find the p-value for the given sample size and test statistic. -Also determine if the null hypothesis would be rejected at $\alpha = 0.05$. +9. **Find the p-value, I.** A random sample is selected from an approximately normal population with an unknown standard deviation. + Find the p-value for the given sample size and test statistic. + Also determine if the null hypothesis would be rejected at $\alpha = 0.05$. a. $n = 11$, $T = 1.91$ @@ -165,21 +177,19 @@ Also determine if the null hypothesis would be rejected at $\alpha = 0.05$. d. $n = 28$, $T = 2.13$ -1. **Find the p-value, II.** -A random sample is selected from an approximately normal population with an unknown standard deviation. -Find the p-value for the given sample size and test statistic. -Also determine if the null hypothesis would be rejected at $\alpha = 0.01$. +10. **Find the p-value, II.** A random sample is selected from an approximately normal population with an unknown standard deviation. + Find the p-value for the given sample size and test statistic. + Also determine if the null hypothesis would be rejected at $\alpha = 0.01$. a. $n = 26$, $T = 2.485$ b. $n = 18$, $T = 0.5$ -1. **Length of gestation, confidence interval.** -Every year, the United States Department of Health and Human Services releases to the public a large dataset containing information on births recorded in the country. -This dataset has been of interest to medical researchers who are studying the relation between habits and practices of expectant mothers and the birth of their children. -In this exercise we work with a random sample of 1,000 cases from the dataset released in 2014. -The length of pregnancy, measured in weeks, is commonly referred to as gestation. -The histograms below show the distribution of lengths of gestation from the random sample of 1,000 births (on the left) and the distribution of bootstrapped means of gestation from 1,500 different bootstrap samples (on the right).^[The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.] +11. **Length of gestation, confidence interval.** Every year, the United States Department of Health and Human Services releases to the public a large dataset containing information on births recorded in the country. + This dataset has been of interest to medical researchers who are studying the relation between habits and practices of expectant mothers and the birth of their children. + In this exercise we work with a random sample of 1,000 cases from the dataset released in 2014. + The length of pregnancy, measured in weeks, is commonly referred to as gestation. + The histograms below show the distribution of lengths of gestation from the random sample of 1,000 births (on the left) and the distribution of bootstrapped means of gestation from 1,500 different bootstrap samples (on the right).[^_19-ex-inference-one-mean-5] ```{r} #| out-width: 100% @@ -189,7 +199,7 @@ The histograms below show the distribution of lengths of gestation from the rand library(tidyverse) library(infer) library(patchwork) - + p_sample <- ggplot(births14, aes(x = weeks)) + geom_histogram(binwidth = 1) + labs( @@ -203,7 +213,7 @@ The histograms below show the distribution of lengths of gestation from the rand specify(response = weeks) %>% generate(reps = 1500, type = "bootstrap") %>% calculate(stat = "mean") - + p_boot <- ggplot(births14_boot, aes(x = stat)) + geom_histogram(binwidth = 0.05, fill = IMSCOL["green", "full"]) + scale_x_continuous(breaks = c(38.4, 38.5, 38.6, 38.7, 38.8, 38.9)) + @@ -216,15 +226,16 @@ The histograms below show the distribution of lengths of gestation from the rand p_sample + p_boot ``` - a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean. + a. Given the bootstrap sampling distribution for the sample mean, find an approximate value for the standard error of the mean. - b. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap percentile confidence interval for the true average gestation length in the population from which the data were randomly sampled. Provide the interval as well as a one-sentence interpretation of the interval. + b. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap percentile confidence interval for the true average gestation length in the population from which the data were randomly sampled. + Provide the interval as well as a one-sentence interpretation of the interval. - c. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap SE confidence interval for the true average gestation length in the population from which the data were randomly sampled. Provide the interval as well as a one-sentence interpretation of the interval. + c. By looking at the bootstrap sampling distribution (1,500 bootstrap samples were taken), find an approximate 99% bootstrap SE confidence interval for the true average gestation length in the population from which the data were randomly sampled. + Provide the interval as well as a one-sentence interpretation of the interval. -1. **Length of gestation, hypothesis test.** -In this exercise we work with a random sample of 1,000 cases from the dataset released by the United States Department of Health and Human Services in 2014. -Provided below are sample statistics for gestation (length of pregnancy, measured in weeks) of births in this sample.^[The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.] +12. **Length of gestation, hypothesis test.** In this exercise we work with a random sample of 1,000 cases from the dataset released by the United States Department of Health and Human Services in 2014. + Provided below are sample statistics for gestation (length of pregnancy, measured in weeks) of births in this sample.[^_19-ex-inference-one-mean-6] ```{r} library(openintro) @@ -248,67 +259,69 @@ Provided below are sample statistics for gestation (length of pregnancy, measure full_width = FALSE) ``` - a. What is the point estimate for the average length of pregnancy for all women? What about the median? + a. What is the point estimate for the average length of pregnancy for all women? + What about the median? - b. You might have heard that human gestation is typically 40 weeks. Using the data, perform a complete hypothesis test, using mathematical models, to assess the 40 week claim. State the null and alternative hypotheses, find the T score, find the p-value, and provide a conclusion in context of the data. - - c. A quick internet search validates the claim of "40 weeks gestation" for humans. A friend of yours claims that there are different ways to measure gestation (starting at first day of last period, ovulation, or conception) which will result in estimates that are a week or two different. Another friend mentions that recent increases in cesarean births is likely to have decreased length of gestation. Do the data provide a mechanism to distinguish between your two friends' claims? + b. You might have heard that human gestation is typically 40 weeks. + Using the data, perform a complete hypothesis test, using mathematical models, to assess the 40 week claim. + State the null and alternative hypotheses, find the T score, find the p-value, and provide a conclusion in context of the data. -1. **Interpreting confidence intervals for population mean.** -For each of the following statements, indicate if they are a true or false interpretation of the confidence interval. -If false, provide a reason or correction to the misinterpretation. -You collect a large sample and calculate a 95% confidence interval for the average number of cans of sodas consumed annually per adult in the US to be (440 cans, 520 cans), i.e., on average, adults in the US consume just under two cans of soda per day. + c. A quick internet search validates the claim of "40 weeks gestation" for humans. + A friend of yours claims that there are different ways to measure gestation (starting at first day of last period, ovulation, or conception) which will result in estimates that are a week or two different. + Another friend mentions that recent increases in cesarean births is likely to have decreased length of gestation. + Do the data provide a mechanism to distinguish between your two friends' claims? - a. 95% of adults in the US consume between 440 and 520 cans of soda per year. +13. **Interpreting confidence intervals for population mean.** For each of the following statements, indicate if they are a true or false interpretation of the confidence interval. + If false, provide a reason or correction to the misinterpretation. + You collect a large sample and calculate a 95% confidence interval for the average number of cans of sodas consumed annually per adult in the US to be (440 cans, 520 cans), i.e., on average, adults in the US consume just under two cans of soda per day. - b. There is a 95% probability that the true population average per adult yearly soda consumption is between 440 and 520 cans. + a. 95% of adults in the US consume between 440 and 520 cans of soda per year. - c. The true population average per adult yearly soda consumption is between 440 and 520 cans, with 95% confidence. + b. There is a 95% probability that the true population average per adult yearly soda consumption is between 440 and 520 cans. - d. The average soda consumption of the people who were sampled is between 440 and 520 cans of soda per year, with 95% confidence. + c. The true population average per adult yearly soda consumption is between 440 and 520 cans, with 95% confidence. -1. **Interpreting p-values for population mean.** -For each of the following statements, indicate if they are a true or false interpretation of the p-value. -If false, provide a reason or correction to the misinterpretation. -You are wondering if the average amount of cereal in a 10oz cereal box is greater than 10oz. You collect 50 boxes of cereal, weigh them carefully, find a T score, and a p-value of 0.23. + d. The average soda consumption of the people who were sampled is between 440 and 520 cans of soda per year, with 95% confidence. - a. The probability that the average weight of all cereal boxes is 10 oz is 0.23. +14. **Interpreting p-values for population mean.** For each of the following statements, indicate if they are a true or false interpretation of the p-value. + If false, provide a reason or correction to the misinterpretation. + You are wondering if the average amount of cereal in a 10oz cereal box is greater than 10oz. + You collect 50 boxes of cereal, weigh them carefully, find a T score, and a p-value of 0.23. - b. The probability that the average weight of all cereal boxes is greater than 10 oz is 0.23. + a. The probability that the average weight of all cereal boxes is 10 oz is 0.23. - c. Because the p-value is 0.23, the average weight of all cereal boxes is 10 oz. + b. The probability that the average weight of all cereal boxes is greater than 10 oz is 0.23. - d. Because the p-value is small, the population average must be just barely above 10 oz (small effect). + c. Because the p-value is 0.23, the average weight of all cereal boxes is 10 oz. - e. If $H_0$ is true, the probability of observing another sample with an average as or more extreme as the data is 0.23. + d. Because the p-value is small, the population average must be just barely above 10 oz (small effect). -1. **Working backwards, I.** -A 95% confidence interval for a population mean, $\mu$, is given as (18.985, 21.015). -The population distribution is approximately normal and the population standard deviation is unknown. -This confidence interval is based on a simple random sample of 36 observations. -Calculate the sample mean, the margin of error, and the sample standard deviation. -Assume that all conditions necessary for inference are satisfied. -Use the $t$-distribution in any calculations. + e. If $H_0$ is true, the probability of observing another sample with an average as or more extreme as the data is 0.23. -1. **Working backwards, II.** -A 90% confidence interval for a population mean is (65, 77). -The population distribution is approximately normal and the population standard deviation is unknown. -This confidence interval is based on a simple random sample of 25 observations. -Calculate the sample mean, the margin of error, and the sample standard deviation. -Assume that all conditions necessary for inference are satisfied. -Use the $t$-distribution in any calculations. +15. **Working backwards, I.** A 95% confidence interval for a population mean, $\mu$, is given as (18.985, 21.015). + The population distribution is approximately normal and the population standard deviation is unknown. + This confidence interval is based on a simple random sample of 36 observations. + Calculate the sample mean, the margin of error, and the sample standard deviation. + Assume that all conditions necessary for inference are satisfied. + Use the $t$-distribution in any calculations. -1. **Sleep habits of New Yorkers.** -New York is known as "the city that never sleeps". -A random sample of 25 New Yorkers were asked how much sleep they get per night. -Statistical summaries of these data are shown below. -The point estimate suggests New Yorkers sleep less than 8 hours a night on average. -Evaluate the claim that New York is the city that never sleeps keeping in mind that, despite this claim, the true average number of hours New Yorkers sleep could be less than 8 hours or more than 8 hours. +16. **Working backwards, II.** A 90% confidence interval for a population mean is (65, 77). + The population distribution is approximately normal and the population standard deviation is unknown. + This confidence interval is based on a simple random sample of 25 observations. + Calculate the sample mean, the margin of error, and the sample standard deviation. + Assume that all conditions necessary for inference are satisfied. + Use the $t$-distribution in any calculations. + +17. **Sleep habits of New Yorkers.** New York is known as "the city that never sleeps". + A random sample of 25 New Yorkers were asked how much sleep they get per night. + Statistical summaries of these data are shown below. + The point estimate suggests New Yorkers sleep less than 8 hours a night on average. + Evaluate the claim that New York is the city that never sleeps keeping in mind that, despite this claim, the true average number of hours New Yorkers sleep could be less than 8 hours or more than 8 hours. ```{r} library(tidyverse) library(kableExtra) - + tribble( ~n, ~Mean, ~SD, ~Min, ~Max, 25, 7.73, 0.77, 6.17, 9.78 @@ -324,54 +337,67 @@ Evaluate the claim that New York is the city that never sleeps keeping in mind t b. Check conditions, then calculate the test statistic, $T$, and the associated degrees of freedom. - c. Find and interpret the p-value in this context. Drawing a picture may be helpful. + c. Find and interpret the p-value in this context. + Drawing a picture may be helpful. d. What is the conclusion of the hypothesis test? e. If you were to construct a 90% confidence interval that corresponded to this hypothesis test, would you expect 8 hours to be in the interval? -1. **Find the mean.** -You are given the hypotheses shown below. -We know that the sample standard deviation is 8 and the sample size is 20. -For what sample mean would the p-value be equal to 0.05? -Assume that all conditions necessary for inference are satisfied. +18. **Find the mean.** You are given the hypotheses shown below. + We know that the sample standard deviation is 8 and the sample size is 20. + For what sample mean would the p-value be equal to 0.05? + Assume that all conditions necessary for inference are satisfied. $$H_0: \mu = 60 \quad \quad H_A: \mu \neq 60$$ -1. **$t^\star$ for the correct confidence level.** -As you've seen, the tails of a $t-$distribution are longer than the standard normal which results in $t^{\star}_{df}$ being larger than $z^{\star}$ for any given confidence level. When finding a CI for a population mean, explain how mistakenly using $z^{\star}$ (instead of the correct $t^{*}_{df}$) would affect the confidence level. +19. $t^\star$ for the correct confidence level. + As you've seen, the tails of a $t-$distribution are longer than the standard normal which results in $t^{\star}_{df}$ being larger than $z^{\star}$ for any given confidence level. + When finding a CI for a population mean, explain how mistakenly using $z^{\star}$ (instead of the correct $t^{*}_{df}$) would affect the confidence level. + +20. **Possible bootstrap samples.** Consider a simple random sample of the following observations: 47, 4, 92, 47, 12, 8. + Which of the following could be a possible bootstrap samples from the observed data above? + If the set of values could not be a bootstrap sample, indicate why not. + + a. 47, 47, 47, 47, 47, 47 + + b. 92, 4, 13, 8, 47, 4 + + c. 92, 47, 12 + + d. 8, 47, 12, 12, 8, 4, 92 + + e. 12, 4, 8, 8, 92, 12 + +21. **Play the piano.** Georgianna claims that in a small city renowned for its music school, the average child takes less than 5 years of piano lessons. + We have a random sample of 20 children from the city, with a mean of 4.6 years of piano lessons and a standard deviation of 2.2 years. + + a. Evaluate Georgianna's claim (or that the opposite might be true) using a hypothesis test. + + b. Construct a 95% confidence interval for the number of years students in this city take piano lessons, and interpret it in context of the data. + + c. Do your results from the hypothesis test and the confidence interval agree? + Explain your reasoning. -1. **Possible bootstrap samples.** -Consider a simple random sample of the following observations: 47, 4, 92, 47, 12, 8. -Which of the following could be a possible bootstrap samples from the observed data above? -If the set of values could not be a bootstrap sample, indicate why not. +22. **Auto exhaust and lead exposure.** Researchers interested in lead exposure due to car exhaust sampled the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes while working traffic enforcement in a primarily urban environment. + The blood samples of these officers had an average lead concentration of 124.32 $\mu$g/l and a SD of 37.74 $\mu$g/l; a previous study of individuals from a nearby suburb, with no history of exposure, found an average blood level concentration of 35 $\mu$g/l. + [@Mortada:2000] - a. 47, 47, 47, 47, 47, 47 - - b. 92, 4, 13, 8, 47, 4 - - c. 92, 47, 12 - - d. 8, 47, 12, 12, 8, 4, 92 - - e. 12, 4, 8, 8, 92, 12 + a. Write down the hypotheses that would be appropriate for testing if the police officers appear to have been exposed to a different concentration of lead. -1. **Play the piano.** -Georgianna claims that in a small city renowned for its music school, the average child takes less than 5 years of piano lessons. -We have a random sample of 20 children from the city, with a mean of 4.6 years of piano lessons and a standard deviation of 2.2 years. + b. Explicitly state and check all conditions necessary for inference on these data. - a. Evaluate Georgianna's claim (or that the opposite might be true) using a hypothesis test. + c. Test the hypothesis that the downtown police officers have a higher lead exposure than the group in the previous study. + Interpret your results in context. - b. Construct a 95% confidence interval for the number of years students in this city take piano lessons, and interpret it in context of the data. +[^_19-ex-inference-one-mean-1]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package. - c. Do your results from the hypothesis test and the confidence interval agree? Explain your reasoning. +[^_19-ex-inference-one-mean-2]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package. -1. **Auto exhaust and lead exposure.** -Researchers interested in lead exposure due to car exhaust sampled the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes while working traffic enforcement in a primarily urban environment. -The blood samples of these officers had an average lead concentration of 124.32 $\mu$g/l and a SD of 37.74 $\mu$g/l; a previous study of individuals from a nearby suburb, with no history of exposure, found an average blood level concentration of 35 $\mu$g/l. [@Mortada:2000] +[^_19-ex-inference-one-mean-3]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package. - a. Write down the hypotheses that would be appropriate for testing if the police officers appear to have been exposed to a different concentration of lead. +[^_19-ex-inference-one-mean-4]: The [`bdims`](http://openintrostat.github.io/openintro/reference/bdims.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package. - b. Explicitly state and check all conditions necessary for inference on these data. +[^_19-ex-inference-one-mean-5]: The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package. - c. Test the hypothesis that the downtown police officers have a higher lead exposure than the group in the previous study. Interpret your results in context. +[^_19-ex-inference-one-mean-6]: The [`births14`](http://openintrostat.github.io/openintro/reference/births14.html) data used in this exercise can be found in the [**openintro**](http://openintrostat.github.io/openintro) R package.

po zNftu^hdSekYTsvDe80czdUSttGQE0d)kzrJT=+xP|Ne6ox~+2Q#OJOqnzH`skcAw+ z5aUPWPKE<5fdDM~W-^L9gLL$K4E+IeRQ$7T2HY##nu_^8&A+iGZ>G?EGL>joeb$>t6vz3{PwbEa6z>gI$opMSdLwzI-- ze$VZ`Vb1>awe$ZKW?nl+1FOraVuRLu2yk4|8}ka)`T9~)rs*wK4cndeTA{w)E7C)9 zh|AEjATE#-UZB$CXXc`b|1{7!Zf2w@8<x7Vd@YP$z0D>gM)0HVq5NKi8h!cLx;OaZ>f=gC{p`eIPM@P-(Vago z@9)mbRTe6WI*QGUho4V8FGq)hBa~4$VkmexXF9p7`Fj+5v2ks8^Sh`sJ?2-z3@wsP zAs@0;7)izTwVM~&<-I*ZADW>!CgD;jQB<0X`6chzwf(14?DF*~@_#|VN7R**2D&}l79gtudoH=kMW7p~q*Tr}S~ zD|F@Q2QE5NaUK0ukF{S=Ua6c=LBtB&?L(o0`c0;TpZ}qG`IwrYG&<8x2@0nfanAOE z?9a2l{3yFl8Z0E0@K1a58Br__C>8PJu{MZc5xpXgn+QtFKcCbY@3mi=wRYZfXX<@! z+ZONb5tSAF)@1;lJ5TpA0L|B9TuDZpWWXa(dI`MF}&z@Yh=F(^2_5A1r2D!X6mrc)M$O z&1$H(ZvXalv%Olfnza-b0=3c7MR))0>Alj4<^{6}Hf(A(_Xm05xvSk>Uc3nA>WD#c zeztkoimZ{lU#9sNdwgDc3*fY1Ff~iW;i|@744A!=!^@_Zn7Udi;APWFuAYjzX)!=F zaIPkL11+{`;+HRfOwH9{~kT z5Sl_KcH6sEL+;5(951MD84atb9KR`?6vou6xcfOG8NxNVJ%OB{vHr&5CIeYegXp>Y zzDe=(gy+`li>-D9VA-h)I2X7>B)!$aiLqVd+08X}mA~~rU=t>IvE6^auyEu78uUFc zC~naDiS=XP3-;GRdFd*!0Cs!XyrSoXTOYqDAiMHX4RMKc90(#2lt4uMD zVkrAIGfRI4v>EsYu?zZkXKnX`u7edGw1PDl16iwTz-k9 zkYf}t22jPZ4x-wBE6Lf~9Zk~64!l-A9ga)L9#fn~$(#|SBVSGGsxA<_^X-cFY{PL_ z2wpbNZ^!Dy{e$T?4?AXD)CaiINw9`x+Kpv+pYJSEwO6rsqB+O8ZzV7pbysK7;Zxf* zSNq^qLu^?z4N)%nC5jM@WoPq}Iy0@u3Sc9^u) zDRps`-(S|OKq}fh7a;F*pUvdbkiCQ(E+ezI-$#iChk?2d(yWadKn=wNGqVT06>BeE zh@!@>2P?1iF{Pzu1uOTVOe>H+<-z}OT8<m0NPw1H2i;yp_ztuLIP#1ab1X6HH681Ds67bvisA}e)@kf=;xgYfb~EfDYac) zAD|GRR~~&3sjAY`06U`WnEe>7#o1Uc2c3`?)(AWvbw^y|RFtA$UtKvJe&*Mm!rOH} z+jh>q%ghS)pEUwdVI~~iZz##L@@!8RG*0sUH*ozDOY?m6*~Vl`+@yufq;V|j#5JDb z&KET7Z~j9Z2-@n@H#2(5oAY_c#v zs+2$7yCO^NmRWrEkrH-A<06|ZmmYGBzUVa1Fmt#s8wi|P$#vpjNPI|V3H?#k&#;8T z#~CvZCZ}HI^yg^G!O49uXpx9TPm8tZ&kCFB{#~ve)w+7m_Hw&P?RiJv6j1FI~=nf!q9DN=$qrG#WmDzkdDtXGO50 z;A{2a61_his6Yetc;@F&L4GyM?;m62Xo0^* z7DTJ;BFW2}`tq?4v(jxKrz&p6k$h{zG4!-GH;$ai3nZpbU*OG=Jf?_K8=_PzX~VD?HIA21-m2!?}yni}~pL`b&7 z(7*UL$j4(ommM@Eon-f9A5Gai*rTc^sKRd-&!3`CTX;jym%i`@Y}nXNbjA)fc(JjZ z3XVqD&T*SZKX{S`5Q*$lSimNoDMTwOhn!dfS5-}$_hLsC85lP?OM{{fCYi>0@%C+C z2|n^Vq|(wKs0dTA?R1n1N=L91wfWgO1q}EU8RC%+%E{?pMC>4Da9x0Tw}D zz53EbwFeLHbC;*)w~ie+r4Bqbz0Webk?7_m{9N+_DaueQ7?7Ji6~I_C4bw^H&>nyJ z$E3!|-C(Shk6t5ry@JE(TfN@98`K5f#i8Xaw~4I#nd_K}DPb?v7gJgt#oAlwSE}L@ z3*{bklM}^6pcL+cDi;GS0~h@vq5+7SVR}77KBsUzHS9+^Isb@~-$$?WB}EK0-w{@B z^s^~eRn^Ym`9mgUgXdCA%9j#r{LGx6`$(EOH#}=3esJQ*x{zPAXeF#f5Nz7KLd^cg zN>_E`6Odi4!>7q{t$5en34P1B+e1?p|G`z!Z!(NBl+~5j3yt)f+V1wd9L|u9jA@|r zWRi42#_YNVJ4V4a7)&fGPN;)bjo2q&)+lMC{F9a26O78SC+hY(?9hzMOrAwPFsacwK#5U1v^W;K$ssy0 z$Llbw%TMDh%>(w-_e4+vgSnqRm12ob+_)POVx*B+t#cXK?aTW^OY}XHxTYBQ(Qw^G zeBq9Zr7|C1+9WJ3F^qZT@0X9)h?7a=wr9{-WIHx+S$Zh1=xPsLh3m0Yc<|_ps|!Yrfkhw|#&P%vtdLk0OUOaYfIa+%4Gmy+|q0)r?ZxUh=CsyhwZ0 ze;0UZ`||TS*8j0nIgTL&of5I7KADRdrmoS}MC{5=V_nP3eJoXy9ca#PeY>fcj3Bv; z4O2G1+n6IFP={W4sq?;z*-Z*l(A+c~O7rptq&%;GzC6h=c_38-+bUJ#;{3!gF5I?` zycJaUR7RzzDas|1*PC$5Anu_rfOZh`PBaSpZrJjD`sB+w!&{k*H&ZU^ zF@La$%d`yXUZH}##{Po<^4_f%C}{Mp$A;b~VJ^aZCDj(QDU{VPm*f zM`lYVC7dl^LL=8pu+_0=XFb1Si|OAg-INe?lxn=XphN=5 z5IUV_n{TR_zpHYu&;mhq%uR@n#udSlXHTPv56Idaw^-V9bF}HFy}cjRpl}vklXlW% z76>sJq=x`JO@jni@=%UdZO>@7E&{C*sLF|RGe_kIQ%XWgGd*A8#wEp$x-!Fq9mo}s z6S~`hO>5O+cWq^x@#9@$@L2e_vdoF{c3;)bvYGUIz^fKn_gSKp4-2^HK7t&`cC<`N z`uXu7oLA~0Y0qct|5U49b>H{=IH3CF112H=R7oP?aO+n~YHwZuFG9 zg)q%N-wTK|x2^6JE{0nltwb%)v6*@-ZPN2@Kq=R-%lNJ zHCCcVts;;DPY!?2sWXt|XCdA&uFJ^3JZW#(hRLpuxgUl&kC znF+e5GzhTVhf24;=^w{@62Y8sZ7wh{^v_Ih@;{8tVnob9dy}W6@@UmQU7nqe(ZT8K zfxIaW4k`A=_8WnseM9QXIH@0d>V5h3h_{~SYHeG+-duwJ3-tzwNE>=hc0#9U$Po(Q z2k(vS|5$ytQ{in%OLDI92sCZvx>T)kp8KD?YCi6Ns+ogMA*wy)p?>^iUvQGu)E3R{ zcL0~F2ryX!ixy4S|BSyHf1FJRr~0oyFKc8$=gnLl&4+n;DgZpwQR-TJ8DqXDR$)a(Vdma+!8f2DeL7jKk*f(X#qCDH-2!SK63f^5;jBQHvm3df|090 z?c1AnQvNWo^4G1?cjjp&1SY1p#h_zU{cPRHt{=XCw6X87p$zSRJ{FD}e9g7y z_xnVO;y+YkVl)T9APVP}eI!b(CG6gK6KboxXvXg8?YrNb0FK}=_xA%`i^V#132h&NZ4nIsnrT1vwFx?6`xY5{UkNXx$t&&{=<%>4T}UNKE69_ z^z@7me>wUkeyipaW_Z`b$+KNeVm#&Xd`kDqaj*U0++L!Ih1xpZi>Y!C>_yYZpBFj@ zxkg&PxuWN-B4_;T-g!tQc`61P@d#j5`JXxH?TE^muqL7%4bsgUjPTvYLt8k$S8ilL zgS0iqS=!H2;d=Z(C#Ugx^JVzi=ZA#=@tKx8s;7RGqoa(uuFf4-aN>FJUdP4#+xGDI za1;67tF-f{XO2<}l$Sv!*d7)83+ar{F&~IdO1~0N$2)!1vRI?UB0sPYkEZ1RzH4); z;YDF)=J6j<7CcHSgb$5qz(s@XDK-15JnEGn@&z8fPX5k~)*0LF8fP=sNdJEFKcq}k zb+IEY5gpSbvt(v^571;1e*9%U(oyu;-=J)#^S8h9ZRWGT#x+kk} z&!joW`({$49|#B99%v)Kmi}pXq1L*#H_8+iazw=sK(zYBw}s#GuJkbSt}R91^pcce zt?f=*n9lli)W@NGUqyDoAAsbQZCb|C9v}ZJG7+kjusCVqr{u%j)$xXo?~g^=trPsf z9l70JxTc!*Fv@kX=Q=)i(IBqr=v7P$-Dnknl+oiRSXD((N<)O)PiPg3^jdfhy8}`@ zC}Ej%u}?kzwb^r6j52=&8w;9ue|I(WjsI2l{8Lrtp5!?tug%&^ER)tEfL-rq>C0Ze zZp)|ef6DQi?U0tb$bGg^`SHc`g(o`zPSW2DKPhtM9oN#wE$+m>R&{py&!a@H+Y3be zds`IZ!MYHd*!5BFiXDGC<078LM3XZ=wC%g};Q!a&oBu=g{{Q3CB1O@nRJImnB2n4KF zFN?HWk`;Ry?H3fJrW@3+Rwp2Os|1zWw%ECTxwAYCl)YX9CaMI zD19b1+VRw?qW!*d+uL;g&z>L)?Q=X-P0xUODBbqm_1-t_Lf5W0D$TXTY2R>AX`MtG zolvbfsqx`q32m1OAhc1*x^~FJ=ykeNzc*JQKU9&~Y%&|zfxgWhL-Lt-tAU+Es>xQ_ z{DQbHqrbw{xmo7YIk!QK+;62KjX3~#m80!Gh272s5(2QTz%!{bD_eiI=>{@K-=msb z_DobFZ5kYZ_FVG&eTP4tbU2vqEo|&ck8XZGA^J()k|#cJHBadG8@ejyDF)vy8t8jhW={NAP{9_=E|#l#3x<87_3P$Nh% zf86QvsBR#hZ@O{J{R@OSv;q2~rI4*YpL;{mhjiszlw;D6Was@y&Mmb0iMvd<#&5Ci zDH8JA-5$QJRik7(-GI^XbLC0MRB-Clkm~*hTd7xz;5Gol(vFq655^pM{~g{RsiG~c z{$y)Wz+HSS*`u{lFxio$ISpzt0kX=VOQvs>RDY*s2zRvs1AN0?;+_3sCn#gpDMv{BX z0KYOozd`SedjWSKom78(=&Qr-YBp7nxzj8>^IuPKMbNTw%fjE=3c4P))DsaOvOl3i zs=z4zX1NOy3+QFT&R8xzxa=p75-zo|oOXFq2e>p2=Re$2&6Al&4?{Ob+!xQ=g~MjR z4oZ4Ip?32NG5~h5>1tYuiv7jRD*mpi8u`+*@rt9_Z$_mux85G3|LoxH6#W98cb3-& zK$qkGsq2~{PAQ;*f9Vip$5EiG2NAzIgz7%O~P3ykmOo}Sc^Lp!+1y2yJ2?5+SJA=|CXm;DK6 zQqA1MPnF4+hs=Gs27hr;?pwEFe%^e4w0;i>J(_N4(8H%-LK@rCg6`B_4}Xt*HO|Zc zPhF>bBM9|$s{Z9FtMtY5 zf8iR!(Cy+fJuBnxm=GG?za!H-u%+XidTV>+D1;#v1H6lg@p;7DVnDCula^}<^u`_wBsjIAcgi z04*iEesJGl7jR^6i88gxicd5^Kd55A&F5E;J`PBhSSxx6L)2;Dt4GWV^R}rmb0wd{ zp1RzQT!=Jh20lbji-t;F?x9m60y)k!H5JQ^A7?;8!9S!;!qU~pet=*c5&%#x@3-l_ z4#f<(#!z)x$4+nIS(1;22a&?LD`=)OlH{jh1=pKZqg7 z*e5{Hfh~xhijE z(<8;vIVP|Y?6v+?v-4HUVw`4bx7=D6rDwL``|Si4v5#NwgdD!wI)|I&cmv|g&XWqb z7oW&%5XDKk+X=p@!xH=A7>GwfZ@1>#WSvz@HAU&SXs^kkH4o;;?}a*|E#moFV$Q;= zA8ZWG{gdk^x&2FvGBG&ORL}%c1`@6Wq>h^2O5|(&kg?Ne9)I?fiyO$W7Qx#iFkZfz zElBY*9h>s5J})g&Oxk$Q01z1_?+Wy!-m$LWhE!t18yL%bK!w+*XdQM+B?SzngXvzXgFXBTLZtS$$nC_ZoC8rA+Wra4j1uJjH9sOp(6mU;O0BZJRwH z&x-bN_L5BW_`Iw>aWBO(+b=J>v<$;D=*t9gs7n>q$dkF;hPbH=0AyMrqIdE4ljrG? zD)dd)Z&A9*F?&B{oW<#wu9tq74>VGu1ho|x)~LqW`kQlc;&CPfns_TQY&T^hAdqca zFVE?OMiQRg@OXZX?~b-MM#vr^DBTY$+W$8T4Dgw{H|=cT+U3@NivK6t$D0EB_v&V* z=t&cP+geF6^4gfbyK+;$FWICj`5YtwH^mFe%-3I(G~JUxopVfjpY`N9-j^HY9==?v za%y;VLa+V=vbddaT#kYs=)fiAaO3%jmS(BZ{Gf#tE?kAdjjP`F=Mr_~4Fy^a% z{(N~P^8^HHIUc?nSt^hcA{?anCYy`1E21BOn$7@=fSuXg;Ey z+$C4`05jJ7-1KgR*7Pmxu<2j99$sCGzTms7u|Q6?thjf6@AZCr31LO01tC5BvWn+7 zASeHL1134f1%$E|%5*ZLRdVM{eTw8R4}8c_xe3xz0G^C0&klSjH@4Wk;rj?hI2sJX zS>S2AWA|$X$2X7LS3vo??n~o$U{@s#VeP_Twx#q(VMK*+!4~D&9Od~FLXtrQ=G|)R z*a%N&F%d?4cn4@-$Kq(-LULH`l46dZiP2JOAa-uP*==;tkYKw`ins>e+$sAE#CkJB zRGM*UwC+NQX3g2I4Mk^SZ@EhIy5a-}4-GE83PQ_<_INljyai_3xM8Ak9LN+dI&g@e zWW(tJ5UWRZ#iqsP_hFM~PXiA_Rx-3OLa{el1wX#a>v&>Q()XK=Tn$v{NV*=KyX9Ze zAmM34dK6iUVHwXf;@Y3yf#r6?q_8>q(J`uxHV$oe1Q6;@fRqyX$5zA6#HCD4Ji5IT z+W))U@WX=X=2()T`iZ3Ha~i#ar|=kLvOmW1@X_T^7hGuPdaud_5hOfXDS}M(^~iBkDucq{D$w zMpeTCxmJUnPBjH~BgDv2+xWCduNxJfpV;)Xw9k6oup8XO;9Y9p2Vq;k_=x9h`#~O9hUWPzVgQ-@jhODNjPC4yyZR;|YVZX)Q%S%jCliO7lL7DJN)hVKy4u>J->m7{!U93yg%~eOIEhgvG>+401Z1nKKf|ckR|rw zlFek_^%1gEt0Vw?Bm4LCj`8ygJ--Z|J<5_3z0r=>=d2N~DE^`|oV)xIKJJ&6y&2az z#Os#wZzSI|$ZYfZR<-nYsS>P?(YwwVe&0S{5qJ`Y=+nsZpHKm;UHzXsCxXJL4+IN}7#0nip%j>ELjE~9VKCkGz_54=aqD5;nv-n*%EGQqi|j9_y%2$Zz+(r)b08_W=amg5FA`YkVr3WV`X zuMaC3%uMF?tGZ*@b4dx2Y5#{50HLkUxD%K(#3<1!%jbQAWyB3G>pY*Vni&`MZnM^! z z$4|2*Tkxo&gSIWp)@*&9)Ru`DkiT%U(UQqSMffP#yk7H#@aNqC9b9Kjn|OdgP{`tp zqDmhqi+^4Gt2Wx%kh$^6|4JM{7QUn)kS?<1|KO6s9uA?P)O!8?`IgJOJo85YgL=QV zMgkErCAoaWP}5h{y-UhFqDm=(FY+2ctjAd4n9X2>36GlTiFb?4CvtpFoSh1ds^dEO z>xc89r%c>hK6MHo^&JlDDL`%nOgvPu;f}oaHg+=^i+!+@HJ{}(hsBOB zMe6fgj80?r{Pfqgv^57vn8kXm-#)cEnj0MybQCg{d;`>qAutxXFBlpomr}23(Er^^cBb3RWDCX?5GMzxw(|abGthj(JoMjn^>^0 z;Rde$mwELaZ&fs9o8#Y=fRQoX%?Z{G1)PtS_ky0v6~{ng!#>tDIXr4rcr1@*3PqoB-lY>53kg=zvVAoA{d*c z8L6(+7tWsSIrVF?F*r>EF@)B?0L&w?4ve||c{y0(%LU)rUWzm8KuT4ypIffGi}}2e z%tpP0lmJb%0MSiB^ltmIjPuf!JRiKxPDG=Sy^Jt*z=UpM7tUB!gk;s!}R_ zS8^!QGRsh^M3{PnnPV>^IDEu{>tT!&?L}uyytG z=~$)MG8IAl>hi+vhSr&ijZyOYnuTB<<6k`E{#Gk@Z4~H|RKZ2Lp0$}V)y}-V-`M{2 zE(0uk+K%2FF*uD({s#;h<56HwgBI4*9;H}OcxClQ?{o*Nwg`TzWiF-SM=AWs!Hm;! z^UUGh6;zA#?py&9YG{b_njeX_Pp(=clB^qTc4q_yXkyu(rZGE|FU>Y#ONiQ9WwgH| ztYO-+^%kf-(%=P@Z3&GwBNK#Yi{|xidQilyr6JAcnoLi{|!oDA*Z$MMmM>tKTC-*{Bu*Ia2OcRBY&i zMV<}Z-RW1^bN`*}F8_tyXp48mVcclj!QW}gUwb3-#e`$gOj;JoXW3S5V z<_OaWRxJ_uV4w7rut{0mOix^?SwYjpv53afZmyw)p0vMoeIRG$_LNvr`uf;Qz{C5 zXIis+Qx(_+UE_n(^@1yNWpPP}RJ)?Sj1PdMI&y|~5%;)jAtDsibZ&hs#>mt9NA&~G zMM3*h#|T^6e)B;s=4ppdntbcC>E{Lg_0B>oatn>!3<|}S@w;&8FDC2H31^KWB}#Wxacr6%1KeMR&k9K(z1YRl;FjrF&-d=`V`Jigz@rkmlMoss!r5+QlC}wRDgb zEsZBI`_BfWmviixwM&Cz%jjdv-hn-zUQpX`qf25fhA~!@-uN)ek%c2=K@w<6vuua% z^pwx+)ZSF71Zm{pWc`T_>)z9)kQ( zGGc*@g#l~S^)IiKs_bRU0~hsfaT)HXImxOLTK>#>aMsF!yme| zQ8{!RcrEsF;Vu~xJ^rLRpJ{LpFeKU)Ks&8t|CuhkgCSc?Wyg?95yloHjsQ<* z0#%`;-zKP=+6<5pBDnDY@5hELHLy~t*3#gY_MdG}^%0HTY~1ESpgW=wjR# zb*f_mcL>^NJrJoattj782{+9z6{sP{VFJood$@58osjyxQx<;{!Fj? zCtT%$&8mQLFW)is9OXjnSYcFKs4xthSq%;W!zdMvT8>mvT)e+*JhhVHzMb;wVADSdKUPmhqTnZ4JSvN!fT+i!Rp@BxxQtX_#By|qtz zxqvu^EthGf5IjC1=n3Vbt;Y!EDdyB3kJ<}WSWett)nj}%HuH$T5;P3C?PiiWJde0X z^V6XHlc^aATo$m^&86ERuS!I#iyxGi_rOQl^+#y793#4uJ>0kuA0a?@@?##eU9a)_ zmGwTGEKX=-#Iz@SQ}h#6b;#H$n#$Sdyhln3{!`Plf=`xq_N!t2+P!&)@rBtdw|!|@ zeT9i8H|KAC`t!o95(r?*FUm^(SP8gX?&rql^B#z@V*b;yy4y~mIAMT)GkSV^I(K{x zGuCVFZw5TeeUHUC{U0!#ivlI+g>t0sjqZfa6#x0ET2gR&wnA^ljgHr;u-re{(dM~o z`P>NbL3zGk5f%S@b0Av*rIx7;>hy7vIBW)Y$!oP*uMA#)28bCqP;>V(zxdS2YizSG zlP$JQQNNl!<7ctuzt$u0muhEAa?9M%rpITZBsDM?%-wQ% zO13NC&kC$Gu{(9d?V{~{bUG^1S`BX96_}axr8+JKZ%q;c}zQz1fNh`Nf{2$(ET_8F& zHGD7A=#dV@2!G<^VTb&L_0IOt-{DZf5GmDA$?)cZ()^@5*aw~VYhnT+*KwG}V2g&2 z`?E6SU{+DeAqGUDV*u~D+!t+`!Hajqor`V|fU+-Y`1)nt#oK{<$g}%1JKPbc#UH_N z5Um4z&*wB+{-EjMypGhEC-E!{qBoZUz0g-S?B+A9w_x8`jj2S9`7tVH}Q(aXNOvsvkn~F&Ps8UH>{qQ=F$GLTjo4d zU}v&t9#`Zm+8HWXTdb?k(QB$Np_)HxS|EhBo?Wb{hYBL0ylbxt4fK6KhGsxRGN52; zu8GVM=SMDhh;4;amb+}io8>g7|PJ&ToTC=>X>&yiQsZNg{|{f^I9!O*m5@;KK`XME?r%y zG5+!x!Ob8-Uw|&*NPBT#K>&_sPs42YmpCs3-c;Hfm*=#mKe6RU9ihzD`rZvgiG@sv zsZ2mWOmc^zGTu*$g(11aCdGzuQBPpi?y4-RDqj+-os+U>fA&mun`TvRtp+o92wNYr zd!3u&=k3WC|J+`_$2760zd$bPo1v8CCDUS|6hBux-`VxK`EN<%T zn{A;awjkU%@eG`8%KE+iV2Hh&54jNM<;wd@`8=$6$XgS#+g#;=vJ)BL^2_aG>*v-9 z{@P*ehWogG$PAvPz`mGPp3Q&zc6HMLW6kVgl%AfRl9H0U7t3O;`~EuId#lUm-t*l3 zEp7jtU$WeBD%4*scoM6h$ir{owG_*&(j~40n}Emi`0YThT`ZjG1vCUH=r=PfC`mO9 zc-$wix{Iyd$v?spf}FG7U(#0DU+$uZYS;?|YIx$kyb$n1#v?{cw^Y>+7hwHtaxWSNU!yIE^@qiad4%txUtay`L&t%98X z`^@yvKWyf~OdR502LIBCRxX@tVWxJ=v*9Yt-AnIo-<2AkYZn$5TJ;nCvOB-O-P_9} zQ(QaX!_T$bmLk0xNIL_bDYo2WmuIhcl50ofi>|%Q#)~25Gb+9-^fGH`RjNKsTwjWX zbb;SeD&%dL=fz!KiWrF<~bki&F+oXo}l%F424`v+1;lI9%8uB zKhNV&Vm!nk2U}lc-D?!x>yu$tUohF9E6T+-LEd)m_Qays68t3|UR`plG0g9OjU&LS zlf6O0QI`v~_RBlo|4~Sx!M7ON)qCeHZ^>z#El;7b%!^d9yb^KLsQFi?1OHXWp}`_* z+j+Ld(KbunURAVG2+{c*C7}ln#rwcv4KBAVeIbePv`Wvui@RS>`Q=A1y&duO0d*_k zMwZs19=4QX)kwwihe{Fj@vpKhSK`OD7AN|AjoG%EMpyvL!m-Un+U7&s*pyUMqQm{ zHxnxGFsk3{`g1T$z4g|46i|o2;8p0UHr-0WHN|B~r@XBEC5ZOvRctjxmmf)+rEbZa zWwL1h15^h2tPV46d?doYo_`xp_*SiWUn98ZYhaI_-3(>sZG!AcvAdVwF5J27P%3JQ zN4-$=RIk&EtAp0zxCdK`8ggHprZe!oI#?ST`HADHEWbjE27qf)x#Mi|PST zrnQk8^zK4!c@+mw^lKC>Q#5@fz0ALnSfS>M38Iz&>ldHfA{Q$!T*zVk&Zd+>ZBo+=;6?0iw!a1oF<#v-LS} ziG?-@sGVNo@*Y2o8g84#bXI?|uu4w#jG3Oi-PP-pIP+2jgv4G+Ws;*v=Tpy0=OHmR zn%Jol;VGq}eAK|}*}t3yhcf7z zCq0Tw32y;EoGqPPs>#JZiA3z+17XkcnI@rnyZLZ`vgkkk2MGvdY*dY9(nVNB9%zaw zmdAf5Wp{OXPgg(lX7p>dOzvoK^t^OZ@xB7@YUkd(seht|8P=81fc>fZ(| z1909D6;27K^0O0N-X&5s8x88(O86~>+==<6-_4!l9$jB~!lTYjWXp$4XwI_AooVS& z%kE_&#p&HpD%GEONhA19~55>>w#w}Hoj7#lw_)Bk~#BpX!~8v06g z@>@0=4--Fo-n*@)ELV#%Lm#g)m)&{e#hZsGa6cAH^hTt}lzMsZwUgfHo2wBO1eH(t zKu0wK+=DRG#}eN=|2fD1%;7(C`2W2*Q2qZLE^bCp#W6I!RghD8lK0r?pZ^EP?7Kez diff --git a/_freeze/19-inference-one-mean/figure-html/unnamed-chunk-34-1.png b/_freeze/19-inference-one-mean/figure-html/unnamed-chunk-34-1.png index 1a3cd2b7d0072fe9bbf4d5e0558248d7244d968c..8e21b0517c6550e8dd8891e6f3aeae84e9b2fc1d 100644 GIT binary patch literal 172191 zcmeFZWmuGH*anPips3)I3IeWl<5JQVEg?gv2uL$@mw_xGAl(d|0un>Rh;(BuBws1w;NaiG!NI+G z^Dpq5r3REF_;TZ&jKnJ(4ECSI>WonEn_E_r>b5vITH@IMt`LX4e2#34Kt1z++C~tu`f0|s>@rJcaN!IuE@<( zQ|fu^>Ai5v|_ z{(lo2!LM<>I{lhvH!)3CPvf#^e@>ruAToS*pzL-pYxI&%ckkX74u+~Nq220U$j?!b zR)`{hbQ2wa@!sg-W8HgIqu0Xf{l=x_;NajYE`AjzwXEzZOIxmOl519Ot_2h-I-XNr zUXD81Uu_lo>EkD!!o$O}DY||4_Czc|_ z%cXAUaB_0;+S=Od`6~k8&Mt9ktRsDWFTqxlTV04XS`LdL z7uTaHV(}}#f57=mPLKG{5C8Y4|Fg#b#m4_vIR3L{m$dfC|8VSl_2htjH2-kxmq;Dn>70RU3=ww0?%c}-YlnKNCKQwr z1r?Sr?NR9~Clm01ZG(tg~-fq0ZdS5UTIs5@-LvwOo zaGxC}U)0)b5LZ@}f=Y+^&X|Ep(?Qh%F?}h!S3#0OR7mBqvYZm@+AqRM3XFm*LLOGr zb4jR-K*pG-shlBcLg!W7AmJAyc3<}x_t`9<7Fjwa@RJG3)7Y_OZR$tl{;F#t3I(S> zHzT1N@u9-isYhkOSA#exhxs@%R_n0u!>N+Ez@3{PzYHGG#paM&ju*X?kY!ECi}j_? z&SI-@f(*>aDvzj7o6z{l-xqc|c=G9Fu7dM6_RV%YLv&aO^P&Rw&mXm)ns1Hw=Tn7? z=|>0Js`aS39hbPbm9D$KeLg?l^GQDTsrgPfdfMt~Upe;OUMb!eoA0KfG&gb0vKi7H zTpQLzhAp$+GWKs=$VUo$qBj1yUfq=-G*f)5Zg*EJ<2v?@y`A1z4u+HHGh&@My-YHu zgZxnmuRfhr+<0h8m+O97=0$1@9KudOoqoS+_@hxE?KcPNA-aUT*Q~_c6`G$}|e(M1g4E^WMi) zcx;nOaA2ITAv5w3K@S8ob${O_<>D@OX0eBqXY0KIZ6zv30+OmuMyF`Ul1*G=b- z@$uP(%a$Bs#**c0ispk@N=ksqJ3}69D=dY>D}fJP(Zz4b+V6*xwRGA&KDU(-zw zDuSIDi=Fx=eMoc1kli86tkEEn-PhJ-^S_VnkCe|EQF1ZHEeoCRtm~31+L2Y7Qh1&; zjygK7Z5GP2uEh&h{pkAUQH{HB$lTf0=3Bb>z5yhOMBy(GC~HHw-3~+3fM*o zZ^M0T4|upY&5TDNL&dYtUTWKFl70RzGJN)lOr@Rm!InIO-2KsfM>4nbjouTwprp?h z#PqjC^M+4`3uTu*Zn$G6%MD+i22u7y*AhRzX>h;2V>5{{wXm?z9Mcm_d&7u2kGr-Zyig&a^OrnSUdddf{|HfNMU#p`wX3GHeqUYsJ4_U%0C|%9s^>Iv?waIap8= zO4yk{b`Iumx|6`=(jBHJ#y_IYgv9XuO6tZU&h67U9+Ov^+$E+)9lvBgqe-J=Pk z1fxpYm;uo$=k0o%S03)0fla6Qj(EIXwjEc{(c!4WjlQmZ8QWE8?cz_J#a4L^?n zuS>YoW~0KZ{_(!)rT-wvZYC|k%*3IQQ0WEP`-Azaa(F`y;5S#lv{(Q=5R*R`gD2(N3 z=B)VLW<1Bf1p~d!@t`h7Vb7DyG|e2CPC@Rw!w+HKElh$Y`4I0K0%JJhxC`X-R;#gl z{i#>(brbuIUA(>PDtb39Tsf<aorD#9I!QD52fNCjI8^=5=S5fUB-&qW6;v8&QYt=EkiZhuT#1k9 z#wyfCy3rsmq2Kc`*i?tSp_tG_?m<1Z92#!TcExcg$4(lMVApGA^nQc=`e+@%jcBy) z_Q@AvrV(BfV@%uoAPUj4CZw!w`_GU030x^Q^6NA*gQ^=@>vJUsYHJ^^hnpP^qIV_e z7sLu7A)ptb0}%B$SJ;h|&0V+NY0pL>;~_@es})$1}37 zo^XS@gp+hROIM4D4YpH!kNLIbPbUY`Qs;U8=>BCIaBIMG7COmPsLV}P=Mq2~G&BXE zhxP)^WFK zcKBG%@%XPxG?$Flh6m_+uH?!N?8mFy%nbkIcviRefUY4+dLV^T(B>y4Sy!~6iZu+U2(Qr<=sH-LMq>!SRuk`C6z)hwwI5C!MoO_;$u}D zMOT!|K#O5{@Lc{9c=rid#G$b5ypr!}UHS{Js!|_=-J!d!W-o=b|EUKiSv@0=I^vho zhrjW?f)_5MKJ2$W!*(1JO#fWW0Yag{ZX<`yYUp>9& zTZh=)p7kL+kkZSZVp@h_;)AG>(Q+2HntQHYHM@fmE5zyNG|lDOMOY_7bTkpCd1R{M z`rC7jwuMD`B8I)n43YB&m0HKsJC8?(;slm&GlYv3hMcXN1~qtW{qnm`agfS;AG?k2 z4zYhJvESe<)h6f`&DLHImkJ_i-rNr_N)Mn?`}Rxn0~x+IaJY!eGo+x7S^*-7&i8JC z(;23^D!ZJ`MSNr{tm!KD{S^$Nh36qiyBr-pCeTM3|1@>Wm5eH%EhY{?h5O-bQ6s@d z0B2V)o_jJ_dYD>24s~T72v;Nr~8Gk#fvp z)vO$)DC_cFQFs0Iq8z((JfF&(3f?w`xW46yK@8+&ceZ`nhk4icWMuViKx`W-s5`E!sCp^*lK78EA zH%QMX_yd{`jn~a%ixB~!>A8Bg1J-B>5Z!WV$XRtr<0Zttv)lcW5J?!IPbLl#I>F;> z&BHi)<| z-qv$ol_5;i?j|5-Qtc5zPyjLJB zg3IP2-5s1QAZEXfkaS666SHzru3hZ;*-*K62lWLn^F%HDN{k)vwX{}j?`7GFGxR-} z&>q?Yxh}PVF2uU;nd2n^KFbBgD-iL0xN7q)VG)QvbR>kq%-?|;a6|x10y*5#olA`? zCxW_Ke+M*NKKjzT3kdm%Atdnj_!nUV8Y9~Gpl4Z{OrB71P&xY2m+?^0<{4qpra2Px z^P_aYc~xCnzH~Zfe!G;fy24VG@DrB=ei_)~Xz~OEWQ?qlTr6+$Q{RzDW=E0Z&WJFH zbHu3#xpbDOj%Mj;Pg-oq{WziTOX*zc0Bh!k-RBLA+~>cWfM{iSa=OaLS5=@V-%4{H zDB6t!n%D=PLgbFPPfZ@1h1`G0^4?0$Zc)SXa~PJL!5#!V`3_aoI4ZL!$779ScPsFbSZVL4Y~YlIKj*wR~9 z)&oz>jwJwhyVUcI_sU-6_)VUY5+wSp67+w*`1osMt7g>k>fJ01lv$FYzb4BuNC_j- z#YH*+wV`o`Q`=2$xL9BCd7enJTm;$EQ9!gSbv4QXHBbKJzH4JC$QM2N&jUV?tNHPQ zT%vp-OH(B=UtD!`Nc`lFjFY26E%Fs!61*}RZxPD61)8LnN%8hg(0&OU0P4k}W zy&(K_*r{9Otn1#oi+vZ4$z`i8krmT8D2OghW+Rue+xobiW)u-1DM9=1%s3Mr7Cd{h z1`mcYs5U=P*X&-M8(HyEhYA#5FBsP5$jdY_m$I`0BnXzkLr)ppoY>X=fG@{RAsI4& z8@uUYq71w!aqi+r@ZSd7+nU)AcQqx7Cl@V4!ZYOXed?C~dv(LmyKX3+*BMa0SGcO1 z*~bI16up1n!tPg+?b0zT?YfB55#=%P*5T42)y|j%3hOsdqAud9`l%>KPi=;(xptW~ zRN(P>L^92dvSU|xs9mxqdK5auLKwdi9_qe2(s$c+5m6lBj1={K)uEVa}>V)y@th**3rinUrtvz>8JPCkjmaO5kIT79$Y2z2iVh^{FX7Z~ZLw zjwUg_kN?R+&_kg_yQQh#q^nIq_jwKXnhW31xGc^)$nLQBu`rx26s1ob_>|(86jL56 zag!oe8^TLW<_R=uAH@!O|xSUc{vT$(;u%NH#}pr-^WO3wBWUWf z82>M6+Unj$t3Ybv;oS`R;|*9O!=9kB{f}b+X*F&O#gEQNu{(I?brB)YehL@aj1}e% z_{wSXx~_rVb-B4O+;oLPN4;jJA&o^xt>PV2)*?n^zM6NXV!e{eS|LX z|3<`OvH)^&*dgEN;}Eb+<0tBT7KN;WKS|00>QjPlH7c%!&P4jWkkVcT$4B#*$`e=` zB)|h22t+I|Go^DyBl_f%r;GkFQ9egBrZdKvb+7?eV}$u2p%aB^zP(E`GLq3A<<`?u zB+7eOmi#ec^kKD?_%gta(h}N1esn|fK9SF!==*0#?zHnrBn%I~kQJX*aF>)|7G-jh z3+fZ9v6Lf6KDwU>#xOZZ<^H~>P~LNO!#7gfvkr4Q!UD}-IVo8>g-fJxuxVOPc#1sT z-dW|q9J(fG7gh6|CLb^K{fGPu2tbhuj$CugRcC|_XyU$53OdX=q!t$L zyflKjZj|F2Ij)ZmTyG&D2@n@-hiJ!d)p6rYF)rets}=Xu2xrLmdqEPwp@EafvwYE-L|@{0_0*Cfha8#Tvp1y>ud&g2llcNPZ-Pkh z=xWOW(%3CoK=!wQq}4~vH1S@Z+;Q!wCt5BzDu?5#AVM|&b%td7qFmh5>@w&JntU4N^3$yho%3)ox#aK9cZbJf2UY0~tPUpmM|1_;P30WqtKZ(o_sOqFWSB7E1}m|+ zDoq{Ei5J$`HTG9YI=p~jL8-va)`jpKl_jz>bTH=uEl}(rzfROvN_%d>mnZvj5((_K z(=A1~WF+qe8iG&GoHNMCXdQAoE#Eom!8}Dw-X%kV5Y^78$$IJb^CUFA5M-WNfkKX1 z4IkKcdKZKdDKbCu)&G*pq!`%}@JhsU@1%rkap;jy+>x|u*7r~{)t`vYCx6RCvjyohY-hTE0#Fpktx!luC zPlW$shwMPfxMZrTrCcjTW_fV4J!Y$?e`C!B#509FEG9I57#2sy?7%vv5uXmq(zEP1 zkQLj3cPJu;Q*MC1CLQ;zSQvY^tt8V}4bL4Hv1AA=Ua%(B(?ej#pjDYH4wXZuBf4`K zbYD#fKyv} z%^j<;9avZw%sFI;*(xlOqvB0u?8&k;R62rDEXWo$U*6}kovcYUzpPVgPq@J0hsz4zn(Pr7hY!}7>f@uFrpT< zUh{=8bVduIfd~EZ(5kv6;L2TxdQ#L)Tjh_(={2Av=CL!#8cZ5$9~YTD{KIL#f=@-c zM!Dc0a({QLs$db)w31A^=x0Id6zKnE^a|x>ZpNkw> z+Fr;XLoGyPe-`&UnbUUPNwtdk%dlUWT6DGhm+_nD=%xiK$Ii9rjLs;n?hMClk({!` z&5@$_al&TejKtYy#xDEu16>^I=nSzo{D3TF(T0JO)#P z!UIVPnT|ReO``v<5@p0&^%hI<2d@=-SR&3Q7h!51Xy18JW6au_#q#bs)6wn zQQ6k-R!1_hqsrp_yQs$dsg&7KnArPMlA z>`B3rDueqOvMnv0(vVck$06~P8C?vt5Ak8#xofE=hSB&T;vflE7i5n|AyCi|(7;@b zdn!PE_TLqbqQddoGc`ANJDhMNW7jHkJKh<{QQaIaNJ&qpC&t@f9fHm^2dAZ_&Cky_ zQMsBsJ0DNge(H;v`}yH26oEPjp_7?(SN9u zG?(ka+H{>y29J1p{p@yYYiol)8RB5njD&>5Y$z``C#S8gje_51Zg06SNN}T!t4qjs zr9TU3{?T%HI3F%?M_3VLAJjt(qRE|*x193iAuZWUhu2K&G@jeFt`02-RiTQw$uI9 z$X~R%xw-Np$8+nY$Qtk>eBIpd*voCBd~s6n0k8S6>k~geKgIjA&BBM{wu>-Nbkd?` ziTMLw*656D{X;{TEg#XU*+9XA^|3=f4tPmPo=&yP{>lL2xC8nkNx{-`!=iM;VZwfh zgp7<~`#H`}+}lS1=Yyz6nL2r|kM#CJzZ_sHvuOIla79E??9Qg@(Hia}CGNXJ>v9k( z9Gt-S(3<0gxt36Q{`s&vxR_wE`{{vMesxJ^=29gRWho;gv#9?nr3aVFDG~fCM23C& z2is_pcBO;1Cu+Z;p@DD04x+8Cy{J#iOchjWPwT5(ptja2xXH@Qe6pg7a52{0QvgOl z9yRjaxJzz_bU$pEy(LtOgY)#V1?b*gGc!I0^y*ds5FzvV?G>M{y$?*4QF-dNo)v0K z{7Qxm^yI6vPok_UJkx9KJbyE+&e8ro32D;OTCIe_0HqBkFp`boJ*05|DN zFDxwNaGSmz5D?H}QMTJD=yT`6&QeN{1HJeSWmVP4$VjAJpKOouJA$VF8s4euy6=;y zYW?ls&>MCaCs6L9HR-Oaf0=|!s>BP2GjQ(**)|a{ErBAlm7wSC&K@faG6W1jVKr}- z8=vFgq`opUTV2k8c?@Yg+ItKP=4vv$j{0FfQaIO0?RmESM8EO7E^Ju-gfhFl{1_PV zxZOx3bo{Oem+|gG2NC^iwHi0)UJ8$Ge_bu>29gafJRGLW8I5o|pg`FA*4^A5a>Xd@ zt~`Xw31Leg5G7E>m=uhiz(Pl3(?Or}P#BoPc`^QQ)GR;ERF9iHp2tju(2=?NaMG2d z=4eK#;imTs#MwNDQCEWd)>JL=#_ODF*F!m&NOgL8dZ;Uv$I�=W&}r3eGp?OB;mt z^OT~1QukT>WKKL!pu9b0X_L><6zu(y+XS|XD{VqJ*TW1+{4d^(#xls32Z!#Up z^-eWbUg%`i!omU#wewPvPhR;#On)P|e_JF63~UPmfwb~vXvxU5jhEZ5uC77~*EcFR zYrsw+g?Km$7g(Dxm*j1>8cVb~pl$u@2+T9N=Rdr>3ls}3+eQX%#j*Yqf3bLXH3l3U zi6YrpUiaNtq|kT{nU+;;sJuwI{p#SCFJFwg$^9FWdyMtpeQ?rnYiVC>dkjPFm4RF+{*9gc~ zfA$JSQh!RlsMqBuD>-}?qkC7NQT(l45ogd3<;%_o%NV_b=LJc@!IaD(;+(9+0QXia(D?re}K+Ls}Lk%{Rz z7Mvv*uXNlDIlsW>&Q=lV)!sB24#e3Gc!rmeZnG4~GW5x+zn`DT)0e}s7V^R~b*W0tBZ5Vnl!*OHWc{YGg_g>~2+6Rqy%L#$IXOlPm^1n`0=ooQRoB#IaJktf&b|_A7}OQah9kmtB`X8pk*f!o_80;?>HqI< z8WB6?A^(PVSYr?zuGoWA2mcxxc{Y1)b;S#UP7IE{50Si3@QN3XRq?JQC>fv;f8bGR zr@vpj@L60$aHwvnCF+B_t9HWFr{%*zKH-wJPYGH;#i4YW4_6fs@&xf0_=D{vL6R1P zT+khg!CDCUM$PF4K>~o>_34f8&SL=aJx^dzmnL%$J~3V6iLG1-p*(=m|&lUT=~Qz*|tXee+s7I^4HvaS4QV5gzU!ba3xb z<<&cnnq;6(5g6CxCqSeGad`CeDuLZmFGOA#?!3D|>yWO@N_yHGS<^o)6RGQQTw1fA z`?&-xDSWn7hh+iG$yabNm)c21CFshKXMRpX9&#o z3IQrNYq01#p!N%~P%0OvU$+=&OV_^_b*^k#CW6ox8E*zKtn0SjfUkS9pYKVD&u}bi z1UnsH6xj(50vikR*h`snNbg$BN7U#y1-|S8so=2_3ZpIH6cjvdVSugKvExj6UWyow zhZ*6TrE5U(Y0fYLlYmmyn4O=&6pG!akftD6V*`DARMD+Tc`|THWjtLr7GHQAZl-E8 z_BgniDI?Bi$yrvmV_MwfsE*pf2_2sAX4w4gpB5}212An8MQ=}wJRuLDujZ%RsM_ts z@1l0ws-3KMWhk`;L2%EW*!;+{}PM~4rU2@p!no?VR|!!I4D}Xo+00P>?8{U$5e9UQRqF zRKXZ)nIb%Qy?}<=*T7KQekU~*=5&)Ok_2DZb|-c1`!)1y-cm8o8Y_zvpg7*+q@$zr zp=x|ru<5oasJ*oe_}c#dzE46IfXe#+h|gG&0eq9g)5kgaHKWJ#S%tit1* zWU|woorx)0#NEXRoYeBXH^6|pIW&FTCodWwf@0eC z5j{()+eKhb5u0Z_UG5vU@w$KEe7c43(D>EpGLB1j>k?lj}eizM&c zWa$Q;(n97njLufwEj~MBQbRK%=b~?Z8wvn3W8* z6leoRokHcTNx>_hI)d27!mvc(S_`;cUyf>iUG>S?ZdYV@cmTC18hyHnEVnfhqLN?F zz|3=a^6y#I|Mxdwa7-iAzOP!_+6aX6^YfvmrqV4Ec8VaYLG};`i_V8Z3Kh2znfi@i zm(K`s9$nIsiM|LFE=(IPoD^Kd5c&GPR#duBw=*D{qABK1FK9e9$}L=FU!F(ceGqJ* z5kTT1jKHB;RUPMffTcI?+_wUVhn^+Ca;oMa37hBJRFmD0eQ6>xx4P|UWLI8g#!S9j?q5>f@ZRIrlLyt-QI*tVYWsmHj zqh0E{o&cy4dinFMYTL&qtyi-`U}VQ@bw`|jPBX)oP%*+Kj zwC|xyu<+&6qLx-^P*6}t#vry#)^RfV&SiADs`mad6-=deIw0OB5lB0;d%cH@KBEsY3l^+6ezG6u5Sz zvY3=f?Q+9~sv_d=*a#XC!+|V{X*S`9JXJ||ah|>GDNn1E&_9jIOQymzU(o8KV{988 zbpgc_b$aNzS$+6bJf(jR^ho&#z)tcJC2%+;pXK-%6fuznVSsCBJF9rqEQ=nP^(1@u z|HV8#HTBj;J7=KP$#2BQ<~7D;b7h5j=XmV^3#=%jjJhP@xN>utK zL=g}$5Gy>Uvi%_ayPZqjaDGHwnbUq`wC5)E-x>i7DIy9vO3;1N)1F3%z^CD$tzDVo z)lT}Vo|J%O?<+W7qq8k<`32Xz6Eg=^96>vCya{*aXxumGWOM zF4w&!J)6MyVnNaz?CiWL{eI(B&V6$gDJdymGoo^nYX;)t9+n4|*{?=uXCb zD96F+#}m^)#q_0%{`FlF$vauA!;Uuq(NQ{s-?|+cTeUYkSPk_=y^NOI&baqN{IsiH zMA%+V++pKWxFbT{VZpCBwwrLhTATXzURc=9YSt>906#7d*lyzU0yx|PS%dm~iwK`e zD09G6Utgb$O`|_olkZ9SP`<8im6P?cy{f8e=r&2mHJ&aY&B*3emMI}cZ?Q~oY*^X| zGcif!(GU_6&W+;XczyZ$<$PieR#q9l7aFCTOhUbxS>T*zmT0pt^q6V4GpY;G7ek(D zi(E+Q;Xv)ix{A>as1UMlBeiiQI&_qjG)}hOMXT_g_ALy4ZGXB@Z_Kv$l2`&_%7H_p(w_E#Pw@EHRPl z8XDx3l&I$9jEv>16qupP5+Lf*LpS?9o%uQ^BnVF>{P<_3<1|#6` zXZN4j;C!BTay-YA^5{Q#llkdA11sBkX_u&4LGJZzkqy(>N)nYr3J0Px%E%j=Y$s;ytQ zeSLk`$4dDgSRHLmOQ?*GkG~er(?#gyWxsp(?sXmkIk#jU4J+sz3~f-&!8G$mg)!5= zyl+Q9!MH=|Pr~tR*!9NyFPDcXPOc0LO6RI%CP=iS4N;SQgd%Y=Ev;1C`~F3$P-a!a zc3WV?Z_&FYl%f#BxxmaQ{v2MFmr~5(t)tSY_gy6+ik%q-O{oSfO4wkSnwu+j+|&t; z>`V|oZT5r1?Tw9%kDH5&ivhK7Rg@R2&JcDz2s89-?lUEYqKJC*=fYTa+cTV)!n%5IJj(Q zHu$~33VcGqiuw<}%8rso#wja27MXmb&y{_iU2DHOG>H(JCgL+yj!k!#AN=Dg%&7@5 zz>5intZUSUfTfb%z-ktd-1vKL=b7=tVmiJwDOC~Dp&D`9ouG<5KfqDKXc)2Xc%N^&w z6#LNDj1&dH!!?pzsCZ8!?@H)%$aJiXrw;@{CgF;z65iihM_WygixKvCJCQL?OXF$f z2usDpWC?Z6EacLNxMFLP*#lq4+r-(xFgW(!ErTr+m5vN_bkWsDdV15K)ojZ@Tr+X8 z!SrWAWb!U}Au6)v;20irv|eFRDHjh(PL;4T-XLE_D!El9DxwJOC(fK@!NxPmZs0#Own5ED z>hj*F73!VVgQUNHQa)J<)eT+!=bwLsUG_MgP43)vpGNR(QdDUwPvgtsJ2Z@ zA8DH1f@ue9wc4K2>#xX|@NU8ZtiZBs(FdSg8 zf&KdR3%C&`>Zy}n0csK^=}+`qYE*9zEyac?Caf-PZW!k)2on%TMpPfn&-@}Zfn{VX zWy3^V_==Tf=%hcc30yzMa5~5Je+N}O-?O|-DMvXu)rZH{<~||)x{d~=yS5Q0^EpJX zd_LY?jMYLG8Oc9;_7mvwUmLSM^@*=dgU$koRq=e#gcdKLo~4KEIjoO@7IbosE>~p? z^rZx%XPlyl6$Hg=Ny(+L(oF<{ZDPT9OIxjB9k(1HD56hrB&K?c>VldIxA{k+9syI zKB(#I{c)NXz9EU<^n&c;(XF-pRRWSB*AXvxh)(S-GU|#M z&j8vwiEt45gP1?*@zIfz%|JtgA&5s%wB%%DSXfvp5$rc#farYj;ujbU^Z;Z0{P|Nl zVY0^k)Im`27J^L`0jzp@e5`C|584QJc6MwZghrimadE*ho6z1p7k6>-MnEzIfgqb9 z4+DGfDSGkprReb-k>TnMV3i+P%jYK&u%(_Z|5fGj8JiSSzIe&tFeADYX@(XkIq>@I zLp#Y=tUAO*e5B^>*!SqjRBBO_`-fp<jpg+`-EuFowjbb`F-B7vyAZY@TldCL-+jwRj>rn11$(Qc}IbMlSZkfwuZ(uQYuda zZVDQL8NP8~*9!Yp1Lk`;UN-`6{cc9!8jie4uc7y-sb|&+A9O2~yKGdtvDmNl4k#AA zICGD1J5mX!j!7mhRLt>=+L5C`E+`T)a2(IOn0_Io6aH?LXcYTiw!SHHX>V1ZFf0d) zif|YVhFlp4!MvgA1tM@Pj~P9EFA|AG#2FZjy++dx%n&C8wm!yZm?7 z8828}U2Ql5j!6DtZ%VMaxL;RQ>A1(Tl(UB_OI0eUi!zJt*2d}5Fq?0@9+z`FXrWqO zNw~UtXMgM^7aYd$nk5&dd`kU3(_2_z8yOZRRjHY(n4^?`m>?Ft^7|}+F&mR1W`3`@ z>hVQi63_X*{XU%rb14)#nIb{3y*)iW4MIy!PVV19PN16r)wQK8sTTxC7fckH`G)59 zp*j$3!RLz&nSkV+`3LW^0}>T;MeJYRySB}Q8s$B7jNFBYho)nWa{8l#ftQbqx35el zi?1aP;+apw*HX3>jp}u3!Ub$cpm^bX&lDhwlh1W#W&=KMt!7bNkW7JT09SzFMr&0% zJ2`2USxt`^!NOyPfrv6UHwS=9Q|D7r(QfT0Tv60spTMEH&$n;iK7alU+WFmH9`X(l z@w!ga*PV0z-yEKvOtDbE&!)al30UkG6Xy{*AS?MgOrmpV3)4~8OjU5>{3-&*im+vYoD=W8Ml$KosrBqrP zuSo0)&bR+*m+d+6e&zS{Hd5nn&TY;lzR65DCFClk=Qvh39rVhhWC(hg{ER>I0Yu{N zD%s?7)4|jR7D!*d1q=+V^C_ADp{Ct$*1359Yn@i8(Q zZ_hLUVZnB>)85MJN9rB8hOpgIHvlVeM(mZixS#x;yLYw0SP=+ZWV&wuz|puMXsvX|UYI(~! zw}9?aqSDd(ppm(wss_3{df6ByBVnBEdKOlEEm_R+63O_o}yO?affQr?{q~n2Y-M67d-u} z@p6t}2>23&6gZUt#&FBa%i#4LK=ww~xC7&YoTPdD_-I@qq*YhX!rXjiwfb7W_Wm*n zsXg)Cl*}=Zsw>yX#Xku6IFKgF0b-kJ>*Q@Q1)f-HRc?XQtRds|%216_VulS}mQr?? zhYn`*t{`pN@W|+z&X!5jGn1FptKYticiL>Y%p_*%F74frQiteL3D~yZ^p>vJY~F9D z^OFRwD@cUmk6$_YU!-_ZHdS*Q~t4M3_e}l(% zBgv|Csi2GnX)(^kv)bk;J~V6DbA!Fg{^uezAS7nLW7HyJCZFX^*VQ0g=NnE>eS^B# zng3Kh+mVraE&BWCFXGHa8MfQU#PH5T)2YMs+VV=`y122IXZ-a!6NgUF84`Ua$%D37j9LxjNb)A6VCw=>(%&| zzuS+*FbegNeC8~`MH+%?=Z@jyauOO8f-$+0)Ec#eU zQCdf@r+!lfPjNIQ&85cH>r?LMo{T2TNx4>bg*-44!Cr}$f0(JlXF%>9PQIjuO;4i( z*3C(>fqmGJ=%L`-k#uQJ<>hXeT1`{^UQ24ZwWQ=4B+B?id>juBs@g1-*jJ| zx_WhEEfqXOM@+?2%+q>ZHtMhsbeFEVk0hSJh;O%$``*) z^hh-2(RY3}i{j}v?W-2K;VuX{DCbvHh7_tZ>swlVQhl?8irp=d>EEui*2CN;GdCb&R#}d(X^X6^e6#o2F|C z`(wsQY}uYGN;f@2MC*S6ddZ5PXVt-r{}9Esr69{NWrq1L_A`~TCv&ScDtJh#VNRuw zn70FM_AiWsV-HgM;#;rwJ@MI!BHs|j##cA8228zI$^nU*gvQdP4V!Vdr3VfT4>Kwe zuHXpUn+q(jIeL72wi^&hn-*qbPejV5x>37F z=|1tYiq5UgV2+HsA|mOJW3~VE#*Z=-5 z7P#brL06I;zX%OvKwPDmGV;e2z{;lKrms_r|49M75AKpit_G+qxV!{D{J|eNAnwgY z8aFhFf=_X8PO2rn%cISZa=%}l6FNKN3(W?0l769Wkf!1Z!m~3FKctY@ozwj-WO3t4 zM}5;GY2l+%R^_N09;TQ+AbVz+_U0Zjvx(BsGc%T3@g1=ov?L~J?t&L9;_To0 z<4W@q9ZB{csU=B@`!jv*QltIi+YuHMjt48UQcN^1judDoKJS(1+J}k=s+TU}lG46@ zh!UHoE8Z*HHV#Y3lJcXYb8GpZxd#u*BJ10G2vH(a=PIZ!uE;JmnSL$472IoD8#6H1x+2NYA=~mN&jG z3Q#9*>y!7tRznp1q-8|U&_>Urar-KHdxiQYRo&d8Cx0COVxwdJy}an3yZRK%%ond*_qQ1m*BOxPT&gk>8X3DTP@f)p{@kkai4ghQMzRX z0?ET7##Mm-KX7J;hKr|EGU?rgExbm3f9K=R$6)*>>F3Gx_~)o}uEG-nTU*mJ6fP8+ zz*QYyY9#jLHu@kYhX`z)Unu6O`~HUUlVG`khc)qACxOn?rP~&H3Qs`7kJdea7Y&eg1f$P^dwjY*tbnBu7KIev{vTFg@h527OI2o^ zdLk=tWRqCNvUKUBMDLI8;$l$w|CM|oAdP*>d*X7IGoW>AM4pINWS= zv(gpKu-h19U0kY~r36Fl7aGBfx05_T3>=Ka(om}_reWy#g_RUyZ$#F=E@CtRa?X%jj;sx~$<>UMH+8<)(Tw1@Xcy5Fr`>)Qt* zoC1e#rU&rvZu8h79`-UN_~Y%CYs<4@Y4{@7R=$<6#d0L<4HnSZinv+-$PKW+tMco2 zF-v^>rlVfH}K=5F#wtm5E06T%iKb<2CB_J4c@V#ntFvL;QClD3r`Q$@TvaTVDYc z)f%pig-1nD0qIcbR8rccTS{U;1*Ac`K~YdC8A_xSM7p~X1Ox=6JBRLWnExGPym$R~ zuXWZs>l|k9Z-4RT^E^Adf`ZOn7i#L5%MKrFR!%-M7U;2<_6=O7{+X7b^#tZdPnne< z@mC;=;$9mkMG80_m9C>48*oTUq7yMY$K^YBxXH*tLt;Xj=|sA zn7e_U4J8hk&rmKzp87lWb0l@X$9a>Xh)v#Xw@Bj8CF80PMa%+xC`Fl?A z=lNCVqEB=xkMm3JV!8sDYwp6|yL+b8KAn&z=iJly_;j7Y9|}R9lA;^|LkW0fk0rJ#q*C+S}kj^jBe@i$`D)0DPQvTdhYT^%~{VYf&S z(@QzG3kGI<`ikh0e)VEr*<^7MKPIAS5i6c7u67E zMH9RB@81RKx?a5^c6B$er{%OCoHH&hf9V zp3XGTCkg$xwj$WIrOs#P>(kSR8MXAEncx)d)gvmXr)O3BMeT-NAcy_SBMHQtt*S2D z)m4a_3yiz(!I}S_5nU*g74EyUQ5+|RcDyAZejF2o9&m91m3Jc>oMBK>Lb1xt09l#lPO(-c;HX&Fa3)F)mx-TYO| z!~Bv7YYs-yh5O1T$t|>^?)Qo+HH%Gfn8d-1KTdaFp5&=*{9|j0u=!svmX3X%^}pwd z-|i)kWD~7O4tC4Dr2zA%XzpCNW$gedV+q9Uhrn6RTik)W0X)`TL|>cNvpZB3ni-(Lg0}wx>=Dwu4G8W52V|z`)zU z5!)+oF8;Ms*uucAyCmUZ!67=dqDOr{!wR~~vT-|UAe@7omYBxl+C0KlJOi5&N{_mk z|K1=xwvh>bBzB#>!d)4~*0nfE7f;-Ar8G;gt+y#=P5b^lHcu8xIeAX-)Z>y(fm#5bq2*JPd4*Hrqxa) z-Hn+YH8o`)6S0vJ`^DG;|3;48MC2J82jer}gvL>^MgxO=!)h5F{x4|%d!b!=EbE== zHM!XC;c=7#gZ>Z)lhWTX%a4nQkPkH3IVY>_Z!T-a zjc1B*FE$0C_xL!T7jRd}itjRPItvPIn03jz9(*+=gPf=MuiGKQf)dD+qDdZXipTHl zK%rM(_)u)%sPRWbDY|ky`pqKuDh&XCYMM6&xTueHx=d#<2JF}#f$)_6ppDV{m&>-% zUyJ6IQ~VPDoS8;!G_(+Le zx(kbyNJLzRZy*hW!HiyLn8k3kmZFOLkRDG)zs=3ZgLw+-2SE=MnNV+Tl?Ne150B!A zMMn1Z2UfYa)pM4K53&q0{Uq?_dzD?Slp>D6%8@Djam+;6x(YcZ?6J+RQXmX$5YuOmtqTxMTT@xN= z)*q^F6nADoc(F{!>w}I7n+%30Mp#)MmOTsC zu1}_S?-^ld6N#|W$^el4uj>`|n0Vj6@X|cHVI1YALsjE8G%0v!FF)*2uuMXe$xrHa zs0kCTI2~e=@5{e*)?+{Zl!qBRM|xW8eto*j^2AW^{2*Af=187PG?nyx5!ll{iM0?l z)*SRgyb9IvsXpGj$&*5dk#+-(d4j8}!3f7MZ{lBO@O~5(@VJ(|KG1Ol#joO1svfOj zA;u)>BOE<#(BqNRkXc=YLK6gt*3tOCN6&-}?0DF;K7&QYF7I*JzKP)BIFe#lcTI zb)rL=uY4kRc67I?q$=14-bXPG%RW^*5z4DEA?>{GSFg-lJWBpG zY|L%fu$lY$+5lhX7qqYO3bJ#YH5)sUSRF)opA3B^97lP%mLcYP?q+m67c^Hv*B>v7 zd=rRvLubGA8?cT(vOTS9%9{UOFP?Ux?ETeW%K$g_EW_>_FGa;KLXPY@uCB}72o8Mm zVtMr5HoJIRc?wJD9IEY_S(*Wb#o10{C`@yU6F?#0IyuP!$G|%!2Z_@9TjGw-Dvd<Gi0xy_L_iU=^);Fc#SIGvf94FC{2j;hf*jrVo|9&)SvMv=sH)-AEs)yM#G zT{(GpVJR^}Yu_gM!5_$ZqdzatfqnTH!jq3&w84ITG;A?1*PakOoF6Hae2aGc@gFY) znAT8x_G_!D1w8C^G=cGmTd2{)1F$5B4s zdktM#PB(5CfJq%kT^l$h(pKyx>vLkWxhjJShWr{r0-imG$S;^5uVlX6I9+_W^G~?&3h5R!00Zy5hd_f!~eR z8wjGLD9!X3=4an$%6Qvx57pvy2d3ZzkE5{3tLCe}$!n*Uz29V%Dmxk_jYfDQ@PY*vETN<>Jfv>C&jY{Z$rl!-y zw>bhv3J}@4#n$v397{m-+uhw2jBWvd`@nz@9o=VOMF98_z_>O5z~d!%Ix03%1{4B- z-Wq}#0eC<|LlYYo76v>W<>aX7Xg4>v!-IpXSFcvr)IiG<;2>YL$$$qwd0#?;=B5>` zsHi9(-xi=M#N*q#x_FtGl7PqwOw9m4KRkSVwba@pxo{_CWn}=V2GEF6laM$7F>_Th%Dtr@JpVTtn{v1rRyVt9|t7k=x$J8GQVV78g<+ zMUv!Gw-;WY`gpm0eiNGM1ery}#mtBBf0EbM)}YIMU!9lSA3%wA-6uXu<9dx9McyV@ zfhO{u(8}um{(e4ajtkBoQ=~^cN*#&W=?rDe0OLEgYayBukVAPmRhAGLC=QXw<|ZQ) zJe#a}*lf`!`rl@(oz-%o^eyGGol+l1=`IYQ5(9@rCucq{RL@4zxq1b z1+8Uffr32rig{HDaDp9QotmSJZ+jmcyuKnm}+XS`sx7)Y+zIY=;vs& zM^|-ec5Y74X6gsfuz5^6zxyFsf`D=Gxb`jZ`T5w>=fuSAtgS!Xd^S#DS$2_>l*y8e z<<0iWY2dkS4Oo_zl%%MzP*6~ikdX8(Kf(!1Qpn6oir*s5xPu50>x(UL*cUT@CFTJnIqH1C?2N*SN9UY+7Hs$1SH8n9U z10)Z&*&9DUq7L>Ht|6v&dVJiKvmWU=AErlPF1{Z#p-)m5*%Zj*w}M>JY= zZY$V7;pZWTUz4mnCByp@lbFv`D)Z~=7Y+KyB_YEEn z0oi9@_uq6s*a7qvxxYBsyp)X0e1HBtz*#d9&E6L;H}g8B1!SQ;ap3I zi+|90(`Ixq5v-v1U(D9|1Fe*aPk61WSMG5L=&^`?UD1Vcbirgm>v@b^6@R ziy4WAX2`Ycdlh4g;PV=+d4B$sq~a<$8f}1BCx>#Vp+5bU@5_j9NO#~G;#65nNlBUa z=Lvw8QJ+v6;K>$xv#pzr`~m_jx>7>vbz%sb8XM=@6Po6_Qk%bbndB=7uYLoBJ3Hq! z0fAy5l;5~PZ4zuDzmU#_mt@?A7|I?{6$~w{M;b#}!Lo58 z%8a(~!$xYrthxc0={*qn9Z&v^YLhH4EnU`b`9Vk{cC%BRy`ya;V}N0{=KX9uouA~% zmDk3Zc!V@&L@!^>7c^OCKoh0F>t*&gk`9|-8#XFVOmQ&?*wujZgzdyW_!Q94!Hfz8 zWg|=Q0)TvdHz}}2-~y~>VBWJa*BbEvW;9nKfHEi**X!#~V57-g8u3(sY6ck4+%oTduy_C!0~)h|c!u`&3cy|rihYj#j}~K+rM)&B!UZTn^ff*R zvmxZp;iG(eiDsnqNvXw^bOQl$qxaP3&M#57i@P2GKM83$0!9tefT#uY+IpG2V$3V# z0`w1zbNR=Qx59=ne0;!fYvy>#C(e&lR^Cy-^*Gv{?&#>Kt;ggC0E=1c*5e`H-&!E>i)4NAal(sd;86u_g>~(3Yjzlj#w3@ zfDs6pq3+dnS!Nh|2tOQ?Z{NO29|vsD1`ugMMj$>Z={sl)_}2l={qyI~x*mtT;6+^z zzy@1NiO7U=$jQj0&ZLBg_W@1zo?-E;sr4`2obr&dv^g z#D~WHzcXi;X)MPecT0NO=@%m&{iSDqeeG!an9cu%3`;(sQNl@y{i^3UahtKM`gp$L zWM&pH&*VPvBx4X`Z`6BD*6Sl)%1sB~!yVAnI=r3|{`tmpVyW_Asv8y`KT6?XrvKllUG_|yPR77xO$B8d113@k09KU6kEpeQyu;D#VhujYtcS4NC zGThmC9E~zF9=`x2HcVa(tKB&97N9|4-7;rPtgKdmMLGto30AL!S;6 z+tk<8#IKP;L^3z0siLBCgp7|zL7;<6K&?F~bi%pZy*_{{vwTZ)H>`1=i;D|X5>nW9 zfJca4Zxw6GbeL^7==dThDyoX+?F8df??+}c*+?9$Zewk&t&_UL3;44k1+hch(9?Yb z1Drs7fs??;$46WX>N5w2%N`J_B{ZZ`Q&T^D_|PQ3q%jwoQ?jzM_wL=huMYTR5vMhM z35j}X`=9fhn9~Ld2gYk?(@<$*GBPq^V)`%C$=g=D>b(Hx^`qeD;N{J4%>6c4gQKr5 zq5DWFR%K`WcZ&$8Q^3HvrlN_s#ez9g!PN3$33$Vg|+cS?B{RF3{IyLlbjCAyQ$aS3(s&&`FV;ll?TCFdr17Z^}xc=n4CNOVd z;kJ7l#=%rC5eUR|YwY&M22t)C*cMrjYAz8H3fa!+Su0LLd^zH}-rUIF(A=D!q_qL? zN^pL%^cOE)gxED++`m8T(cN8;U`>m-{^-SfH^LCFg!%~FyqO074%`jk zc(Qqb%Pu{0=FIcw&sC|_)zs9K2uxGe(jf%sNl{H@;m^*_cA8BH2lX2sy(&+@S%wn4 z4hR^A&X3&hnC%!O>EqFYt3)gOPiy$Axc3J36WIuz(DCi0z}nsMiQ@LWEQ|-q{7eifEEG? z0iVmi8I4Iv=` zn$!hCJRD$q{b6I=61kG3BEwdmC#4pH(BRprasZYG-HG~zNoBT#K6LSJmw)6J6O3J9A4)~1_DxMQl)S{(h=o? z!oq{qDL_#$$cY)%vpMq20^je2d!D7z9SCnMHUyM672R*#yxH5@s$fC}qXc%wWDjV_ zC~0f6*%kWuQweQ>;7m}+V*`VHy|2fE!{uXy9~wAg2)=~CVh^MgXio~7aKM9%YI|{D zdSXK5NEuM4yX&Fn<--oC5hb?9fI0rm2IS~}!OxrC&ZsY*suD#u0V5`B}mXW4#N{&vJy5CN!T7d;Ra^UP_J`zHjWmwY)Zm@1DzxM5?VuftE8npD)a2=c$(P1y12$i#NmX9R^t zZPiFj^2muT2JF$YXYRO~6zuFg72IiT&yCPkDKi^zUtN9l-2Fs}eF#b)2aW2Zjvm!KWi4*4tDA}s6lJMIC@Q}D@WF&D!G5>~TK-tbP3P&-1iVF? zoI*F@?=oRF;g;ysj~aKDdqRSsHbnF&K}~^7;GU~1pglbts6!@a0BK0MXm$@5;5AE* z9W<99;i?i=Qc_~*0fvf&z0af@r1gdbCpWjYI7XD6cGnDK=57cuso>Gj5PE1C@Q{P1 z+Y>1fYp|lLD=XK9$_<*r7V6-hXfta!kjMzLJOUf0S@A}@z+%V*@fZY*WHT_1 z6UhJ3r-&PBs?mwUA|i4b^P9v+-R%Eih&@W~hoGmF`x$wP`pGkO z#dW15QFUt0tEMg=4i#AHni`vDF6OItn&iumzI^@TKT^YY5p*Xn-I-dYyMl@s7TY=8 zQL;t~?=Nrz4=Gjj>EhFLWV7g)z5%r5k^}jqqviQscdRBO2ZWaf*+H79bbG{Oq{4K6 z*2{JL4ddGSI_T&uq&FQi{PF(N#9CF=t;qSyz6qH!DJdytF%n{y!@~5T+7SO@xbvCY zo72LQOOJ3o8L_3<;byaJiy)hd^@Xu#W5=8)ol5<`RJs>D6n59RGnj7kg}L?IM;eD8 z(Glc~D7L0b*OCUNL5tzQB-+Z^yH9FS{ISVd8tIMeVE#S=2_J&1ZD)J?0?kFwfY*;| zyqQPteFB>SG9(6#AOCTNl8Tk^hduLBXy4_u1kXg zk@Jw6w;S=`OFddo?FK@KOItW*L8h^Yk>SO8Zmv3C!#W=VfBPy0=^vMyJTgb%(?!nLpu$rv)ULY6QhZQMfi9``0_qys9rys=MFcB5DM1HPUV{0?r zoiwi^KG-O!x6q}d)^#m5>3IGGU#eWC1qaok+B_+zPKhLeWxAf4oSa=86BV_PLo6Z7RpJjvGRob#YqnqtSCC;q>kIULKb_P%xV zH-0x_eZ?7B#q2bZpBE(*qB-*2^rGa%DtJdmCQ-_sU)g?+EK3wlp|^$bW8Sk z`kV;snSP`yrLIXZdRXne&^w4(=XFq^q8?9t@E%rc#0EW1=@35Z6;tW(s#M16?bMWE zwbC5UNI-5^QO(uf(NXVDu?^fc=DvFg$|4}j#;TUK18Teb(_-kp z3OPS<6cF7&2Qbsn(C}zh!2{A#_1@LlJ@2-DO)?sWn_*oh<&SFDp|s`6Irdu-4hP3E zmFkr$!&n59yQZAHc--B!MsiN_%S1a>NNt~qQ?yH;44l3mI~rg0Kyad#?Zno&2<^z* z2!{O)n_8+_;4g4+Nb_VFf^#2iY;5$pEkX$w85~S(?+emh?m$O}AOecn(p$yAQQA}R z*n0pvi&~cD2@_dsP(1>z)Yb^@#Ds*}E3bKR#zupA2zKb7(GyT zux&xQIRUZQsLS7U!BbsOLvv*C%9A^F;}|PUK~0(Gx<&MLeeL+cM&Mvs)fJ~>-#6p6 zF7M6i=e*g%5IdB* zeiOLKkQPAxy#Z$D5Q0&N-;<#{{Ot`PdN&pw5gIzVKsbOJA728K1q?4pK%rv1m+5gh z4{8zmi;52(aNA7DlE^mNhJ61n895KtxjFrE7gdoh%o5O@{-N^wVB=^ngUzh^XDMznF4TIs;d+0QHP&p;u}3t%VNhYkZFfEH&RwuWp4!QC*fC^z{khHFpRLA;#LuXw zX|$nVeg{7KAV?d*9=awG09}`YLP3f4SzC|*gQDjT1@|?=_%`6u7eTX#0E7XcRD1&A z0y=~kaZ%_VeLgp*!g1xw*QxOQ($ay=TE_*5dsd`m|0Hyt+r^3_&J`J|!tSf2WGB$~ z{3PXfng|Kpx9dL8jFd3_9BDQ5lTY1kSoEcgB=KYm9IDW`=4$nHc;cC%Z|xN)1AiWl zv>VzcCFAePV5Ynj&C(V}%E1>t`+hVuG<11)gq~W^HVOPfrus6d=|N=mIFz;|t#(N(T37mI2$ZsOVC|1I+Qw z#0HwfPuC;Pu8zLUs#L(H}(*`w@WP^3`8dvJ%aB2*w385a%9^0BjM zMrf*eMoc_iIsLuRlU7~#^;M5UVeYQ2K>x`PA>_mqmuRUu=OX}H4=>%*cH69&%0as@BiU zw;CE7bBZB*Jw>8^)oBhh`>KDV&Z?$7+pUFC4MyrpBiS731Z#xI#VfZJM(oxbpmkL1 zqpmZ5K{Z)Ltn^9pI`a61je8>=gon2Mr^6Yu@FgO% z5`>MRtPb_9C)|2a)8gQ05QXwbezE)7gcN4v6PS@d`Zw|grZlcI3aV#*8czjCTA7Hb zpW53Ov0i`i#4^okb2^ngPYKXo`l-xYsSeHR_Ozbw2N7>-`A5PEX0 zIx3t;GBa98S-fYb+a}b|x628`;o8Zh)pg1o+opb5d-{4^ zjdTpTw5dGh)2G{(zSV7^Aoe2@#x`5-KHE+YUm^Sfg`F-Fiu2s?5llHbxyJ3~nVGEJ z`r#ht^%#4IkzBD*oE3)CO>-ZFN=|vHB16Ok`;s?%KdU8Izc{WFOX4Z_fV<gYr_Z$cH7h51Wb+K+&1vv=>@@hbptz{D(${0y>0!@g(HRlwS9V?&hnPRW2g zwo(Ne>J^XH1KmI#iVr2Sh%ubkvA#==FE;rCLCm{L#58kn3$Ei(FEyig+CKHTJAmUC zD{nE73a<9bL0+vz8HkL)(5#xH1Z>PQ9PI4eb|=H_Elu+^F=Dm@&mKug_%v_+{Ha*# z8$@ReBe&O{oSr5jBIOi=z83y?Jia+3Diq!;w|Nl5lT2(!c$741NT z66w|h;_F%4;}C;6l=>E%K*U^50zwkR7V}&nkISc!04C-DRQ5uD>9B=_hi@Z1rXrs1 zm3))hUg^>GFdzBfC(!ged1d&8%Qq1%W@0#2MQ@muo?YRZqO=rk`o)-V5eAu2z8=U- zFuLWv*`L1ZY2=%Py4BLr(e-K`+kZ>MNgys27e?zl$4) zo7gYUK88vv$X|vuhhsFMTUzAz3(Bp=UNrY50JRzfn_a|61P`b!jEx_bJLgl89LI5` z_}gMz!8aeOv*hf2ThB=zod$pd0GH!QrYo~kM$=JOPP@vv1V(pw!KC8mg2W(X7yYiY zkf;yjJ`GG8Dk&|65_|u^V$@MgOpJxiVW>JN;srf3s#67OJoMT!z#wOmN+BV~HP09U z0bs-2z6z0jll&;qI&q^YspWKEJr_9-s^d`q%|YqyLC^pmv)6SNq8Tql=JK>={csIz z|H5HsQ`lQ+so=hj{TqAf+Y~>;w%G2Sc^(^yI-z`OoC`t0K{JV6|KU1B{wVcLjn)M0 zjb|nhF!}eKjRA83kPE`WX-F>m`ugevX$nh`At6K_9_V36xeXxU8?X1(O78|IP0P-n z4#`z)*0D%YLPA354t2X6g5!ol%HrJIrL<{HRgA_Aw9$t56Cj@4;??QmuC1#(0uA?^ z-F7gB1twiA@oh{M1Mq*v11S4Isck<26dNGNbgZJHv?C}iEQDsn0jR&cSjF+YjfLPi z9`o%g*-Z0uVp$ibJ2{ir0!-5FtD>$)Sr0?ZDxlRH&;T zG$^=pje531+xau7a6%(&?|!sAW9p@R%^`J%QDEc)I^iM65TNnF>%*r4NTJ`nU5P$C zMj^<4xe4~vULXjL_&0At{|pa)4^7Xj9X#o3^C0e#C?CBC75zTE9TW}v<|sqV6omL- z2=jN_;eBp8Z_L#A5D*kefvP*KsV^p6Ehy;6+u7()xW9DOXRroxvsfPEc4(Ss=!Urb zZ;N@nzL8=+^ZR>eq!>e=Q!S1so3D72tAPD)C{c2U2nYE`7ThO=M@${ zfI`YZg_{eE0hA@W?1CFqbacu=a{!tQATU#yoxQr33St%8An4kZK7mmuo=?C;XJlOZ zppyb>AE4b>yw`L`Ej1tXNI(t?&^_w=((IRgn`3GL zZ_rE0#UiB)(!`)%33?`=xbX_6TSZOH-rgRuPs|YC2K4|((256hyE^x|9o$|2;8QrI z!*2P27NA4yq-)@vPkIyg^8G2 zz3Uq`Mc#-^g7fF?pcI9x&ld?-rtTQk<&|59l{KKpla+N{z59gTt+E=Hjmk<<_Y~zk zFBVqjwcT36C`|%aRj7oEJ;h(cKUaFVm%7}d!cRcSD21exlYHaM;ZgQrewDs_z5QP?QzOilIQNsi=IbtJ|U}0F@TV z$hHw6Tnct2S7;y8&Iax84Ft`KsckcCk9;WHf3-Eq*VLz-SA~NP%0D5S4)r$RPg+LH zm$O#L4*nu#Vlvu)UKwU*k!pVo)Tfo}z7xXX^4b<@=8Lw!_Z^#nz%Kay06|X|CC-IVyq?@W&hYu3Kqe_pR?S4`OcJffSG`m^ za}o8~P7KQ4wHE*)7#J5RX_8ee0KK4o(C6j^a#Em5cW`*W^2~y-W;&wM{m{~VJu(%e z((KS*-i47h|H0kLl$KZslGT7w>KGd+>3vJg3O%>!BtAJQqy>D`;>C;O`xZD7Lp6}5 z6<`YXqruoDQDUCwg9Ay=>-yza z1hvZwtR9AAUO7E)w0N*y79ur<9~s|`;}|#ScQ0CegL`+2`oY&%nu*;|a338QA0L;G z7Tg^7LoJK#yt{N-``C2xDjGJ;>}xyuPl$ z^x&R6`Mty*zDH1wrb|~#1>L7KH;a{(8iIjAwF6UIk$g=k#X0cv@VIWYNkCKlg*t!} zGau%{XGPW^Pb?ohQo6GwQU*G|&@i*;%^LGYFQ5HY;Zb^+?mB*w(~v6y54UEM6?9-s zc%y%MKD|MT$M7Jw!xJEdMn*}j^T)2!=Jr8s>w0(=jLhjdG?iLn2gKsVIn+2O#;LkR zpQfI#+?#vvc(804%SXr6>$F)lou8LS>R(rZn54RVR>#c9Wof-;e6{kSsFOZr;UJE4 zWsUf~dw@l8=sHowF#PCPCY07d>pDYsb<05muzeux18QuB004k_NlrO6EtMY=yLnC5eRqCKZD>YM%ZZ$ly7)>c_BU$k5@|U z0AyKheSILb?LmVGQgj*+;MSYxN=r>005}Th7J;LNTY>hHalWS4ix=JmG@>S*Nl^2G z(Tn&Su%;;CZYK;z56O`bdYyaFgTXlh|D$D}V?OLq-6$5$ai z{-Jmbr|>&XFdMb&$Gn!GeW+i_5d78kBy6dZAU{5-@v5t^yrZYPrl#M6`C~YfhWP&H zS9{LjMzVKD-&d6f?WJFr*J*6Dc+b$+PU2C5d2d>dK__`^UOBY05Ka5vvrlF5Nb`EFI=qQOURGOZ2uy@#P!P*P+ zbj(#ni$$Ibw}s^rkAHpO^X=ZrJ&Y~4`uJWC-H@yV2f4M8wD1pdd*l8*#&BUSPYP9@ z!q{}aU-s1=aifZNYHKSceq{E=i;b~I?mTYWvD&q z!sVGxm4Rh zn#8|H=o;BS^c$`LDwu|rQgY#KY@`dBpu-X9U?KvqA3#ANp4l_h+i5kSF1^rt?p!Fwwo+fD`S@glTKn_% zOQlF>Jnua(363(f($n))?lTYGAzU6fM>!sZ<%X(FtAa~_%kwstBkuSvj=W}a%6@g{ zK&hdH6}RYl+NVz@(Jf*O{Z6%2r`bZ*PqLbtl`8hk{oSMga|nIT8Op+rws#z@@4Z`p zd(1*_Y32d}K2=ag`}L#Chf=<0smVwfpzs^zckIWnC*xFM`2n7ZMzae7aKfl##XhXY zSuy)YorxcdxE8H`#??D*y7$P}&U{FGn)vsSaYn@dQdEU&GsaDFYgtGssXxXF($ytz z;-KN{5w;HJ>Tti+&RwgH*2H(M*~ojZ=n<`#)n>N)rKlhN=GRr_^S3>Z6R4N1S=b;D z=0K$7S>&LvmZ?K|+ty^9DPR=Q4 zAZe@eE*56ancKnsthhHmO-8p#v?iXblEd^d$1t{GvdkGL(l-0X z^J^Vm%Ek2q`Z8YK?+%%ni^m7CAZ|up|yd6>3lwE zs2br1(I0NS)xMK{vIjGg$qkP$p0QY(5pYd*hZ^=%^*?W}i)9TCnhg|7ua5TBpk5s8 zD4JT`AiCT|Oqr$0R`TxM=#}Ip4hbZk6l$4&_)9 z#U%;XuCV<~rvGDd!;`SxWZZo7SFl6zeeubt3E@DFDzS;wH8u}q*!fB$^>2`~7A|IO zY!qduh$gE%mpbE4-TmY2G8Y#I8!wlJFrwSh@XuoW<-rum6*iQWYS>1_&`F&mpRkgtG6CT|Me@L zoY;M8acy3Ba^d3YxSPrfB0Ar0QrChj-(iEW!|_0WpjJ6N^kk8&r@RoO2tqjK!R+rj zq7A^lQGKmlIs|JGEi zF*4&OxUOH<&L!*tqt3xa8PxeON}L48=JM;%o z!5sC?ARH^Wx!+s0)B=<5nttvQbY@>M{gtbE$E#Lp0G^J1~yc2E!8N1;?+4Rfb1KRdhlqq<7V-mM;m z%9x!|&Lxjk5Bw?e!_C>Uhk&=AJt?XjJ#JmsTuY&nmI)AU*2H z<@f92X=0bJD~+o)zO_NJ)0oKZUDsgu(OAH7DI}ZPy!VS5nIjZ>LS#2J&|z`@qR=5F z#|0r9=ba>3A&!N#ZX-VGr{hSL}^qTgf zt9jEeS5x-m-Yc>ZD6OR?PVa@H=nVpoRyWgVMDwR=&To3Fz1puirjk$0$%l$jlsG7!FdG!H? zr=-I>6W@#8;n2^@8m{+q77n;3XB1D?Zi_bWjkVJ3FY~vC=%^u2;nSu*RY`aoEg<5) zL>cOBp;Q#y_qeYJJ+t=IgMT^^J+C{kWltf8q$@v~w9l=L(;xVjRdwUc#qrggI=q z9`hH{3Ciz@?3I(p4O`#QHCSb2#WLlqMZV+byvbXuYH*B?G$RiUKgy>l4DaC^Txn0} z-%IyVV2cq|YB)M4P7jsg%Xl0`iZ06=8@EJacYlxOqk^mBAN7&&ew&IqqsvrfBo}A+ zndvnj)%Eb15&8|ftVMO1sP>{xC1h;*rO?$p91w}`_w@XHuzPev+7hqIVwyEYcOYxg zi)zH)etUy>z27_iEDghhj<}lR8|=|;Uy2Zg4F~2@i`8w?LJNNa${K8pGOs~zTpG1L zv(9yi*W`YUr~;xW4=oGr;%kL$DoFf*Ps+8;AFfF8Ig8tUy2328W_RVv64N=a=vtGZ zXB(X(mAxhNr5z`5mj#|JnLVtX$am1Ok+;0O(Lg|bpwSUAJ6A~G|e3GQ{EZ6X5U`v^MGw0Q- zcDt8K?z?b1YC?xe?;`mk{(HzEz-YbwSoKekmV@B;hd0=4}=Xk=%sUs9wqV|gH z|9@9AF~%olGoM3}prAoNJ9j=kc0m-JfwNPLcr&9RHEP5~{P4+Rw>)=FQST_%gN-X`1u!!0?|hYk<~BWBW9g`o!{W_iPTr6 z8@Pc1DRXO_m0WhV+FHiUq9eBBArvxePC-|`0wm~7eP#ADp9V8E8WOHpN^C#xKE_*~FHOO0O1IVIixHMvtWy;Nr9 zra6f;YsIk1?2X|pgvX4eRv&#~2#=(2j&@ycT+XN2d9V7=&mBps#bj^BR|n3qrc1B= z@wE>B?8Z&?A?=~|8&**exj=8rn(Gpgp{scf-|A>t1FAh3MQnId`^)UaY)bTq#y)AE zR=KHz`rUY68FFFqMEa+JH1yQylBlOaa_|tAG2FeT=EZ4KEh59;=h0IE+cwUiH7%P7 zxzcv=xw~|`n?uEh)uT6#WobdrJ%t{o+wBu{(+CghzHZPiwku7J?=ZN3o)7Q}io!*s zwqvvHP15c6Pwy+p1`q{?ZsEf?O=sVMr})5)gxb0^gO&qvJtM({$>qKo{J>+QA_kr;f0K zcCN2G5agA(aUET~6(tTBYheXp_aXlM$o>qbhMQLeSXd-&mvSJ;)KZS8`x8^SUc&lQ zj?^FPL10K!8~gc3h7aTdrEE(OR-Wh~Cw^wB(?u`3G*>snT0Uq#Bq3`dE+D!rlpJ^4 zqU*&1j##;#l|$g_5PRvbRTucR>SzDQs*_+>eOmC>s$U^xD`ZaLk8d~#loP5&EkArm zMLC*DcWv}6i)!b$RpbF;uK&fMj@@QUlF_?!=gx+7nH~YYLe4N3=~rz1VV3p7Kx?8`3 z4ArFKf2vkpW|pruzmS5PE)mw`=)EA~v^1D-mVOrMzV}bihd4;#J{Lj*mww@G8DsPHy4zHdzO7DJkGI2PEO_;le_x^d! zb6)}!d;>2A>Xtt9LE4&xvhd%nd)K!3N>z=1_xD_lYGLOpm#B-BIY_{=Li5mSM0fAAOe@`;wOuIx76Gcu%{ZSpcRG#iq;?MAPl-2_c z5IR=awLu&=Z{Dzs=`4MwnD912P{8<6Or1j82*YbI;6k@{6fhAIe3~%yv+vop$dIe? z#Ezv=H(Gzc(TX`Xf@99Gr634_P-EJFg`Cr*Kx6p8B+>C8 zTD>i&&lk_VfBhyyuNW({vQ!DXPk?$SDNAg%WDwn|y@Od36(!|Na#bv79*nYpi>Xt(|x1>KgQkc;+#POitf8e)e zzh;0(Hl(DIfVCsISUXa-ZpR)TIdIAg)a%NE-qu~cteesAcHoCGS)gS{^Qqm$d$5en zaE~bT1A)tsaeh={BZ9MoD|+{jSw}50h1~dQ z0XjUWP;+M#E7Yet#-B_nG$xSrWY4Vugv6h9wYFWoaZWcpwEFa=$w)0(eiVREv^Y}tZbPK?``)71vd_)lLi+q6hPIZ^NwnxQ4ME^~ zigIt2EwfZ9pbvL#;6&p@E;YAqbr_%Wg1}yEIA2$)1UmZ{pF4jYm5+DwNcIzT|9#W{ zQQp@RdaEDh78M-yQGYnG%f#(TykBs%`qYoJ1o$~ZR5%;-EIj(PgJk2YmS%&{;9ZnY zR7#!lmn8}uQPMDW;P`VtTx=dDNkY*tP0@c6gEHafx-C^A!q^&}nRNNr93X9Reg^u4 zHIopCIwU_vM?9vVwdT?n7HjRv598OtMi0Z--0)_*ya4Kced0Zsb5^PCy6}NoFTkmg z28YGLHraS`$GN}rhwbW4K81nsS7+aIXGp_|m;r*d`=^xo&x})k8PGo}_$&^7^^4zn zh)Zgc<-y*l!}x0IBp&*%SVo9$0i@xjXR8PsoLgM;(Hdaor34=;w29F3!U6ibaU6NE zZ+aaP1v~QQ7hlJY?MX4WNw*(9>EQ6~f*KbMS%rQb9sR78s>729T?Nqz^J2?MY4#56 zp7q7MUzl%rd4x%dAL>a-mGak%$_H$-(h&dGb8=dQV)(gk$E)>4rd5(jx}iN3DgarI zmCu-mI&*I$93Trk@##m;&BzaXtM;!K%<^(p` z%(d#X0yQ39bxV}ND`|kYgX@0^64)Am25Z!N-VpfsT4upgO9(Ml`9tEv-|ZY^Gk1gn zwDP*=54zuE_1Y)T{7e>!cCguBmeioP(+&03X?d4Zqtif3CG=qKnYUMX;dKSv7ivd#Lm7BjNV4^)B(1QIl$^L?2;!h-&*a{}L6u=I12c@;JR*Wxhe+nPJbR&Y{wy2)?qFlQ=#x;>g$zk5>Lt!|2;pSxD3;iJgduS=+lgkJs{@Utd(c~>AFhpM;Lr1k@WT~ z4l$EeJ$o_RL4x8NPHELMdRoG-Hnt%6Gcx?VVn6qGWBI6#R(K%XlboWB`q&nzkA08* za_Uc49UMRWC7sy?ski(2_aD?ukSK-eSkVdwXqC1PE15on)w%DE9-qLHOk6p~QD|On zy_|5aF6CC(d<)*!j;4SP|B4*J+K!WS^FQ~|+xolDEVuL-2N#`mo6VY$)4tEv&4y%? zw$(%}2*y>7e}5V<#QuQ$_E`to`JXKji_mOY%C_El|32wrl?HsRmPw<}ag9N%-keYg z?tYE(P{SyIP_L1dNgiLJtC^tI^6%*@C1w_on+_BUa2$9bjRe<$R0ACYB<=xQ^L@9t zE6%uT>WJZAI){dn&X0uhuWVW6&o4d-ofl`m$3)G_AxPhAkhRFA{`S<(Sl{M)bR3^M zM?zORRe?VT81pg0&x+|Vu#e2u?o93`b(7pDtRBha9}N81sy24Lzt$XMT%@I+yJJ}> zN;(%5(m7>_r(VU(&^PSMJ^TWc9tIEZMaq;LZ@1yM3DTOhbB2T6(QYQb)u5laaTZ~H z{nX-XB>uR?gKS5A7mtm4%%LV!T)?z&9jE+l%UaTl-NeusW}gbDy+Kxr#v60h)wUHW z-818cVKX}^h*o^UtNHfb*H^ZfD*{&1=4jYC)naeFZONq14e89IL?#{d1O#tQtR$Do z2cIJlt*CTxJ~!vPFo*TdQ8{p^h;o+D4==F*lNR zeh|*}<|mYSR;=B4_{|<`MF>|w<{8qKb{fZ(qNWsl7pQXUCk}*Yl#5YA=K1>{-T-v3 zD4d&|Fv_smbgP>ZBkGX&<0`T$L)nHK`jSLdSMXnq+eaJL{;yxR!nK9=-ko!hPL{!; z4SJ-tHley(Y&XyS%@o>%q8}Q=D`faLxsMG(DgJ5n_}wE-+S`ob+U+j!q%Pgy zmM?2FMp0aQ{Y#GK`i{VSz&i8t*}DQA39A=On0K@k`oEVfE_>awo~N>RhN5w2+t?yy zX;kukCGll9i}$=S8c*u>>WH$5N2CL>~K8dIiAdP21VPh@qi8@Ug~^ z(n|nNfxMhIDfCNCAqJ&aNSA89{cW1VHr)L|&Edwk67@o>ng=B~r7K;&f%vqls)q+I ztY;i;Jra4;W!^YaI9&Ozr0m(!L&A3L)0L3ir?qjSD!5=5<%j1X2biYPc%!}JDq?07 z$|)<9I{jpozc!QIwvFrnu@lR^A2l;@LSe zp<*eyVKqg(&!n2RWEnOZLWWE3ZBLyl*r%H9HG~!mUnXNW;o<$^<|3Qj`paLnrOMZ} zDK259aqJin%TG}jn>e;Fd-J&ulu!cw7hxvL(P;mho_+YHiy;7+Mo_74wiwByLRzLRd+vF7l&M*Qn+xE=a%n7(+| zetk&VLvK6#*qU!Ko}T49t>3bDHVgwbjCsF0z7qZ{Jy%2w3PhSJoURAUSIy)%u`;2B z457}wT3-_p)nO!)2fZ~?olC#roQRpWPyLHznU=;UHi9xq6&ZPRwPw%XzL{enF6(4* z(DhzD5h`~cK%Fuh%LZs$Lipv=|M9jYf+!>PTh_+FzI^M~g5Mb@ zfk#$WJ&q-Z?K*@zGeAwNZ`VxYw(oo`yL~NEZXyg6mrNgD`{^nn!}uhBgyqGF=5qP_ z(_YN4We9n!m#5z^Z@p;wfL_WYB55*H7Y+R|3^c1JjBF*O4?kZgW@Hf0(6TP@76BBxR6u!#%q+zFOrQliHuPm!JkzF@p%a|i^K}S_51q;>n zG~_*PHuEkZW2SNnPVrKaOU?r`)z9zO`uJN2?Z2y*%jpwZue^KKJWR3r6*N5SZCXwY zV#$95&{7`dkd@_l+ZF4USoBhHs2-(HiHP2gbXlp*&!6njxnJjJ_D1%_L+1M?@+Ns2 z%T?Js=*42s9QWp71-5Rbc7axiIbbaTfeADNAek2A=kIK9$H&EKy?zZEDSE)L0eVE& zjCn>{g9g1lK$L*)!Db4hEH2{%Fb61v7Hq1ZL87G850ETiUULB|^XJd1-K9CepOc=ZOgcTl^wK>Ao$b=1I-P~9o?)HD$lJSVyAY@ z0M$%I5y$z=b|w3KLPy955<0>1gkfv5Kth@|?@r|&))^OvCXqT>01Rd~CV~0RO2eQa z0;)bm+1aL*qcFa%4v60#+B_2qh}d+rk{)mQ zQCc~nYa}lo2uT_8-vcYcj3Gv{NJ4m@m?R>Y^3mtYoMci8ftFuWsx?Q6m;L*iS2jRU z0Dx+g-D1%h<$Y42S(r?odAO7L<;xf3$XTJBf+p=%q{Q0Qt64Day~Ay(xVZPr%ASE3FU05l@7nFx!L%_)att0+6={<+VV!A4TT2u4yM`g^EFk3 zxy#f~xmjgvUxs8yA?t|5Noi>YAgqH#)!TU>`5-`ZuQ=zy>j+L7fXhI>mMoNzm+t}a zJt%z*JJ#CU-cRk?0o5j2h3{X>%2dbXjLO#KgoPVsIue5n#@`iOK_IYE5gOWW&1`$S zZ*m-55AIh1NZk0{7rj7PC9x$7hz1AeL-ni%Z$*TS@1%TvpC&!C8QgiR8IuRx(QwKU z_dB(yNO6n{BwQ9-oes=A829!;_yaJ5X1QlWVbhPqL}YJOP508(K4?3KanH6Zocm1 zk$^)|{BPq+a^TF3b+uc0Zx%1!oQSrt=6ZlJeVvA?+;dO@l3@pvs|P8|Z*JfqEI>nt`OyQ?3Q@N91HqAlZP{ z+HMgOGjl<)QmxLdfTM3oAp(wSVxC9ra?RT>QItX_hdJ)4I( ztcVO9rf?$`z5gFuYqP{|@K$+hf@A^T?{IEYy9RjSnZ%XJC{vpcrZ(WR`;YP78R>n^ zm?726L|=>JCv@hpFQTQA&SY9Odtz_6OxY}1^#aw~hkqi&7Sa2Yo%+ukHk;y-Z<3Hk z3%>ca{H-M;kpxS?_olKN`BiscK^$QrQ%lbMBpQ}0UkCtRBSzZ$DvR;S6V-}wyru8x zIK&Y!TT>m$k#=0JLWk9#*6}!pj%~kWH$p{6M?x-_Y=H_t;2?y#Mi|kw( zJK}2x5qgxdw2CzWG>Tnfi@_zN9vb1VC!F<6FfD^0gwMN+I3wO6`bx$o6$37l7THCU z64KfbSN^-laJP0oZlBOpA5M!C$Vm~nx_iDk~>x8Ol!ENj@!=Ba)BgUF@5a`pMu zFirjP)!qDpl8R7pja$HnY6Z2fH8C(!#13n1U~c@bF9TZyITDzeW-AOxFCb`|NqsO1 zCkv?HRE4fOo2(||Nbx{{;vE2VA5IH!XYWlh_YIn|5CMAnz!it9x2I={=?)#;61aze zUU_AQg&W1mZPDLh93_Bky(tjZ!O>hVANkVe;P(SL^A+lCu0+(++Jxl20zF)bJEJS~Bp z5R$JiI1~e#F@DHVto}>>plh@Z_~#*Dy$E`I9Sh@ZCF0hX+e8 z3*OJ3JwsYzKmpe&NB~_1PA+?ufunH*Z$AG3N-vU z_P$7gq6x56K)Tc4ux$>cX@Qiw`tRSM+Ww+d1=T-hW%Uv_nC^QP<@+RUcy#PWzG{50 zF;IzM6Y2megJzbwlKlsvwcf9QU7b zsI^Ihajx{*SQ=4RSLe3p1bG19xJe?3dRrjEDbph@FTV*wbR}hLK>vVlxZwa0kBvd_ z%8(AZ7}5oa1>Q2tFadr%e?}Stq@N^*TLJ|khPH%T{WRwh&iq@KxQ>IH!MWSnBxRkH z#1(AeHfxB{x$=ZRWjo99!H(fPC9mMmaQv08*a;d~NA52W=AGS$V0hh7jl-R`n1|Fr z9LhklAue6QD6d?_3n1M;*sLI-0M!_ovQ?IxfdxZ9#WLWfgwUyT1xF%T-XL-^Hs`d{ z5zQYhyrhrxwYN~Y#p3NGL(4)Hm#XAPFFVF%h|iow5HR0dxk@2&Z+TwcxAMzU_ zYBMr3TNfmKfwD8#lS$Ipf_ygF(uTjLKAqj$z{&BBCyo>k0oqY$D64&0Ma3ZyFEt14 z2Z=bWjp5qbsn~0*@HWwjZQJ^ZD}kxLG&55Ka?665|MHN|b^!&e*xZnP_=UHWO((nI zqbkosHn1hv^_5Jmt=^>g_w*cc!XR`*=K zd^s>MuuiJ=2{^T+fps8%WEpXBA?07jyg>OBh*g>+doAos<|SOhJn5N8_oC}@ny?j` z6vY6|R11BkOI z9qNGuGnl~*;-{Ll0*M_nh86pk1#{8%|2_(A^n_720^eq1c^xEYs_*ZD+F7A0H%Qb7 z(yjcTHDKOQl`)PRjOi>~z7uF!13Tg&!_QKUH)+S;+y#)R{($lcig$o3R2wiPj9@wSY|vTBq-c?XHp?Ij$2A zY)Y;p%3mLR?)`PetjAf5v{1j&@}KZ-Oeae^Ov6UJ_*T@n-*bB?A2a0&F>%Jja@e!l zW~&9%ewfS^w9L$#pk-Ly15>MkN6qm?@G=-1E0A2=Hg&BU^}lXe5+1FWTToDfwQ=-0 z#7urXJU+1H!fk6~Khj9cNcH3~W#&@S7K;^3wqqq`t(>?z+h!I_5nESW)hK@nLk~~B z?d$P6nSd~5!5lEjR(~A?kdl#6d`W3*Zy&cDTKHt%#n0xQlbBfNs>o;xii`zwv>}a) zcMUgTKD=4U;?WlgLt$f_Vq=Y_*SfG*wp2~W0Vwv1Uzs{b)% z>6eHyHG3AEj!$bTE63LyLCkLCdzZy}P~_YwkDQLg4FdwG80^wA4M(xdw&&hKAP%HE zy@`xM?oetQW)z5A!7I>xS0M76S4SstVEyaYI}-5($?P38P;0T|6iq`{`b1iEXxF!F zC`i&dI5?l)X;?urcl`1GxmHje?;VXn6@zRh%XMgSgky>%*61tYbY?|yE=`jV%%sel zTLwp_+w7L*PdrdPFy6yN_)xcgU?$|_CNF%mkZQQ@dMOdw*S}eau+ya1c4cJYuQjwVAR zZj+SBg@wq!Q?=hH5nK;{YN>=Jd|gs+L&8Qi>;d((g7MGd4Gcg2xm9w4G!@B}0F;$_^8dS72`iTFbM?QFPLb=~eRU!u*2q>K#95>Th& z_`-J|l%@@PfQgp&sGuz6WSgFr9GB%i^p)L-Vg#Z{`P{W1@V-&Pkuk=`viKb2RW~P= z@TI7z9|&J{&4S*ZI94OUe|bTw_!tY&0Xamo$(m_u!a97Whj@g9bC&x+!HN==l$O3v zOmzG9f~7;;<7Zt()+;ds>mUY$qunMb6|lQRjdjUsy)DOn0hvropB7w4Gp{$_qHPj4 z<<`bg>#|80d@W7?gpSQB_%4e=i7jG_MJNCx2akxMK?a=ZsQ&oG#88I3tgMaJ;kR#h zLqw|X&fS0F4f0C1ao|NCH2wn}agR(;HALU7u2=#AqoE9DAcvWe^&H0%s6}@cPwaSN zg%e?vje#Z-@Hsj(NsseI6)Q`xqN6y+@RjS=1KCB8_jhwi<6WUceD1NzUB`Z-0Q5rV z=ODLgQ35mVU;52M$dmby3v_7~c8bg}4ziev-QCf`o0;s9^v5XSZ^=N2E>z9T$RM5) z&Ny~fVyDLr5h>l+*u$cT< z*eSM{;|O{#oukugSps~zP?L;5xBky=|6Qb2RQUYax!-TdR=pl^MVxbu)M@pqBjn+U z(Qf&Td;s1ynVoS@e#Ky9(2RKM53Fl{e$Qy`%+YAU``h5Wuh$S_x&!ZUY;Jvh{q5Vg znwbL3rb{!x6y?mW=+pW9)_o2S^KMmrfg_D| zz%+?iQ)!WHtYk+3V#}+vQ|Oy^8}s|gsCTPks_+Mq;&|>@go7Csklbqy_8Ar!4djc> zq?T_t8x^b4QBvO0dL+I>8_rp87yI~OEb+>eAiqc}=G%IUzSU=Hp-O<+YVakwUN_{VY| zlmX0(R5bhgX3UWyztufc&EfbrZ?d+h9-n6R)6;yunCD5eW#aVIBZ!Livc}*$`CSx= z49kD%@GrgKd`+$W-v9~@j(hAKRPc<75H8n4xIB8-V^#32*O5i}a2X2=@-4d|HQPV_ z0z}vz#c!?Vdrd%75RVS(tl`W?mUc79f~W%aO-`5%;eTJiJ#%h-$H;zyFs0!3Zc(D} z=5~Ki`DA`#etG#pPAeCo2o{K`y@AALc^#^eZ$8U!AK72aQ~P_-eD|~H4cb4}k`>p2 znVu}PtOr(Jz40 zV&O79t1z~pSd|;J)j@JO)=(m`W4rPkPGQ*^Bth=bxgG#EZdYe#l4E+Y1EgJ0J~b%_ z$p;!fJ^j}V=h@je1v(+%n2dVAzg+7%b`ktrMf68s{pr)xf(_X`^UG+2YwZwFi_N{8 z5|Y}=&CM+-XWb6&de$a6`Rmt*CQPHA^Og92b;xGPgy^@P2j(R!|3yElJTe167sAJ) zvbDhIJ!lN_wi)v9@TAITF3!zKtG0p$r9g@f#9ScUMY&-QyA&Ak6Gw^e{lbrb7MJWm zARt#M-P7~tE*H!+cs~HLs~ezcoJ=4(GB^mdWvPM?HQO1ooIZ}7MkqsojlYlD6}d5< z|T8S1pq>C5c#eDkoBgUiF@M~1W>P^VusFfk5pni8> zmGa@kUQkgPr}KdlMu>86_$iAQOF?!}^6im13~dMo#qpIDUn(-8v|* zc=_P%E30T}#SH`m)2iBnVm%PkO$HutaUJMz?}iSDfbLQie6xAW5{*Zo&kO1zP?HAB zRZT}mM&)zVi##yQNWA6Cqv{1~ zm^7o4(B_z@Rpdfzv;L`C1 zyMa0bDmt_5Y3E|ZBK+@87Exe`N0mrgICO9x?*9!9C$XChdW%1ItMlzyjpzP<7iYs- z{^bm3oO9Bw>Qq<>j2qZ>Zy;oQg5(oF^#{xL=*bg{xYUZ>p(Pk606RPz1_&f1kPkRH zCbo?kGcqw5g5&`xdcy^(9?a#GkYIpRimZGqQjq}!=Or`v`S_sEqz9^5aL!<(_H@5i zTwGepOis4hT_^xaIcPIIYT#G{WjNA@4+Tr(E?mAb$XGjL-oIe!QT=V53swbga$hw) zC8eRUF&qTXs4`1UVWG;)xwg40(zSB>pcH2bayQ@+pp5}N7n?Y-DEoi){*#?0e~*Gu zVx2Whh_;Z|a@akxj`ypNaj|TJVw=@YVvE5H;`dRT={i-+A zpdtc^V((oA^Kt{4EeHF%Ioa7@3I0Zx1kDU~cDv6r zvmn-k{NK9z?7D48BU#}gQd)*gB={jEQd`PXoV3d}8p>v{PJfUUEddM`tHnX2qRm`| z%-U{Xbo3$UQa?K9au6lVU^UI10U?CL%U_jUrk6@YTIZ`A0+l*p42@x zKWk>NtX$jB*P%$)fqo@aQiRpxhq&P6f--{>l;_U7);KxA+>c!S9$MF`ueroWLC!Mu zX}Ei~^WChr$1*xiXy84m80y(;4z|03 z?nPAr@#Fy-8YXHQCQ-(`4vVA&Mb&%oem;LDC!;{ugOSnPd)Hv3d_Nc}BzByjL`g?Q zbr}bTWLK_-6I8B{QirmozhQvN*0`4@U8VG{iW$h;fsy+y%^3#43@D_4xZp(?S+!|; z{EBx_uPBohV6%3iZ??7CdLhRl7M+Mqd1XK3fZnVzwzYgm&OzB@mKS0F>FBk(4V@~I z3)iU9V|ogSe0>?PZ^{CtZQ*cuXNnbvtNicC!6yEL1}(*M$C<+co50Os$?Muw1Ul+* zfAk>Lq31%1B!S{22xeH&0fGY*!;y6}PFV?1J_o@-N5_NS0?!X0dO^S)sT3*{(7CW2 zxn!>c@s4KZPk5~yFbY)i8Pv$2OnH9{l&nA~qgi`Zf$2C#mN>1d+_}`Z_juajX>Wc00+=j_PZLq|Uv1y->2mjJH%^<+tIk$!Ryt z%ED;qCWgRHTwNSxuzv?Ug0(X+ZOh&;* zstACwzeYkm9(p$TYSzzYF0ZbxW~vm8uejcgjfwH}^n~CjwzpTof_-{@2Ptg=WwGzy zjj4kmh;!K8*q`7&n1B}<^%;|<^?Ymx)0pYdCKR2z|{CN9;rtxe0Nn7wvpnPMXNyrDVpRk{63$@K+2!nTl`~H34F;W<0~~mM93lR_Wo_U z_B%6)1O5GA>V*7Fra&op3Z^G{d3k}{g^`LA1YLh#j*nm8bC|gWoa;>WkPWbw9L#A$X4VJ=4*c)nW9?pTl;lF z&VFVrL~?T@_I6z4*RCfLtjnlrCI-0OaqaVA`2@A2GZv)D&Tf8Ae;U&{VwZAePoC~Z4* zTs!PvTbHH0b|$L5tLt^afIx8ruG|^LjG=?_ftzcFGtCL!KAW?3OiviDl$PgAXB|#G zsTviMy!tnDzh8?nNzgndVY)NiccYz!-cP{N9A(mnG;&vO*jRdPh*~ zl!Hh@U7fBmyXIB>uU}uFXQr(^83Vx+wZbP5m-fHUCott&@M%$70t8(MzBA*D=8zBL z-f)Dv?iO;yLIqON#L7M;@SxBULX9`*vYvpP~B1y*p(!hZG`EPln#5(L)(0;v%!blmFH>G*S9DBHmQ{^8OSW{Vu4Xt#cxz?P4jC~((sdSPoEyRa zB#PX?Y!Uw;>WL{EGVPN-*1UUdeQW^xi#);PC|3D zAUw61)yHC9=@^hjl!cx3)?qp<&6Q1NQB^ZEJ zMZbhrU~ajYUkH=3=Y|TvFka zp5&VdWb%DNv#7m!`X29o%mj#}UeEpaFpSqeHmr7XykqL;1al^hOvpuN^$$(;Oz!T* zWu!N;+H!Q_o#vw6%QlLQjZLV0QI}>6I`G2%Ytj66_8Nuljn6VnMOw$M99}{9bZWix zQ@c2G^HXX(Dip>LX7%&Tk_^Z}i&ss0P+TTl2(doEh^Kbu1LgZRqoud^G8*A^`L zs0Zuh78*UMc{uqxp}AfV4>S1nb~7i&aHtXE16Fd%pVS0{eca{=6@RFM~|_;uw9whWBC%hoU!f377J*KnyVbAcL=a#rjA zevjUPy|NXO)c3ff!a|}cqR%$4ejrcu%GkHNR(Qyh%u~O+>LV3Hb2ISXdDjK;o~khI z)7|xz0(Iz~OUAp{thx1JUZAmv+%SGEdaQKiNE_`^liOKRfhgb0h)F}SgE^R)3tU&X3wsu$$q-u5Gn z*W#n)ZFZ2kCnGSpggyMJf)}ZQ<+W9~GI&%s6ZAy&w6a>G+zIL9wM}3!2j$*n(eof6GmbLzo>eR%l}0|4!>>cs3^e~OhvPx9`O+0Z=^K;Dc=o5rEz!3NGsr`jC$n5V}XS8?eiCAsiss;#1^MBzph7srG97HZmI$Y;t__#F7?{u4g> zUb04`MGD!Fq&p&2GCQ#$O1lQwsKvj4TKw#DUCr1bBJ?cmcNr)cWcY4)bQD=weFUi^ z3%7t2Gto1MYN3GK*Q(#F_rgoORDaMMFbjXokE?ULj5ZLN!SjTMGW&Sp{^v!t;6G%%Pgo@O&iC!Q0FxnFP8nqhccTn-)fP|Qi@P?A6zn>gGBjYJ|s`BR_^ZIyM4DBd=8bJjXc3N21LA1(FaMkv>6N7(UUZ5rqR8^Ut6ep^ zQC^kfBZsGW{5qqku{olmCp%Pj-Q-3jbwztSEdh}h(@=?Rktg-L*wmPYNA$+~ArOL3 zp7TfDQ~@BB=}zZYzBoE!0205voV- zd?~4QlEtz}76K6aF~YL)96^q)mLMDd;1?Dj&$>`sMNyEH&l3?D?Ed3zR$j^{;+mbF zBRnjI0(kF-Wur6&QsT^M&OLt5s9OTGdDy+I6o6cTt8(|$r+#t9?qVE>1mtp)5VE+6 zr>K-Z6n&eOjJN`}GV)~-H?q@9?BY^sOUiQQ4Vnj*o!S?5;m~@ zK7F&Rne!Zec-pB6tCU84)fb*rgf*`6ugPygahrO{(d74}@kO-62V`kYks0?yoWE~w zSjvOQslZycfDMgtFaq9^t730uDS-|ycKQTl0T0(&>1_I>g%(=~h9njo|) zjo7O1E5SjO+2^rChQ8q%Ci(mlWOhs4mOghymuaY2m~L;_bfY~eFer~QTh!~a#K-)L zXgIx*b+iS^zo6)Wy!=q#cKl(+3;G55wk%_2Tb}xrm;#zeZVJlhsxb)vFBSLp%S)hn z_Q~5l9IdViI_ik$0k2|vsH3Rh@J>(9k-A9)LPHH@g-{g$(JSd?t~!M57hJJy_4xQ* zJgHS3_DMby67j?LYF{j>tRQ>dy8-R-P3!~Tb^bNqF3UBFnsYNxyhIqex}`PwBz$Yd&^Wc zO0kmVw#s@{`tw~D7Q?Zxt7F#M$6Bjl#oj+3^(!J|G>tLnX;kSePv&7jjG) zMQEaq1n-N!!LHseIs&2_T5upYCQYg%Qi^5dq#qEZg~W*o-wHCmFO-QR5glwhwL?*m z35zzzqITVxax;_SN;JMxc6NU0hNmaBm-GX-Fdvty_3rYpZbQ_X@uSx4d`*zgcoh}H zHBq!D-1t)FrPEYVF!UNpiS2;_(CjSnl7GDd zSDsks1u-|nY0Q23^vEsSF?m2*=LJW*+Q!yNLEcK(YM+U(&CC z&+6OCtDaSj{```ZNvHLm&DrE$$ut*HTR+(rz$5 zvk@rYFMDD)D-}+nP1(myM5kB)#ONltfYw&w&oZxP2#Gv%-(#SSRFIG8(kC^XLtwD% zp!b(^Naif4+8IR`=&wj>$C^ygfHnslgDg!5WsrbcM zc3-LTm)3?a5#JfCiZzS{KNXeci}M8wja5AkjJe<%NxQ9Kk#lOTUYw?oh(kG*K2k{O z;{RED{SVRLSF2y}>7OGvNf7ed>*lx^V7mZ{(05xb8rO=ji_+xD%$W^W!_lUA@t08oq>G*$mue<|tYT zk0zm;o1S?>xcv>xx?UIuxY! zmL}ZMnbq>sp#T7z5dls5oBl!;9y%dnx??aHqWU!07|j${f4g++`z16944kN_E6IAC zh_7zbgMB``o)BU6v%{9+d7wW)vXrPDmtgO-pKkM*;m~mA$DKgAXzZpiqT8C6W~T|S zU0R$k2b{7Y!aQ&b|@%VflY&+?9r+?qZsC+Av^9wP|w2kYi*VKU49Nx z&I6SsQ=N}>n_a3|is}7buHjN^KUpn{EGicPCUv~1Dgr0GH)nM=nSpuZqVuk1*Y4ro zd(H^G!Cc(Xz;x#DpA)QFoh1RW)JMttTkM{(emSwZ<4sZdbx?L5i%J7%A8lObLwpPV8zsJ<$3!#-TEB4~a!V;0pDAzHX-VUOW*7 z0M*bnHg0V=1O`(lD0k{mgb6!+FRqz11{CP=-()$VXjVoOm2|S{T4A6i*0_uLTYKq75eZr&`Y<||P~(=!tC*p*%j<$Z?+ZZJ#`cN4jN^&ncQjVcousEu zF}lPKYvPu?a9zpLu8ncdBV}P6?*IF-_9e`(}a|%OII+v zMcNy@&m;GthIuLjF4@?qv^;w;n!zo(0@y(S=t?h;4 zT_$o*jI6KU$yCZc=MJ)^Ov4*~@{ET-z!syhr3{jL!m65$#7HBr^QdO&US&Pi0_>nF z807jX?Y$s!QJxNZ|4b5kS>;mIeMVW4$Kwd9gZx{luzv5UP!LqxwiQ1HAUE>YPozSr zpHE^(G_^rP3bWB5hF&GuXBd`s=c}Wojn%`FoWw3J<4v*VRz-S zs6aLg?39(UyGY!Zvy_nkx4spBmnx`+8^1jUBEsJ~kLrcmN5<5bZVPK4{K(lM3@6&( zAI^YzKA&SA$OyfTwG2AC$NxOKz0&_R83Z5a&6yn4WLCR3YGVSb@-2-*&LOyT0ObXB zmgJvB{QCN>Ur}p-QdYKCf;E`nTWu$I`{Lb?=PGF~-@}H62Cd1G?45t;?6X|kX`Ah@ zBdP76MzM?+d}jji*DKb15>JmGX%K}$Ef)#?D>d1+`w@T^%m=1lvyvTK@t-X173J)u zHEM6l$s$IjKa0mF&YaY5T~WJJbt=4A$&L^GA3xZO2X(qiIQ;D+y^Nj1kL-trJ336K zb=UK)l(28-ZLWDcy@a2cjQ{D59)8|6ycnG_yaZ`qkk_5BsP9!GOo>bgwUG&-WsSyl zbyl@CDiupRo$bCbs{@saDX(`4lP0Mc2z#Grbm>i?-l~Hn#=-SpvOOB>PSjGJM>D>1 zp(%Frnw^BiQhafEUA^g2e4_=)VSGsn|85MTQUL1G5Y?t3quNuSbmax=-6X*w5q^jC z2uc%>+vy?SP0>+}L&1p2BVG&~9Aep|WBiA747E#@15+K~xlbL-MWR#VwUq=Y9y9Az zR<%wM6(+l$8jO{#q?@b&GX%6}Wt|X4v?7@-$|3&G&H1{|49x6cS80@yrZ>gC>|`&d zq*S#m(ak00YYqGMniVmMF87*T_(#=)%v>uRjEd%Cr>yax(T&-c70X7}$;3Va+zH^! zgMojcOEo?=*3s^LqwQG}f?l#l!NoLC^ZZG?h}vSP?AHG3>h%6|qai#y2|sIl(M4(` z9+*33x?c9bDhhI*z|s0wPIX$WsVz?9VPZeJi7yrzr^iVkq|>LkGWuytsA^?T=nN7C z`!`+;gW=YBSN(olu&}5Na0Rsi%shjL=!&U1hYkLCaHx%D_uby#A75$9VO6`1IH3Hc ztH4I1#!)U)A9zwoHe69Wes^ahlj1-7vKalZFun*Zk=f?x^>Y$Rbq~D}in8y}h$Uk* zP?}|txqvu$4iMA!6!H*i{SyoQ^bS3W*|6u6?T$T%?6PoikUqF8)nQA2O918CTUUhPoaDeX-=NSt z#Of-2Nk=pVSmAdlJv0&q4XYziW`&ecDpsyG6pcc|!w=F+9*js41YB`);AD8*afRql z%?}tyi}Z$Z`4+nGr6W$vw9BbYCowI|?^-m!gr@U=mz>WX3CsSpwzIsZC*3m=Wn0I5 zkKr-2A#FEAjqooZ${(^e1Q6rX5^(%6rrZ%fNxRGc`!T5)tzpA=0j_=Y2QCk4$kJO{ zd)H{p%s&_CpFxnwehPxbL#i)MmF#G1HR0z&v6cF76OW~&8OR_1B1RlEv~g>2I#t;oxR`0YNbFE- zRrgkA85!Wa5OG0TlSW%Jy7}%k`@EbbQ#%PIgF@8C;6NFP_v0!2E2BsK%j~vC`>s4V z`#W7x2k(N4I!F|hzdLTn+{qDo>4Ts*!OYKxbZ9O)IY>2Q&Z~PB|J78pKPDR8jT_FQ zX#3e~@5}IKFHAs{`_ziPcy}5-4eMAHW6KqMsKeKyfGYaffhOnvIY9Y1^|>uota;oF zCvn)pF^VcP=bPa|jP`&VNleH$tV;~x-YYCg*{L;@j1-?DBACy}SeJW?%fq8wS0o}I zRGxyYlx#sl(@~>x(p#uOgp@xD>@$KB=IH8l?!h+r3iLy-lQmbc{ zJCk`A2>*q=cRNotgp1hwU}pTwb}R;Z-U8|)4_`tOcrWL1U3$u;>P6$lgMVw?sx@{M z969!uEx!0sa%=z6-v5HYVRG?||7Zr%Wcpr^ekCh=9IRa_JY9z6@&F{-WiO3aXzT#6 zg}xD~=5{l@e9a#{!*mW>^P$_plu4oRC6HD~xBwjyJ()eAj7_qTkro`;5{`zGSAfI# z#DkO^5~{bt=Kz3VX?amXTRxv5NcP1+_@MJNf6Muo$c zeSr#K)w&;Raht@04i2)|KxwGiUtFTK=6q1~joB(B&1T#w&3d{>0w?-KF*jn1p{$NfRx!IQ_n|*kD+*xDUt=KkvC_~o?vFrei=@00e zD#Zp%x8E8#II~;L%u1+jcX&7ZIWEN?KIAkTe%lni@wxwY%lX7bm{(!rj01mrHr2{srAQQ34GRe00=`b@hGT~ zmL@!HJ3x%m#b}H52nA?-H~R%0gZ`U0S%_c!^X}dK8@iK^&9|%ERC|Po@{Ia+WWNw7 zZ>g`PNGr=ADPO~}!@WR(htm@7ANtrL8y;X3UleHgddcG}-T%z`@g@>YI}%%3!^jEd z1OC3X+oTfnk473(r9M(BvEv`TQi)oSFyJddUDu_m?c1}Q2Le?6BV*>}MJ2o(2k-KT z=rAf8;l~7RT9lPqxRapxI?v-=M@cMPA42{^i0^c&1!@`c<#|LjC+L zz8rI?)=#^6P^hm$8#@6zRl`_8a5<7{75S$R$VeaEeaOU5DrLk}*A)8J*ZX%dX@!}5 zRr{wqZSF15jjc&+q3j>|8X~7f`k^l5A#2jHT-%*WR1kg}>XR?Ta-cp*QPyK1Yg#%z zxKRV=| zCxM+Xk}nL`f4M{Hgth8`^AH6=#0^3wG9|?kDZuCTv`LSzcqU+;bB^|eO8t5Ck}|DO zHnP7<-Qp!WJe^H5wt;#PmsjtH_uzd%Km5D=F+YQtZ#NN{DSqVow`1TN`2R8WrOOMV69eoqKOd5w2uk%T|qj9mZHHWKXg)ig4{AyBQN9>xAsfSYqsh z!5G8L_q=D^&+j+?=-$W7d7t;|yq4$d^?IIj^yU92u226HSLAU}R?r1_W{I+^89)00 zQ8lMSvd+4qu@B~}dYv!b=I2Odx@=;)Eg{8&YQ}uYL8$fAItP7xm5519UdHUF|Ip>*XQh#Wv&E2m5?2Gy*Q% z4}G}9TpWGoluC^io~2Gcx%fKOpi&Zc*f zc6AZ|`RIF#K2|6sqh%BYc)a<-#bt$;b`sb7XoUgM-y=q$g>y{|fJ%4%SDaRSv_z5K zGn*HuGY?c1&y(p(3faT*91UJoa^{1$D|%@EL^0G@?E&gonN{;`vAXTdk`07uTHU@V zrB8CQ3JOvq-ngaM4DsT5{gX5H1|~v$LRy*T3c}m`P@?W%)sBbuk>XDxH|+G0l^-OU ztj88GzRFGBU6OX#3OC=!Bf|TnTw{qIh>7lt(H*U_x#^X&J;~&wgk~dev}wLA5kc~v z?1NI8gqPf`J2oDahoNtiP{I2f4#*8suNH;t*5xth%@^T(80JhvMDaWazEkiTMi5S< z8jEPz3LTWK+t2oWefW)KdNQ+ z6bBidndfcFP1DRy1Abm-;P>m1KxERZoiq{TqIlgD*h8E3`UTpn0Idg_C{ z;TK`Kt)&oY$1+T$u3tlXNr{(Nz(gV9e1ZPKC%r70A@*dJ%R%z4Zy26OOcpYI=4pHj zD)6$o&erZpgN=RT)k$mJ!DOtGB6EG2PwU^yp(V#d?A@=$h2y;YbRhuZAN9lnihmYs z+!2{$)dK<;$Jf%APpEYDe)*7gv+fLrNOQ8x--fN2DR|oP@Gy~tw*H_X%U;LVuCa`c zFzorM9Pk`4z|2VwusH+G!)e60K96BLV=yP8cU&!}|8)NH;A zu3PerTe%D-y#L92+!E0jBto-kHE8X(0r98K| zl^9#;r|X`-9juj#DxH30aVz@X&P2lzNU6y5rrXyrmpCKKaH!2E`P;_N^Gc70;8%(x z^Uw{J;2U71cEPS9lNnUeIQ zn@3H!xb@>slLwHh`P-#tk*2#OOu9WId09d-NtkbWzHYls-z-X( ziLs6ab{8-~!QLiSbMC3x`8_oY!io$vG#KmYk}gbP9Vu=pTy;_KN*NIa{yfIjcuh}X zxtq$0Bkr?HG4P$1MqXdnrH8|hsJ}>A{+zaAetBtJPtjTm^^8@PRX|X3b60l8`uGUY znXLX*4XhXWvne9Gn?A)I-c*ehP|;qXmB$~g696JPzud(X*C${EmdMNnzkAtqtu#4m zJRuc2pb3XkRJy60S+K92TR}K-)#{nN+q#>vZT|KVXG}Or#C%Q*RP(JWIypqw zuWv!w#cuK+`BA_5^}#xy<@#lFYutH%{y8pVvUrmIF+K}h7WQvRHlisw^reM`=Bcle& z0h!e%uYEI-UNkTBXCo&ue$PF_N%|*MfbI9{p5hD&Zf@d9S$@s-%ze@<)qi7HTsYZe zly+LBYjCp-H70)?6Xh<6l$b?RkM| zG^mhL99d+WIMIeJm6!6{oWy4fhqy@>N^chAhUzluk~ct|9=~Fmr(a-P3>Mi?B6V4A zTN7DZS$H!sKEBEWW>c*&uQ#GsqbQZ4mR-lJ9|OUpU+-e+@qmf*yfsDK+|6t!RKw45 zLf_tF3zjA(P;ru%+dGaDqOudy7McF<2j!;HlB!Jcrdy(5V7%R) zuILykY!7W8IyzDqW+Nl}BWcu!etqZqMr1W~#(E8bIv7m>DR> zdoqw$E3-$dxk|OpRn_v`Z8 z6EM+7u`fDne@GJZI^Et~W`Z^or#|r*JjdT~4|{d=!xguis@ei3?wqvG%ZmhSYjc%5$k-IPcj=lD_upm}6{#xvZ|~zV?5()Iyc9 zwB?l@of_)bT;YW(ua)*`04h_7|Nna>lc!GzPUU=Gs9xZW)jjEpf6~U|npwmwGV@hZ ztfPQKs8-I#-!rSzVOCkE(cQXoW3|s+b9}5}<~8_;dO(WeBi7kNBGJtjs^pJhibO>X zbac+}2?=Upy>rjk-U3g;+gY=0dVB`q5aGOA4s_de^l~U>w*x@856RundHe0m>g4s% zz^MK$G+H0u9BQsJ0zf%u`GCdUArE@>bZ>0H#6)yg+M?G*z1^l;T7;Rna)U+)3)oy_ zYlG}y<`_a;5FId4yZE!|l*<2?nE}QH%tDWiIh|r;Dw+%|J;kZVbdIm$^L=?tq3!7*CwTk^k~-#)ACzFg4PGttQ9T1qy={jOM7QKqB_fomx- zw%4gl?4Da6yTy@FEHQsqd;L+$MtWK`xsZ+RD*u{W$5&B6WK5n{&WipY(EC}aR6H;H zLz0_^Y;PY{T*pFpH}~czjqMp59)zFdlSq!Qd8{2CMnZGEgb$;@!=*dLEnp50o?CsS zuXO1U80$NQyz=H=;-Rkk=)PgvJxk;kA=ylj?=U*(uC^O}a&2-a1-}ABSs;j>U<+7y zPry2^>fsyd!}HGp+FbFmbtGaD&p8^@^F+&uReykmc8*wIFDLs=f0ZV9)b7mRGdDk} zavqE2;FZvHH}CoO(vw*I>D+q8ZydL8!|lCgYLVB)ipwOL(wF~d0fWtK^rIntJ5baBfS$90VxS%xEQtT$*S+VtuGo>r zXALZnDvdkV(-g+FU$de9#T{YxEiZIc1-p zKTG|5eW^tUJI%N7?f600{)z~fQCXqqTX@yp;3|2(Dbd~511jojT(`w|qHtczYCu^a zQ@@1DW##+{N}El-TuGr0a8Su3 zU6sJ$8Z@5J{+wApuUeFLxLvm5v%QHn{{lOYIm3p)4v}MDqANN*HB!RTFNXrh7#Afg zwXL8oD#jS>uUmopF1gluO|9tEY%a>L^dUvdfM-a4c-DVmTPtNAgkg(HaAeT|>PTX2 zOiWjt%^Sz1r#qhlx;hs0$v#$eQpH$IS~AMAv7%2;iN2lVX0R3E8V>+)*xF7n5DCmR zn(bwiEtw&kkK~=qE*crj)O{X5C}OGn&vmhd4=4xJEM|D9#@n}hy|n?H)OjL|r6i$Kn-AU8sCFZEUXlNL2b386J>PDZW;nuY< zkoguBrZ62yy>C{KqPyK8o2q@{v;;WIrY^N6&9i!8eAHR8u~FQIo4IZ3%rCs2 zRw6O{xja&`*1RWA_7-vz06tEtvav}SSzK&}S8Z&kRS>HfHOw91v%YIu%qZpzLfFq} zy*ff&y`iBP(+|C8X$ZR*FZ+eI9H0|V7wJ^dKB+<*G^`N6+W8a?8*#H<=-((y`IS3r zef_9Or9mZ9`>t`)UmnUOO0o)c9$^OqGgGggFk#D&Lk>Q+6e)dbVH9t`Hk6UV! z$Dq06Z`iU}A$W~r2-88qFg2H$vABH+kJmtyeALM2v8ZgmpYWx`d76$UV>(;T=+;HE898Sl4YG(t;+M~-Bb#PSw&1+wWwWKHa%_`;F)hL3x0=Rv|vXWOa3#0ej9GKNZ+Z4)Y*MDpWc>LTqwDO zL@3objlDpT3wO6Ib(6`-DTS}oXK~ioFrOsT7Ww$q!Higszr3!@qHPJ!;uAY3idXR~ zp(S22Dqj3coc`gh5|=L%(Prs+`#CrH3qG?x`sDF@_y2Ops)1UC376OyZKM({ zGW5dcAu##$jb4?&supe!4!qSBQWtdMf#AOKdS|qL9giaF2A5l}))=5FFQ^myz05Ctunyl7sQ>H%!i=L&DolK8wGMEuu zkb`bElIrmifn+>>Ftw`N4~P0)$|NBf`yuOc#x6K&NBpY9w?m^O^tKwaYFt$g8v6ko z|BfGQG*T~rX07X?2WbRM`{eYc(q&_9evD%|Ym-ib^xkW|UVY>Z90`D)rtULIpweh- zY^s4oIwFikQ#--zz~{d;5db#|nqps`515#rd{Lb{8NSH@GpWd`Mt<30Wr9%ZAUy;X zFYq@WvsLWw*J_L5f6S-OD8U{?-Z|HG%(mreOx`;5l@YcU{$3ssUEJU47DTcfZ8`u` z&a&UQhN|Fm(yCTdypP<%(p#C54^mtEM0V^2Co{nwL%M(4y%@Y+N zd`oc3^>;8fO!^&Liv}h~Gb%tU_>yUR-g^A?euxPF-`sx3L^8fu+A9T2q*(Q3>FNTl zg>9jMCTiMT+~1%o;bG3t2l*NB(dlGq)t`zeib~JhNbZHi` zAi&MdOCpWnKAy|ibuu;X!2xG|M)*w9{9RbW-DMLa?F8Ox65WS@&uQC*CJMCaIU6Ls z{-e*kOT4VNCI8M$(nNJMW^8OqJe~*VJeg=aoV0nw6nDK>aG#X;&kLpH`MIF_=neR< zpq_J!{rJBlBC|Ks?05(OGPRpXgES`EvY+`zNSLfN<}zbjcZ(iYHxKs`O;yvdw}d^Y zG9XL>J80HfW^p%5^=7ZI4#yu;^t84>UX`l-_}OXtMSA$=?UO1w(b2dmaWZ|<0@ZAR zQuUaq1u;jxKVNf(q;=mBj0IFE@FGQG!;I??l_vt{&S)KNJ8e}h2BznK2)nX=S@jpxgUdaa_D_hXuG_;qddZj zu5v!fEI8iIE)M?wOH0WBsgw)GDYz49j}$*#adO zmz+KqkXrHoSX9sw9Bv- zhW6i&`&rJ0Ge}?Jve84mgf8FL>6fEpb*mkgT8n(2wL}JU#Y@m;S84-gyr!*VdiY>H zgKMF*wpJ2nP*FrU)_2q8E*%m=f)(4Ql+_^b-WR5sdnes#Zt|jnkP&Sl9+XEqT3cxN zM}r3!RQ7>KsNK=NjSd%a&u76MSWg;T_&mKbQahWC%XlZfbH$nE@)^4;0iXktw@iFQ z-)PRgNsQMqSs!zpZcl^z(MocjbNkQPAne^i;>KO)zN`jf*WPR%?9Ju}?!*#^Y*IeW z-Jx$^jD&ACsD5kh5Fh^J&}(UKw)0Jdi&wIm(b&C#$Qb|fJIn?PitQER5?tJ%e7Gwz zwCB;SS}|<6mzCpoQl`x0FhRDd%0)fv!f{Hxcxs*9+&xb%YL};)gP~IIk$qCw8$To! z-Ed-3BO^nbAO!9?t?mI<32fy{r^y_gsC0}E6Q7KxmK*>kW#H1LmRDh?HZw>&j3>H~ z*ACF+TJS5t;gMdLv&fMTT=(9{Ku6sexy8`cmAg;=48yy{0~`5VBC1F{OWFYI0RGQR zKa2J&Y@rxC=9jLdNc^Wx3NkiNZg(@x{AruIpzWlUm9f6^NAi#(2cJt3d*XMR-H8PN zAMfO@{bhdsEwEzzV%!;l1vF`EE^TKAl&79l=Am+j6Q}!n-+?L-XHZSi5nP8=Q z&?x|PZEW;HKf)b_^}X4oGH&nw;kHN}k``g>OX&vv0)crhe?#j}1-p|)W{RsXg*^qm zQ9j5mPjfOt>6-G-`_YCIgyqYjM^l#h&I&@{0(@f5|Cd8~m?`&OlgAw9F3P!5AR+PV z{j8ojKV~V3;AX;*h3|wB?5Zhs%$@U|1!l4L3^Wf*ReWr2rfY(%#l>xQEtZFCz1FpM zGIID*Rk574^IUCp>ttUi?#;?KgZW+^!C`&Lb~cFP-z#J6LbbhMffxGkur7;V6C>NS zPacT~XMCjLwUT&7s-F*5z&G&vXJk)xaGj9@6%2tIj{?#_jZ*U%f7;VtH$s=?bcOvr ztE%It8&+m#C3((PTesAUTU-A@1IvdG=(-GwheK?EOQ*^vLodsS1N$gFhfy32pw_05 zm%G0KK0;Zei8SJ#(H8C$6b7>2SIhd}n!i2Jg4P7@D`zo5hgN$5$&9Y3}es;aDnl zkgeGjH!3~{29r(A3=;&_531X05sSud?F103Z{FBhU(U+*lpQsz*)diq_p_$Y&<@Zh zlweZltq9}Lz_0+?a)WB1yccR)UJMPibQ_OaQ#=>EzTKSGqu_u-_+>lSSREA%hHPns(=sS zxu4ZNM^>tn{j^y2VWKuA1uq4Y{1}s^(9Nz(Zj@QEZc~>pDpi+Ui4dg_#uuq8<7|y@~JUW0M^bIa%XP4Y+{uWligfs+Ge64eNR4>!Rxn~;ZEFE z^`kNwQAKB!7+n)_lz21c>wnEuFXrb1Of_Nu)#x@0hL5tFaa)MadTwJsv{YauU3 zOfg6V;a$qW4hc{kdLYL3YK);T(y1>qK$R90R^s*BdG32`uJ87?Ilih`T@nPi6V`s! zuuAS?#gAYTDiWJ4Bup@YOMk1FR223rCXdJB7;miXtyd?zy#lN`gPH*%yI6Y!jPL(! zFDEibJdbdW!WH8#&7MJ@L^A`imS0Mh#d!7XYtW{Um~MfYW#7GfP(fb0znyz6q~_+; zoP3a8hezzL^wV#@4Y?)Oka79>b7yw&&0$;K9qp4F+>vMHiKqB9FB~_1{!(H9EPA#F z`H-U}>3oD?2>$*fn9awL$w^vUoF7V)|?#;Q)!pRj+E#m_t5mG<_P0)gZn2{DkLQ&lj8;6+IcU0n=Aj` z;UqWMQsn1iY{BQBm}l3ZDjw6B_pd=E+IVRyO1zTZx#)EurmuIM+7T@9*6>4J|1IYa z_QYZGs|&pC1oOIouYOuYiei~}P!>?&urRvDvgTtd+CP3ACkvr1)-RU4o}cl z3?>1t!i>1tJAJ)vM$x6?Dq{LqLD^gkw_Y{5U47@e+^GT$gv@lN!p*VYFn*I&N&zi* z_2-~+fgGNlNw{S#%nugk1x&n1SwzL@2VEGh@y4Jw3RZ67uu}mmz)Fk;gEs2uu6hm* zG&J>$SMeozr}Z3b>@}cef2!i1_twj+D)VBm@y&kU zDIQUBjVw6KEXU#bLF9Phk+xjkUxHMdoBUQ5(0{b-r2IsSy-+^lV(OaG_!B${*7J&G zh8BeaTA9?;ry!MhHJTx;m5BjGcXAg1fpPnwtkvMc8 zx79S^DyYA|ZN|nH&S)tJcnq@%20Hdl^}r;(A^1#5%m>nxmg)QeYWC?p7l24Z>ud2P zrW_5yk{+BvET6@O$#@fRK$Eop>UWb(SZyO4HkAQC z(%UDy<$(GgF?2c9<*i||zHZiX3jZ8OtWeoJ2H|ItG_AcPTFP@NqLgnDGtG6_we@r*&6o;PF4}e(PLy!%O-|fs+j=uN6{|YZ0z%u!q+`8ZJxaQFiu2 z@_<7Xe1P=5Ai4rrjx@ief9{olZjtVGyyoYq$n1IwOX6(DFU5=XsCIR7n-sL{7Z*#b zOMl{fZ>^@z=UQ#Br2VkL!&{PyaN{H8W#(QB6;row>x}*ilh*R;+9B9i$tp6x7ApNw ztQ*@Hrq0EII2z7McfbUo1^sV$nZ_!iVZL&k#jlN0wr9O~u!D{=eXWtcg1K#sV&I_4P(fCHhE=|Tk^A#Hi3-hzEn z(sm{~`gPFSrD}327ghB2UU-2*F0hJwPOLJ`b9PLhNx>G_&y9P19gcq&fBL5;pMVfQ zdL|G%p`^&b&)hlZbIiJLUU`R+nhzQ@7~)1fXrJVR=nhyaSLP1;^IwR*=d%>h0f-UU z?~2D)d~zH@Pgd*_768o_FrTYEw8XuqS4Y=>X?VmVJp%P=`V@~ibFV4}Y0W7${ZX(<8 zv(<0JW!{Aui21(nt5+3ZkC`8PyR$55&P|?hr4n@kc*3L=coWgo4A0kD;99$*SoB&j zpkOR0y%bE1>EnY*tFP9+013c(Mdm2!1!jl}xMhU<2m2Iz+&3QR&#JOoAX$5^-XWw6 z2E~+=pI^yoXBAu-u^G)^+3o3BD=T)fnwix+!dzilbS=!h+!|wQ1Gb_N)m)`kN3Cc! z>eSlt{#{a`3e+Z%gEP0p+99jF#Lj&!j`FK#Zl-|{!a0@!#mxyBN8>WP(Y3}2+Ti^B zoU|p!HHVIPdxJEPvn9+qm{#5Bo7xC5Mg9E*0#)|*AObb8R6mB@B9;oSb>38CuCNF% z7VhpXuZj`38{j(~j1?gqBZS`2P-;LOR;_P1(5p*}-|vft)2AKl5x&lCO0+6DAd6hO6X-C?fm1roaaWC z02HNIA#$M)q`S2y!5M=v;7&ennN`DbRPmCI8P`~)qysJrDzbqw-XOBHs5*%yj z7aBMzgekaNWVQr%zockh?Q4Iot;PWMU=iV5*j=}&xiFzax)k1fk~hCl;!wU^oEp}x zM5z|ae*9a07I=Wa7KN`t%(=G6SoBOoU8|jGGJcNW)eR=u=3&k^r@PJmbkNh(oJ;D3 zN-~C)9o>PReFeV~{ABGkkd`SIGm6a|SwgtP7D9?sA!_``Gz0Hs=COv0)jiSV%~`l> zMG%8bGlUO8uqmzu*A{hu*R{Wxw@~8Z3Y98K@8?^O5pY{;AX`3U34+%2g(v^ig4#Iy zj)2>KY2Dpjp2bunwqeFJu>hHr$PIv#mJw4>=lbWXV&UDH%n#Ag_$0s#5UQs4tq9o^ zPi_yzn$srV3i6ziFuU=%(yn3q{?kMLhErV;74e;t+}u3eM|J^0@I(`cY*0tLHW*|` z0LuX!^O21w+kK~U)&cb^L*NhUENHu@1&$VDmsdF}W^A++U&-rVI3B1Tf7NR}`jk22 z?-ucmke{5)_{2INLrv$d3l#_P;c@XX6hM@GMXIB>5kZyikR?!j(4`Fg!Kyy63sC-p z5~*qmfBp4o@yqTa_1-BW5F#xjLuqX+w(K!eaei17d7Mur+?Ow zYo;rVBoF^-NA$kcBu!n(aV@GtxzrCpB|9z`4uly$pS(+s$lijp5qZLH(xgeysGfdI z?7atkVP$6PCp_&9v~~C~X^6K6Xs0~Em5W=JG7-j#mY_i*}QB8PSxf; z=fDQxQf*kD5=%G5Q+$PaqGpe-JJt_S&7KMga;5G!{QQ1r0_DiV4Va*{ja>1HYb}%2 zLpct=_$SVHX?W_!#{Lo%tlI3ml7~Lg6cu@_(=BJ2CmE!rFZT( zK4s@(H2FiuiKcQ8`AYvrfID|b0bhd;>OCg>!p2a8`Es2uMS#_nkQOifc#+^sOI}F= z6pPNlQ`P|dRz999Ud4EhDQ$qWn0IOBS>RC5>eMUcA4?`b0O1gV6^UUKSJ0jK&8)Pl z_bo)cwm7q==tiL8*!TYKx70y^(lG#^AUoAILZ68@&%R*J5QQP3JIDeFngZ*|@3?fAw5u1&J^=IO+phNLuR!l+XKrEib8G z8spzwr)bQ%%`P_Q2KFBD%;)0fz#jp`P6x!0=Nc!$%!~4U>pM|#qnfCE`~duuO`g_B z8N>j!7NyDT+8=13E&iC49hU>$MwcG)o2sSM&lY9zW3p*pWiC z80PZAhWZOY*CuswmK;CP|BL?sU{|=32)i!*bKv$z@@kx$=mw4)wZ3VpVz6HeR{$DcK_wm5_?MDGd>Hzyg~y7_=pS^v(XbyT@hmv(sm}z znG{L8VW2*~2G=D;=&M=|M}W)x`(sm+cO(`y-wao%TL?t(D$i&9Hd?2o_{>zp*l+8f z+nSrf%K1c6ckHq$=U9?dU!^<*6}8HFqBNvlLA^;SxsvQ^NXY)-$c;y;TRu&ptO|E9 zFG$`13NGE~lMx)nYQc#+K!-^RMYWQYMtf>3Z{xp*U?NeI(1IXsc2+x#fWFLS_ zh<+ccvTD~c#?RrJ8W65uv;wR={jr2CyKVPf5iMPZT7{ZVQW>Tiu7GQAR%*AZU@KWm zUI5}C`c$rh%uBK$6#L5E*tA2sDD^>h&mR*Nl5VE_e1(_W!{|Cd2rvf;0T#i)@L#!3 z(IUV{e0TEa*t@iv+UhlPUwWP+d^KB(u?qJgmutf+4O{yPKzAIpAw_%9KMn5E6B&S) zLhth>)=k7QceI#e!&*BvOlwlSqXkssgev@!58 zs?5i0E+zUB`PEf2fJtxlm#;HA{9+#{&T2$N+7zboPw)s0JbV+cQ1?5tZnym$u^E<&RAPnPVoDi_3SXZZ~FlA&z&3M9fbD+adsy5N&UD^@0xw z;s{l9wC-xh_8cTKSv+g6szv!TD3H{amCK9F2_A>pysa(iuFni>pn!7Y-MK2<_!{F# z#mLuZpnmL9TDok0%JKse;JAJfXpqG5{y)GUeExOCn+(v!Tk)BiPxb)~+)IDa3IysK zEc*+Oc)D8`Cd!HR<-KO7TM%vpKY6uhz^$Mrdplza&@HVYx}`N}a(#Q{6~;Rq8?OP? zza&99YN!Yvr>}kOkZFg^hVDf`7d{ZgdAG?-p(hdWe!)jMiS6w422X(6=4LO~3D8M^ zUC&uOA0Ivw8{2oot^mDL99pw{Z|sN8;*RFI&@&5&dWy#XI-q~=x%esIDM4SJqaozZ z6NG*EA3U%Gz0d_cYXaSWBaU)f(x_x=;*>e<34}JRT-F4Vbft^vfCmA{-GJl( zX0sB#_iC!H2xIwMKFx2}O1!H07Z1X&Ux7MhzDp=(v6cI1s3h8VE+gusgsEa+M8}m= zfi!{B0D}UgGp5Jp%UrQ!5d#t~c5DAQOX@~g?$$%?xS02DOX7xugDtfqp$ZPh8(aE_ zGZoXiuZ~K(lzy#I^V@m26>JR2#i0;Xji7&w&pdrb2IXLJh!KG%tbrC1C+xa-VtfVI z&f^u!RZ@Z-hFjk({P*g&`$r=qgI^J-+$oETc?DPZm?m`uwzk9#^tb?R0i8CHxrpCj zHnlGTWdIFB&&Jh`SO5FFl%ka4=JsG4yC*iz!7c#VyaZW5 zVa?4x$p==2r(hP5_wQ&=&GWUjQNMbPLiXcSx`zj90h!m)eD*N62&){m+_WF|;NL%h zsof^kR2M~9u~`#5R%}VHZkCs4zH9*1crkFLj)g2>Ug*fd{dVh1@J^zsW1i{a?6&ca zG8=Wb$3=SeyQ9$IVZ~q@d3kfKnlQte7d+oTc`u1AE&EJ0o5!AJHSY*(tx%)8U4vSX z4<(F21aNcJ;$j<{IYHiA?!nE^UkxO^nV<}5M-B$kGza4CY0U-V?PpyhBb;Xb1`@CI zz<=Te?W9)Fz`~#9T@c-6oLKr_<90=vt=jyHWgx*(ZQkDyrUtR?ZGoLxNEqvwJ~VxF zj1TPBLhUY2vzzcMW_v%$pF@Tl7e?gqUb^1jn(||JGrE(56Z8a<0nx(32o&p&cckyLV`YtPuEKu*oPGmd zKxX_vF&*u{yQdSV|Axr|9TTUm@?*S)M~Y6BIrJ_AjKWZ3sEa?Z%{~f&xQX z*v-s+QrWto)M;*Tnh%_V0C*=*`yBWf@}3TSbZbYg4=-5e)1N$lCsv1d$)RRv$r( zB^a!d&Cijd)OtgOE=8%@N;flmU1tyn5!IKBB)834c6Q$OZb0OatPjS|)$+m)?{DBZ zZ&{RjX!`<$i1E#PfZgkfse^sKdBQgnF;@cMTlAKa>M4L|c&Q{Nae)*3`p!w2Cd2F1 z%`D9DJB95Rr61TbzfXjX0w(&ou7Av9x_oDn3M+VmgHH^$KtxLrA08M-Y{*Oq8`72n zmkR?X*nX8wfl6>rGP2AcuSVbZ8mz5tmyzxdH?8UGcR8nMUQ(@`2=4#zg;@+4Ndcox z2Sy9F;XByx*%w=_nQ2%$chrI+`K!{)zc~MT@%vw}MQq6Y@!rAv_w~vOjyF4pPAzLp zB1>yp97^;H7ia3mZXrZ8OCqgAB4Y+hLc@|S7VEqN=QE2gnqD~k*U96*Xxq*(1I&z0 z?^{zk$+>}pA0g1NWG@L{`Tp@llHfhS%MKF!ZRpDBj@M3SuG;o)bppJ5Dk-vAT{0!U z#Rc}>-1y|`qiwetHE4O*r*&{&HAW;Im901!6t-4UlyE~nV}tujPGn?O!EimLQRmV$ zw`8Y@66`ynBh5tbP0X*{`oc=ZrJGOhf-`<#u%KHkHYonj5(m{+l-Z(WBTUT7QnOb~ zY>ZCv`1Vf8ccGE)Fp2i3&!mmsTjCN^U9o#BX`hzXPKiVX+ev%j5L;UJA(-!#p`3MvJaBZ_40J;zEa)n66j~P! z{BZCY0iz+-CY^YVv$0)ZOJ=>PTu%OFSp_N3mnqN8y0SOb81__Q2Ex|0vqyTwN;E2e z@#py?RZVcXDsO7G7$;%%=G%QMQ(3H{Vx4ad>xgcD3W2Bzp5xCb%)~ClqQSxkN~fsu zz(|*Sdm)|0@+d#V`dT*3RM4wazF2C%qsH)31s#?aTTQNk-{HT1WMu@iWDHSfIPt-O zAd#puH@$v*3h(29y?j_wu=EY#xJaA09W0Ce;Z=L_bQm<5g|8vFLd2T{qnkcpXExqR zRsVSprh%VzcoE+V_BQO@(QU!sG_6f=VoM3xdh%hB$!2i3*`**{2^2z|GXCB z+&L**Q{AEUf!Q8^R@-+f<}NR3dflypVL;JmFi=Z^saz5mN}_T6=ndxE#XFNeKYoRA zXd&D+c4sP##}tq=2DzoB&TZw|@g_eMbdNZkKkOozDmCA`tGb^e;PJ?Bvh^9iIK;r@ zd-#C0t8BZ-N)+p?uYvUK;@9%tt+2(|lV`&lpAa0zwv+v6p7H1zIJ2Wct4|og_@uiZ z|EKF#ATN*N>JP&j6|Lt!q)~_9D3|I{-7*3eyTl#PDBT=HE`Mz64vyFSt^&Qt4*R^B z_e}38>~==MhvxCftL@mQCeO4yYu>i_dAoGbi_YffF~i7kMREmWrH#0=oLsYsPLSVc zVR0o%N?9?*&R(I~(sm}4|Cfhz>+|}=Y7(K&d78v%BQuxa7j<$lZ{s!jWYT|^bsBCu zA?PUh{Fass1lHJ_`nQYS6>{qvxNII>Dw$LoMbBr-@(9jlO{Zf^7XoAm;bGrPh3e|g%zt2f|Abx&Cx{6GqAqeF)s3L>=JsH5T%Vth-L!5Ra|*@S5y&$~i=7Tz z%F9upeJ~Em-vZW9Pc^U0*j9W5N%vS-s>+Lu3-7)D`x3Hf9*(9HXBd6@jD=nJ zh^a1}VN8YNwz;`@I~02a+Bj=V>I$n0C}&wWC~WDneVgy|slp`C$>qby*?g^hTaQ_G z81!7Js;CHD)aiFyT!4GGAKHL%dpGK2|Kt`p4c@b~IVbV9+Vxm(ARguIZ1cM9Fy=-Y z#>6$fV0XQ}T6Sy@+*qD1cq#m9l6>{8E$2CsM?XdhsyiQJ-+}jCIMcFtWB7c^muh4m ze{-0!bJkzx!ctY~c7vyQ14;WVeh;;^j;MWVhQwh%6i;JcCgx=`5q1tVdYYm;&6Y_K zVKx&Tkd#sBV8YIFF>+>Lg;Yq?J|zS}gIgS|$n&S)=bGh#FIjPTCkKx{8J%We8FR?C z+Y4sD`mNhKm?nK&OFaa8NqlW6eVj&{plyFpvRWtVIc$-cJL3UE=l_@xF7z#=-9c!1 z7A5OpVtz#r4(R*&n4?`;jDvCRomI%TXQTR5_$9qJ-dzKGk(EYwzvM;~EC~h}pZYoN z>q2|6qRN5C$Ht~Axr~kAoz6)XIoVmu$F@GbzdHy{V1E;ze1gy683JX|K~WkNZ*9Z5 zxEO9_^e??$F@x&E-%qe#rLJcz*2mY=9_hQQhyb zX^@G}vSZkLVu;)Fe0pN+DzY}ah6*ni^~n>ENRqbg-da(FaqmA*GIiP>`ChA?(FAhS z>E)=11Q}_}z4iN#cfSYfh?psP+8`OYW|R+43%GowGyhlOb1XZC@My3??)SR04i4z- z+-p*2qZ&_l&K3_op$Ft1Nv?PW-!82X=i=eOkH0Z}bjzpdvkvoWem?%cV$d7K7Xv=ogT>#&Fd3Uanw`p?qam*#n+Nr)n6=Nnhd`-;tfB22MbWF!) z+zkS)fv@uzhgcrT1Y^VFm0I$X3J|u&&+T~yKz)jIo1C9aREnIDA99&gMWpc%=cOwo zIy`<#z-~WWe*IgIvNN^vlsZ?_yA5~oT~keu$sS?D;}|AT#tso9RCNtxAq9PoMIbc+ zbz%@j;wfR6#!Fv7t?Tl91mQm)>_JFH*h}^M2f{a43*F!zx$bN@WHA_riv}Ao#oY zw7DK1^{a}0kh$zv+kC=8%ab~ZxO*D$ZXc|(FyCscnb%AZ!|a^Od#Lo_U`Ly#iFBEw zPoDd59=pXX%sy0SR?=vw#%xTV7Xxp&Qb?%XnE^&RVT@ibx1M+mvv^IndnX$VVhh3? zRg+y4W~&?IxG{+XXwH=V##A;WT<0Z_3zr^b?Qb}t9<0G{I?^*r7dAh|7y-9=;Vjl( z0qv9eYI+^Lwji;NP(!kB>9tcUSe@8a zAqV?Wzm>rb(8>h%;Vyld)Bmq3=j zO(Saik9N)_MW00r9rZ0&$ig(cSlD-+YoT0~FW#N@wX1>RT8-@;7+D)1;;paPZZA+T zJrTklvaLnaXZt)D5^l0P0^*i~V+4q}ZuS4N)a57-HQ3(R2fiZUh6AcZm4}tHHlW*#zbkn=;VE7% zujt2|%8SW)R8b+3EaiRYFNbkuRbz!QWRWs^IYij!acz%PUlz%eNYMsZ$rH6elEnGW z-n+e}msVqM2)x%ghcaq-ZDoZqRBdbKTRIFy;}>(MCX5S4&Gv%F-sGC+jfZXuhf7^V zI1@;K2sn_tfZrwl22UdZAzF3pabk~>v@;&J4AInwx`zx zZt_@=YIy`VD)A6QZ}OQwZ8{vijT1WzJD3aLr>CRg8I0f4 zQLc^V>a-Q~(&uYlgCTfyZWLy~Y)S;$SMcXAx7W$%pnt%NJy5S!)B82W$vI(@D6N8p z+4;jG*-~(FOdIbjxTn-JFY-SX5g)*HkxR@uOU^X2K_i`Ey6!%_|7Nl*IFg{_2zQ02 z8)HFQpc;9Vz>K%u1yJa>uEF1c0AQ?4U`E!eE9;m$Ric|;t zA=k>XQaZH%7N)u99i;zrHdAV$HsSnTO9g56J~XGPt`(B+a^LjC#Fw9U+%*tOg9>iO zd5ELRWiCvDkYkbKY+x?T;@H;C(r;rDxeEfqeiOY8jva-UbNI}TRcfL1U3!Evz5rwQ z|A&p?luI2@x=3V8ek;(XMzmI)SxcrR(QYEQ` z_QV^$Um9KODa@^bR)?Zy%i_k;rXX_Z&DLRPv#8Y9J$q_m1WlnLZ*T^kFkBVL@+3~v zy8BX-J;^+N%e)TezX=IFFhcO8-FhU55x$1F>+$&U%sfbsW+>WY*USKL?X|C|!InAQ zRZ$#UB3M-yQ&x&!YKTt|piDIAIy-_AU*9;kuojY`dh(|SYGF9a1O7hGxTjhFD$dRf z>FaZm+x0&#fK-m3r7Q9lCRW#bH82qz@Ov=rl)jl_Rr*y$V$Ykd=s>UdNXa8a+tJNm z;lDzz@V`e0&pybyxtx25Ky|yhfC^qn^O-1HK`Z+WujP+No4&jc)HIHIG>8P!<~V6P z1Lz&Th(yP33=YQylY~)>-rVy?M#n3doAZ@_-4rES>)EN`IUgFQ1UrJP|4Vx4e)f_Gfx{?|#_JKF6zdj}89vwWt(J z+{qT{2d`cdk`Y8A{j%(uUqIR5*Z_eSRM;->8DKz}!nu^xYNxx_=kk(^-;3MZGq>Bf z!ArPL)u-=#7mEDy5&L0v3&$}*o6L!ERplmt+KiOJDc;jQF0>;%W+%CJ-G3xkG+ zAiV)g?Ey3fYFqP_uz?1)09@O;bbC}7KU9Fxv_@NOP@0X5IAj69f`iGe1RuRLXQl5u zIJ>g*uewAhq(+tK&2sBiq%7QRPVY8lHMkG^eW~DL>A4%>IImA1K4dDfpc1zRTS>>t zm0OWrRk0UOHE?OxVbrq8C_C#d*ARr1B6huU%1*J-t4xxl1AT@NP1&|VYsDVI8 zo_!MLegB`lu9L2FAKR@9u3`i2+Y&B@yca6ZOM*I`>3S!V9z z?fvlDS-9ixrP2pw(`j}2RJVdNO=y(@B? zy)gk@YF)QY?NV_+Aq0yTlQF)ITAl(i#A$0q&#k?8t#a|!_?6=J93$J!r0u(ZY$0X9sY&HZ zZ$(=0Rh2sk+)jVT^U*e>*w1^$k{-Yn*nuph6?%`5^GvHF$@TYBT4>l6>IZ&}Cwt^% z{0k?Er&F)OML!E*1mxFR?}QuWyRS7ZU&YAFafWh)WeHym?~M8bwlTGQd*JO^({mV- zjr-0A1M_+r9~-2J8VbP(cigu7+GGW)N)Yn7G5YfMwu37@c>_{>D2u(cm6zz5PpRdD zgAOIfBO~#6Xr+a4F9MH_9D~v zO?J;0WiLpg~x$)}gk-9%%M1*{deGdN{bFo%6HRY1?bsNjT_OXRRK0BMi zlGjcfjM84E@j|(sQujI9L$H9^-Tn0JL-FvXx8Tm4@@!c#;>H4;u<`_i)D{0~=iN7e zgXGMgTJhl>sj`Bo8eX~8+mg#JxPy&XUI|ukWMxAPfVz7`C><%F^&SNhyoufH&^2%v z7ibUj%ECZGXMc>}V@;@H%x>us1LuaE=!-Ec>YS#owIj`wplGb|iI|_a_1hg)g8Oc- zq(xU~#NQQ+JRUbTw~(|`)6jFpM8QeVn>HM-9I4^umO}k-HND$uM0c1ln(_!N1Y@d^ z(=QN0jjXIm{|Mk+3O@4Sz z!gpOaS|j%=3*JlNfsznE@_J$1#Ddc64FW@I%xe?_-zxn2RWP~IRpYG4X*6P@b_->N zFkfE9tfWCNUav`m~luVtSz(yn0OZ>m=)pkxCC&vu&_P5ipSE86G5BmX(1xnSd+UD*F9zMPI^b8J``gIWe z!Ayj7BvQi8e)|fqr=Fnps6FIaSS|P0@%5lb%#b^3oL$fz0F+FWlFs+rpi|rOs@BEE zwp;PEogZs#GoS>)6R_7^zrt?lfU)VVq9?-BvDlEA_g(nWlEv)xF7y0f>g!@YivfG9 z?8x0nZ?6eTWb2!?f`f_PMa7fF2UU}FA^42dbAQ=4?)-aoJW+!NU&jz zaX7jl{V^?mE;n!cj)esi&UnoXwxXXZ22BfJw zE&j;ei2!=bCRfLDiP3e=(CNPlI3MI44VcAVC7FRmYaTL-(w|?jGbN=bq+SrC<5v}T z94!S;mzsDr^dRXyQ2~2aUIcMCNF!1eoZe#pggJ+?@*MA3+P!z%ra5u1--P5x=S9+g zr>DJBKuKDsfU-gM*Tb=H{;#*d3TEF~lqw($X#8CE=&8p=ec5ZLKoZ$OF+j9o$oN8> z&TyxWsiA8JI7O$$p_%ZAz7xl%8h&UduEbuX%GxyPJUm%W+$Rqu7TTA3p zkJ|uysay}ClnhWmpno-XXgBEM#-6AzU1a9NOoqajEd;z$M%wlofFndX`W#L?Xv~s8^DeNBzuHc)2g_BeDXt zfLMN`FRo1pzjM8|C$zf|R_w9gg@Q3%y~U4^guV=LpjR=&{a0_nSMTd0FxIn5$9dGJ zh|wk<)4j+F)KoB+g{9RN`tfu8TgHd}qrO>ZXE32}zYlSh8J37h`2^Dnr8-KwnpOBa ztK74&F9<)gpVk-QIC~n0Hr&N)?)G}o8;mLlY;%i8RqhNp<{jHR1p!v#-+pDFnj$ASNvIt*q?ZzinX;2oF@W6R<<1NFAjmWP2s=vA8y~~evo6+ zpe_nfjHA_Qz>~o`a8kn;-*Q#?wtP-f9Mb}y^`WAJZ9%fzkG44ja6I3n)l4rwQ8K`F zkOgIXaNVvHfzQ3#Y<&;>=?%J79W-0g86#EdRb5mn3W@iHr0#)0nlL6xYAr|(dmB~z z!60g4LLCM8D_9A}D1Y(uOpv~#@STDk_EAQS^Yp7axu_YF1F&0?PK!VPX#jH_!g71p zEBt7Hzx%3+;b^Ehn#nu><4*a#y8RnuNdxxqj~&KRU?Vj*nC2{-=*h3_ z`#s|_nCbUM?DMIwT?b%++MMm*-ZrTO_!j2Twh5QonO|g_HnQ8-)G}sNV;!O_}w&SY_Zaq6^UMHb%ql29D_pWZ6uA zX%7$a4Ea2K^d2?%q6>6tS8Q@Ja!_-9Rc!Q>r}b_L?HV5r!O(M{Py`&-Kk7yJOvILQ zT0#35(kEu$PnNCUKHRxv?ze$CC|BD!B(L)MY;NicbE>6>FaIjv`YJG>T$+)Unwl5- z2W%%e{#JhyPZVe_J3$1cnlE1&ZfX1biRY^ha3 ztsu5E(cIb&Qn_k1v1HJ^Qv_@>fcaDwbDl=RihB$Bv9NiPBXM zI+}wlpdYu_sjJ<1W*Qt$jT=@#5(Xy4pu{imCKDoC`I)#H+{;MO z&Un9?M3UKAYn9Mpg>}+z%SWNrJj^${*!NAsY2Vfy)jzH#xe2LVQ$6!E_j4`rSH~!b zdBLD=kBddfOSpk9`QFHO#BIq|)fdD8ZpP?JmDfz;JLln^%1nQxQN}7NV_$5OlBMjeE)vbH`|<(9yrtvswGqL?OtW?ob59A-M=RhF78B(5kdW<{GS0HXVO z-C?*3w2>9zPi8hoPSr~y*kI!4jg>4PJa+UnD+7(Ts6CH;Zvo$bgR9*!TSbzfa8U}s4~ydWZ+JQ!m`SvhDL3=lRH04KwsNL*J- zjt{%9C}cPCt~InVoTV+gEhb7^Q8@YX0ocLYDO?{K~V>e$!jcklg^$?F`%3S0Hw*Fd+S<-{QP>xOmR5}salkeZm|KEyQ|>R+V#v^5&6t_Dmc*v5_@%IG z$rXC*={3g>YA^434^o9r`;@FyIIcdAu ze{}M;72@MtvA-c2N6i;6zcHFW99;ywzKMtk2}dwA=~*MxR%hCp#puY}`wp(GP|q?| zbA>6r|Jji4D_3M)QFN-j3Ultz(9tE)2iafh!mXd3?0(>VSZqX&LRtzymNPwe&~2 zcKsv(T8kWcPLL0)-0_u-?oe#6xBcL>k)1VvW^I@KF^^FA~7dP3-dyq~ZlZqZ*b zvAWV@U@tt6wu#%0Td1av@$0V}TSYgXfPLWwd9Ds(R(4%qxPQ>E(q@6&)+hN{I8jMd zu`(xZ4z!1uWS*TjOnG1-6$M~M zV)-qY**KIL-lc#5kuEPUsnb>yrI9XENm-WR_oenmy-uxv8pd;~x_N<`P8yj%+p0Cx>+e_}GpD21leOokXwj*`nzSf6_?DZAPYR9LkM( zWco3VuWa~rSgtzigjEUz?0g~ZXQzMhflBbU_J3 zNN{7o{n)r+g;*O7&sE&STe>v{J5?{Np_|AX8A%8`9qAh_@<6u91+XvS|g z#p382AuGkD#%_bZx>CE|9E2TCzI77~DwBUd$ko4T;WCza(sevSBVXWuo&uSa=eS)$ zLn1BNX>Xg@WHj9Io=U(2tk6l0;^TL(Yw^v8mGo?B#tgi}(O)+YK^W=Ddupl!>nK}1 zW;fsy&dI*diyt}K-*u{*%(jfZ{I4a@1?jaqmeYqQR!9F@b8XGVy0$0@h+&jPIK#IL zAMe%XK9^d@tq9V|Z6RT~xrHG{LqpZOKVr4%#{2;F1uC19V3o)Tl})T?n0Xk#!-zpo z7l&`n!mFSWA;G8w>PUCLC-|cE0`7akg<^4XQm+00zKn{Bl$`HY!&Y%<{&ioh+PS65 zE86tB7@#h=f^|1mIS}nJr!Y8DzHZJEZkq?M3owm!*FU&Qm}zr4aKx}LIHp^37vl@f zdE?5z2T)da1KelQrkG|9++*A36}*zzZ{2VJ_S^(;G34q);m$5U+IX}{|3xkTN4oIU zsESK(pXR~)sd;#NS&E!sL@~(KwuhpOPNXJBL7{I0$$YnEhddkkUuT9kc)}Y#b(}@5 zxj|Sbbz^Sjh{<(_?j$wQSH=RMfNUr%XvwXl_QFH2yiKI8DhP3!CYtE%y`-sB~q%$Xzme_zVU5+re4n%ug2@d0b=&+QWPY^;wVcVBvq zoeghF<~RalJpkCH#OQY&V!TQd{c%lWMT#KB0F(*jkIB`$DtFlUY`iV@LIvRnkTT0i z*U>Ffy#9q&fHQj~?vvJbO`#~Zm&9m1zt@@y@F4w{;A}|Q;sR>FofsT-0>&Nmdv#St zB+;Gd5FEwfZ*m{E-o-nkDJ%ep2*43ONDXkQq^`+L)^SyTPbY&Wbc5o>DcWoRRSEhi+h0IG!`DvN8{NE^5Bk&1!DD{2 zuUCSnQ!j(QxF}FE*pDZP#_0OlQ{a>}&S(2I09Ha9P8+O(wtR?~aq;HES+>`V-7>4U zm79R&mhIqpoYe}Tt50c36K0!sPPoFYs+A-Dln&l?*Mds}M*zP-?|t-cu!7zT;@Gcp zulhJ64Ya8Q%3jg?abFiZNl)rdHk3BadhHiCMXn3AD=Prsi{_k8pq{g-gb>TIY9E)P z78uMsajeR6?t2h*g(@RJYZx{J=&+h#*a>8r?ZQ{E5&USiqAU0@HB*d`e^E?OK{3GgFDfW$ zTSJ0rzJf9L^M*}1${CspXW};0M-ow{yr~>!gNrVp>B1T6K&T36w{vW<0P0eTRQx1qu`Hsl-kU)Erb z1mHdi!d1_T#YQGVb0-I(>`{wO3vyPOv6AJpUGM1O|X&xcxAF{KnV3h^ff-o z2Lt7R_X-w!yODbo+Lg@yuD;3p{!YkjT!FM+1HB#hGV#HYL``6kIM)G@h)~|Z*b;j? zA5HB;uuk4;SFaaaSvvB2rQwP`YwK^yft@%i>m!Fp&gMvfhkhAjX6Mv@QzEq3?{Kzf zUVYv0WY=zi-xT+^-vr+PQqIBn_SEmgu^p2lFOhzf@g5;I<>G>>3;*(p!fNC`E4hq_ zAdsAx0OzH3kSzRol3yNm3H198=iYC6l2xjgpayl>Z@`(T4Je88$+=S@e0>uX4!1_o z%hner=cuBA83Q%i#0+2jBz>OGXSf+w`W@C5(RR-~$(wDOooovbMA{PSvGFtRDT zBX?>HL?H0DfT9z}_xR^5mQOdK`6wf!xv^hIK}&Iw&pARhG|^Jf@v|0xXoKz9SoC*W z^KETCW1rQ^zu7xds}H1tjPY0QD30nS@9#bwb}*b;)%`MCSe_b)kWhr2w%{8e3>x5CysBOtPwy*Xgvy7=2;Ak8%E^ zy=yDMLZ$p~jCsHcoovjUlQ?Y52BB1hX7+Iaj^6cdw zMFcRc4t4{{bk4VU*`?gtUfoNrf0F;pKRn0QfpiqP-G_2|XFPZ#Qsc^ksqbcX{!~|T z6J}Va*i~J%r_1ykXx?1}pk0n&Rmp!`00imvN~1?*@lth@9*|E)a%g&(DCA%4UQ9q( z!wonyI|;!~E+qgK#&LY&IWga&=^xGHpc~O0p9^L`uw3Ml=>$~k)IvFTJ-b%a5w@H# z@gxq|c=rB>1Vk&Pl6h}CBS5|Sr{#Uuy9!%PclX<(3_qyNFdVaQM!00GWDF>0iPKQ& zFU+~S%x)K}Srh`F&e|eyhBx6;tDjvO9MS{qn7e8qek!T}P*6o%k)J-VR2oc-3oE6r z;|G9g+NFj4-O_%-xDSv$JrV8Yy--7PgO5?{iKhU!);FA4w;pQsuKk`xaZ$1Vt`+`8 zUM#Scc7(~)FN0+rzwP z<4TrZ6t`PojR(CIfj%mD%Q|_s?mO0J^nr17v!Y}U?Bw+ zTqcr_AH0xx2c?Kh2`1o}hS)j8+3NWik(Wu)j7)}yDJ6G4IRbg;+0F{}om(SNivVQ# zD#W(YMV2poTD*19)#c!QV*X6Y5O&2+G2&{anI~g~viQXx0wW%3-qqOZRaHAoXu}hs zBvu}O%K($f*W{ld(SpJJnE)rN2^3ruHFYBi2Ee zsKW==={&*+ur(+9qVDGm@=vf)0o33ArYWFkhN7Z+whpmZYa-Cx-VtUxS`%rauMZB> z+!Ls(`jSL#Yt9a$Qh9oO)33qIezvr>Q})6~&tc#XQBxrO2MI!IVN*z+VO7qxm}7ef zPD5*z?yt4EM!+WL@PXq{dVbB>`3WY?PRbj%wlB5Z4+*es2y)AG{L&(zWD8D+@Ko5l zfRig2iC{OYCid5aY+#$Q=!LY~$st@Xi8xBN9&Z1u2v;KN*GKYSoS}}4%%&dq2HBrx`L4O;dfrcH{%X!* z#AP4$#w~yb)jZVxoVb-5PT4UXHu!I#}il)29V~oxM@N z>L8^)LE$Ba0mk&$D+yC~3zsf1v)^T-`|xY;i&}t1q`gepel;jL7Em>tQ z)(W=17kN9s`D8e!iK=1_51U1Wzm-j30k1gud%;D}Mhp{(Gm$TV;OCI{zw3hVW7XjF z3#f}h=$20}u<*O5wVfGdbn$I2WcvG+I=8E#JQlE*j^pz_D<~&u&=Zdcupu8A>#qQM z(rqyZ=N4XFd5|XyMT=gmG}Ay1`~hQ?OT_u#PDxz#+k4go&VE4=I$E)!5L+zC!xR#N z0el2ru&NK6C+BwJW+6HYJcs(4%XHN9eBJmrXlvaQ=_)t7QeMCQmo5nFBo+1drbRw4 zA9Mjy1O$3O=JOguY2r2-gLpUqEwJV?I63uB;nLeA#^#xDAGaY`z9r|BA)Ko{`)7N{ z&d$N`U;y;s>2-WUknMJ6$%hL7rChF=ggbffj#lShF06JZzN3_vPf+sUE7oYwC$$@I zRxX1N{5i}NA}n>rF@@i`=BW#T#1oWhw?_D8H!o=!CFa*mA{3+)dFyXS@o_3(A2oxUa_?d767oh&-`CIItavQYaZD_ zH-@|`P$35;nsfx4qI`9Vv&QXv+aIh-ZgHDK3IB#N(`UWt<#R$U-2hjxHI`2zstYK9 z8CoAr?Pw1LTT~T04m&?Nw7`2pk+z;$yij3isO-D|GK-wzm%AyM1T9m;wG3Xa5F&E8 z8nqWkB5;HHwRLy?tl>~H(=(plUnQI1dlgL93IQD)r1axnBsjGY8<(($5}^N-1J&UB zn*eheBAWi%>S;2xvqiO>Lr*m5uf%oV*f`=f`XMsmD4tFdpe?rCOIGEaIXt61$8=c? zYvA3thOU?gkjv8C25_GVy-~qwafG*eO2)}hU+e6|$Rk+b0|0-$BiRqGkB7&VIKtiF z)_{7KJnTg_d|c%;GTV(rda8KSrgJJV0anA^gFtIRli{0C)ElPN{kKlO4IY9t!GQ{) zYKy1S1L*C-l|8ot_5kMr5u(mnFpLs-64Ez`DaTwOx&W#LceROyKePTXk9e3sj|mB-p5S^&F<>&yUq;VRqo`G zH}{+N57?kY(^dmUE2f5ehVQT&7&HQZx7YvKF857>gYnL8!na%-LZOV?=0Clstu$w3UcVkfj1E0z)I2uHJFI&b<+Ct9AC64*{XX8YDa9gOfXx1BAu)w2Jnwaa4 zyXqdQYB*5DKWV7;3Qo>MsRvl}9pC%kGHxzb2EFl|PCJ4_QAP#@Ov){38+9Y`fq2rr z6jKF#uM83Bg`Y9+i@Q^1ac!@TFf>k4;B5PeZ(bG@cWNx6ue=-cBQ*u=Q2I(OtU$BD z(to{h3+bv37FRDP&o5G`ffM;|LQe@OuWzX-^&O-DN0Z7t`tt=n(^5)az{*(ldPVC@ z+s@Qx(8%I2=L0qxmAKWPc4zsA2v8wb?VACt3^t;+QI>{OvDYD1P*zE)wFLb|{G_ql zh1-7TgeKEUy#ziR4Q<^4mVM!3#rc4iVuVcPrUpH~@=x}(QFj$BgSqjdmM^VOKPmey zyh+5-mQ@4ZHchgP_>Gn-mpZyoe2_{w&*rvwDBC}j=@v#r@_bsBl_pPMF4#j2>>mb~ z^OErjX%movbPLlT@EUO|!qeU7 z)-Uu)I9}<}ctpjgHdbYEY$18$^`|hNN!5V>UGO5@Eq7Y+7T}YbxeuLrT4g=Aodm|x zCkY*dy*CK%Nq-jy--<-63985Y)2mWT$K;37Zo}7%5)JtL3<34XLC_bO?H8MO@Ees;25x+o&nWFc4eiFkki!wYmR2nai_ zZ{A!%`cH2Mv&^8$5r3+2HWm75o$gp-QFAMNPE%c2RIhgVCfdz-kTZ=BLOJfF0W@l! z?@Otvbd{`_Ahd|ej}&l^49>&S^X4l=)_Q(ErCbKjk{`KAsgeS-Ync0RX70mcNY4%X zwOG=dwtV>lLG&1`=9|Y>_sK+FJG}d%eAhV>sA@eAZWsgqh)Xz(nD8l97P4dp%iF()u=#aE8O0<}bYU3VOG)Bkm- zhO(85%!?!Ld?D6nyTlqBJGU?X&3NJqgMX~%ePs}Houb1MpXXd{`ngkI3va#$XNOEr# zv$%q{yR=j_f4{5Wj37gahbZ%&pto1&+=5`l>;PlNMBph))%H2;r?7Df>Ql$tTyTE<(k~^ofBimWEA>=Yklo!a!EXau zB$!s!(x`NyKU6ecy86l5uh|w>u7u6wn|V$eo}QN2qp%uhiGcYspUaa$L>2!>5J&QG zJY&EOx12_iyM3O`F$`|lw@Y6b>S0qfT5Ic@Xmdm>vcN0ASKxr1|MoCZ5S}gH*V)g* z_-0=Mm=c)sR&MJ~dwrWCbS>=;;%S*Rp*X#w91x5zSD?;H<4iW&LYA+HsU3nHoobZR zZsM9b#F}mnAeVkfBLVuz9EHJsLEiUt9$zL423e6JtRTd1lKA**>C$2bTdDurePVNC zi(sN0rDHdPKzLC62aH=3j1B4+z6L(Zbj|Brf(0Z=fadOt?RW8Wk6N5RzP-bcZzgLm zB6DKNtLL>FEjhIZq;}_ak(xz(S#382VS$e=H-DdmtIW^dt91FM%uxIq3iBxu=c6>7 zhIoJbZwL|9c@ghv8)3i zqR~Qky%p!Bn6QN6c1UCY&qE*^5W_kTZOdsl0$J2#%LSak- zpOyeDaAFygdV%woQ=Vg{-JcshQ2lBKV+>CTeC%ZYnL|DD&3azm)z`UgouD~9FN5Ql zzY9hqegvt&H!u|UsB`^D2K%w~AfimL!Fxu#b^Mm*MGo=!xP)R~ ztyf}esu)5^Avg#XEHCktoc#~S^eG^E?tl7)MO&MX?KEg3oYwlDdoT@AnK|8-)x259 zw+914u+faBfRT8njAdhCVW?F*D+b@v9D`j8flU7`_aw`@W2}snH@XJ{9jG>e&NPi{ zGsB8FxpuWNjhqV^XUONMa}lm@j#*__SJ^Km$Ti%)xfYpMF5%Vo`J2%J*jv^u;RFsv zzk;0g`pmRh0H?!XiA)C-l27zR9AOg^NsvW-7;FO6CSGl2R7WzKrZKjRu1`yO%^oen z7k?j^e$B|==3E-Q0*bf`ZRrNkPEIpF%*6a%^Mz+2pP-$*BZDg%KSo6>Y^L!(g|Ea= zU$f(*V?0}1ygvmf9)KO4AXr}b^maMNF4tb3mtn}`k$w=78CKuthO!NMnI0xm`IP(- z_z&%1ZM7BwQ<-V3-S5G{M6A@~=A^oe%RDxRVB&rz2vdo2SvY|3`57+M?ESumWt1oH zCL|xPUH20CyY)>|@`9uv=rUbF`rK}~#Kzfvb#MELhL%>d$AHCmU^U`V2^`3ZzkWQ~ zm0^=9awp#ceGAYrVP0d({mJwfBJM%z!4MX3PmVt1Uh7Q=+b)I66{wxexWe^yfH?NX z=~+xqTVl_^YQDP@lX!gOZsMNZPkAJ^1V3fN_+FQoj%s@j%9gF!#8ot#}>3L2}95d>PdvKe%uUAZui6$sM z8td-^j{>30=@8#ExY_iINxpE82rwX#!BK5`qfsBPbVK(|L|wS}mT(-0;z;-4dPi3z z)1a02zkQ6maLHpYj}>ZP;T3Su=?$dliM^iL1#5{IYdPodg%cL*guR&DNFGVSGe|Az zzrE4*%kx_Dh7h0kIWwlPN>W03d&VL+li^k-`Q=eWXT1f94X_3tMclNvxr&h$!*j!!wjFQJT4?HSk6zAM zPgg}8hM9c?)usBdrw(l~qhluo{X}rghcp@88-6WIR7j+w^-pe%rYCXa-dl`Naz~E& z6#IDKY4#ohPZQf<=_5y5W`mu4o!i(rsj2K{+ximR3_-Ujs31-mkxpo2T}VAIv)gf7 z5;z+<=cHu8Qw$sDp7yhWlAroUwOvhj!4C((p^?>MwU&!Z2Vvs2#e8y})VbrM>2c3z z!gWjdvfdVSo%9&^5M!|FUE>VgP1Hd_=$9~9atu>p_yHccj#8;iUQa9UxxzWE3e?H$ zy3n<_hy;PVhWHQT6m^vChYWXyaLletG6H;ky+V@)#t~QZ z;-*Bz-OB;_K^p|i!Xz{@^NcyJF&%{(66F8l%=xx zR)B}|0UsP>595^M6`9El)%owu4xi{vl=IEZp+C?>SWQnTDVgx?dRFdEMbfvYX0{&L zIIaH=_Nuce&Z(`X^|(jMY8Bg)WRl8|zgoaQ266XOKfET;>W^raoRc3s>;E^97&r4m zsT%R`kGFycg!z=dFHCNACCYlt%h1{buEzn5Q>WbWZ^m!rGYaO77}yX$uxROsJfC~=6%xe z_}_ExJHc!vI7+u9O4%VZz8qwtl`fO_bF0$uMuQX|P^K7q4$Q|VCEaw4a;XT{ z4Irc7)V5Ok#`C?GaF49q9epD^H+mBiT;^0LbIJfZcgy{bsZsCAYtM$3ZxztnzA6bE z_R+bPKzqqWC?l8BrgwLh_Y#y~u;?eh3oakhR#WzHc|ciwqbhJ#CcyO0HOq&V{*z90 z%2@W!jzCqJr4<+=v9l7aT^j*WUB5sKu_G9Nd|QS0wZ%6k5NPUr=k;;!pOpJ#_C0&+!GcG+WJyBiBl z1kO2~`vMK;4rF?R%AYOG|FM)4;5-PA{_WJi|G zHj@9`YPL5O5>96+U_h=e8pJq8`~!}@jqP=te+@fFs1S*|zsWA^Ua)DV(we&Y2iP9E zmQjYXYH=B->$tfGSTzlfvl)9#cMsZ*KKcYg7_4*c0ICw$j)1r;U9#X3PC-pl;q0VK8Xm-4O~HDMM>rHM61qTU_P zNr>);V%e((rY3b3P5c}BF^q3$bhw9|`iyO~;CBm!Bf1wH3lg0gy1lOKHYrsL2CJAv zy(Dk2-)(w=U&^hXGX4KW>uXryi-hZpX@1EnOrHN)J}_g2Wk)R;7alW#=22f&N34?4WizvQ}U_73COb zB)`Obh>3LJ28*53ag65W$d_BBMZwO5yVYfRWa$6GYOI-8>4kj4+_LQ<#G?Oj$Y~eM z3_l!T=5n*PRC%lB^41@)z%SK%l$XcW)`EzdI{fxdc5{N?ZSaTCjKa+LJyTB%39`l@ z%@|{mVOydB(CJ9PI7!)6v-yQf^oY>9{KC8>I4BW#BTX}QrTFFYF^p!@lb2-sB|+!3 zLSoLPdce&!pS5#gp^dPoi+9XMIk;t} z3-*|RX@1}H;I5=87xU*t-UYkZxSic+ojWGF7tm6Wl;Z1|YI4CSD|X&czQap~FO+Z5 zYqh%^dZ#xm$3)8!A)7@d($!lxg*ok%+_!(>G4tP)BIfSEV8%7S0QrMHf_wZ8t17P0b#9^nX$1-~O!%)1us+yGE^Zy2vY0aG z{LimSM%v9&l;vgRF5|&o&*mzyXS0vY`dj5Tec^Vvz~J!cAV1Yc=#w$Hggr~NTqndM z!Pa)?JL#W6%%}cIK-?;xu6MsC^)m-p#q6`Vyb9mik#S0H7+Acwu5+u%1V_av%lxA_$(Y&Wv?33o zyb8~*%4f4t_udKEFUh&h1m!QM^)w}V&uny<=H8nFgm)K=WqgLyI3iw1xD12pBDKn zHHjb@awsO=Pd!1RtoV6V_(qB?W%0d&T!}cAS<0|3+)Dv72$jc1d){rn+q^(1mn-?U zVuV|(xv|lb64LG@C@=pnACE%%lM$*9RCA7>_TNoZ(l>s1QgO^VDYJYIXo};A_GsLL zuuF7OTf!>EE4) z+GXx&AAtoP5cl}Kod@@I`gZAvm%nqh)NVVUk`tdz*#>k6sCXuG!w>GK_TZQ0Nxog! z`D6!?^yhGgr_ED&*+!B;+J6g)i7CLvdL!nt96L@Feg}|Q?N;#-QmnGgzbk$VF=-+5 z=ERB$w3V*BfAzCR;IUuW7(V@cWXU74vYrStRJ zAV;{O{`KVRX6U-#!3~8^?->3G3sghsyr&<*k?(%H^pcGJeE;%JrLJ3=zmfW@F+Hf- zWIoy)M8cf}U1EiikGG~5!fGX5BoRUTnaO)N2{AK$h6|6~$_4mmL!s!36PM3qV-zUV zoDC1aoL?(@HMOL26b2D1BQo)93KCT+?OclSKx6TL{xxbG7BGxnV9uFE~QE@qiZp&v~MV!29(Fy8pSsa8oas$wEv%&2Qm$&)oBhk`UkCyfL?3YD~|O zFFhyq6j6FmiH?t@bO{u?y54s}a^Tm*KrvU3Pa3qu`3_``Q{06;tp`5o%a0OsKrmrr zoVDX__G4Un$OD{96~);`8*Zj}gQKLs0z2yU_$P7?z9sUMQSbodAzr*Z%@z!6aLt|UM zDf5?h<%jWy19T`wAI3~epMqE6EjMqn!2SWd@e~|%(iX7KL3={MC^@&euLuQvB3blgM2!fG`rp(GTQgL+EgFH@%)(g`LJdVu=SO?lULuNfr>5V zKmW?VDTvz?TJ`n|1g0T=E7jLmqjJq~Zy`?Gf3NJ@*5cq!yVG%W)`3&uP4p?5fXlrR zvF1mHjEp*}(AcWo_WI-dAD4OMjJP+L^0<@Gv|ARTAuzIeQ@$-(8P%i?GJPxN^F5^F zv#FFG2i366NE-#i!200vA4D_7g|#I&i5q%Od&i0*MKUgFcF*10IlQ_A#K9 zO5~va*pSciX5?mHI`6`Bc=~xUF#2Yx>)8S%^hk|V4Tn*^Vp=(&&`ONk(VIBBJR|wM z^V%^eZ3Z|0)UK-w+G$GlVo+7&2TlE%Y0%#RY;M2f^w*sJ;vAoUHkbN;nmLBrAn<5k zIsOm?fROlGDAZ;lZ=CW7fq1Rm4GP|1;DF!~mPwqQP?OK%l){eHq zwH#;MXeG*PaEKClN(F zh`CxfX|O1uEmvFqzIM&T!|j(gz=W(7e1+dAYw>F9uc#vZgnJ_{?RssvdnKT%@S3AQ z3^(?5Bn<4*vk#-ZwKGvQ{GpjJjxV1tkP9bxPS!vg`05%)$qv+mk2OKblvP?Boe3ME`zgs_8Au1NkhX7p?CXfz~@+8ji8IUO4yjDOf=KA~PueR4Oc-??FCk z0wiMlN6i~?dUb2E@LeINx^e*(PK;9xWxVB zwcGQ%NSZy`@ymh1@ar-O_Oh#U{z;&XwAYb&V2Po7%*zH}_0N%)fo+0ZOHZ#OJ~(=; za;J8#aAt!Z59wgR-xH>HLHF&bIC{cza;AMrP~21Fc0>KbvHNMPhN-h3HH9ccDqH`< z6S>Yb7Vd1X_Sqd-=x`^q8Z$DNKbe_Jk@RA&M%s?C_)fqS7bgdI7AO51_ zv&7s&_z3S!fDD8@vymD52;QQ6U~+J<)>~ESar!{e83%xV3ygKZJ1sT1v6Gu32KzoZ+ zD`Lb{XQZj6Pjh}zT^Uz;B?v+S#EqF1$u|%cWS0M2*Tk* zL|+li%B#A_A5I4?=?nbfs(S1IUVhv?trlv9e?zp;M0&W*EtNi<#(0&_I7f4Y)8jzv zTAQnhi)(KVQN0q}qzunUxjycO88+dYCmKP^7ED`U!N0J#`eLL!2hxev(``pSMF*^f zuUl!*kz>0vgqGOL9Fj+{XF=G1sA!6vpSfj)p#AtWCiir?9cRbx2%ivrHL8@sh^IAF zIPG@iDJz1^bxVks{yWv=fIxSD-|qY~Y(?~r>~XMA{$~bT>0|`KVt&vB^d~zo*Jm;f zBJov@hG$@b;g(!y-iFw8g;Tqt`Gv0iM3&ok*#&Iw;kJjk1jBg&V>MSO@sae`tJ^C5 zq)dPTMR)+TCUD{hgVXcs2k*=II0fu;qJX|B0FA*l8ToUOS1M^Fy7%&1o7HVPCFNXr z(}0NF9;JKQ+$R z^Xzv7({ICFTd8y4-1Pqfe)cGYrFVaV#%M61oL4mfl9evFTQdUrC4bp;&=f&*p zy=eRi47{s*6>VwG1aZrlN$El11Pyp`m4r9?-^YZ^*2;?ju@A!fKb|WK0#%@3sX*xy zXj~f;4uK6D_UVj{@GAz4O&7Wq?j7d?KW@P{S6dBck5d4W&)28U=raaBt{nhN!^Gc% zggWwZe<&w$I@`dQ(;(qyx51dRFERH)DX3J>l-o78)r~BIg}ly%L;YkJD+@COoL|aS z@-NGm0wjsliE1K$&}lwCK~r=wD9i*+{Vw+{BWD-g#)=t320TUX#Xy1r zoMa~Cak!g(SVdSA+Mt)sD;b*;H|KQbf3)UZmX`+%exvEtNlm4m(M3CNkp9>Ew?3VI z`f@vS;k83lga>fRfsdJ&g0X%+cw7Xv5DQok!lJxJP~Y`t=QiyVXaI!MfAw@5Zuah! zTxycg2UUjF6TioV1Qx6R;Yry_{(rR%gWbT)UNGb3!I{@fQML7Q1_oOqyo80@!(r#_ z2*pHgF74MpUL#BuC>^Ldookms=FF|MjC-PHy$LP{ysK#0Ma`o77b7(L%tjq0I#I8=LY!X|NV1 zPlZit=|ZCU$|Q)e2F6M*kp%2mF-SS5p`!fYuFcna@+MnDGXPp(In17r0J=^IgmTo$ z`(Q)zQDI`($IHFr6t6H$wq5>F&QHRtK*vfzPR`O*#U?WA_5{J3R0pVIYmOGl$1u1?v7Ck2$CWtIi$P05di_| z7&W?K^yqER-G>quxeeUPpbI*C7yypt)o7uVD9aPhSuUtAbICOGtp(~%KAVUOY z;aNONmag2a<@eN~D%n81#YQk8p?viPf%B)n3l+~gJ*NCnYm_l4`LYw##(*F{FYuNR zLLVZuwUktDX)%M8&A08odHCP+x$Fy#@gs^GZuTCj}=%Ldedu(mnKrsP|xMGNw zM!*2bG0xP1q;^MIu!ain!zvN4hioi{E%D{RZ|0y1fpfkoTjggf=5yL? z(*j8nJlrkKHB>E$IQ5DsJk-l0TFSL;T&v>wG5z~i^94_r{q>92)nc{2d93Fymm|OP zS^t_+1=ie?E7c!M1Vddd9PK~iZEann(-D$Ov-b~c0pzR5(8C6E+IrD#;Ymd_^JIA) z@Du4+MHVgR=3#!y=!a*4ednNc7_N3B08~$`XIgB?5%a)bNC{?u6*tINt;pR2FkhMV z!8?~4^KN~ZyBLAwv%uDbVBZN9=gf^}^JoA-_%BrM{upbBVU_qZaKLNedvDjooGt7T z{-Ok3B_aa<1ceC5lJfgb?nA$4R@>9X5G=Drcz3tnekF(vPvu%Y9XW_*DXY$A&dP&kk|Q?*nnC}_;_NM@G+Li;lp#I!H2jV6PX$AWCwsfhW;9m8rEyc{2&@C+s1@#5Xn8|Gx;=!Z_~Z=uYK z6J*EZ9M>BKVd1CU^-eB}>mnNtPZP2{W;(UD_=1*4<=yvG&GjCC*V=H~ATothwW-M$|Vmuc7BHQk(O;M33JB@kq|38hh zgCnuS1=XxhbsuFK@%dtWhW@-5%)WCg9Rb`RZ7ye!>@{y?O}2c(rJ|)GK&V!zWlje4 z2s9$d+no$hrZ`&tGKbo&2TzVKHT{APgJv$=gZ;EzI{TxvTIn%&bDz8cwMO*s=q=io zt{f9N={IqEJ^|wma3*O2Tr;kIpBJ)CTaSt{Urg7>2|vlJ6-cB`5Fs zL@9i|Hnz{h%qM7yqcBvHkDdr?<`w@9vl@;wkfrWAr^KEv(#q~a|D&rjqb z^7W|5leVy539H8DtNi`f#gqRlcX>PF{p*c1XbDNcb-zL-iVn;>?LG!N0khx%54Qzwq+P$*5jFPRRZc1&g{5RL}8(4F$zuj*sF9 zne?0QD)sz3hQ?{SFYlJVeZRcBePO*jmP=$s<%|(JiDvdC2Mubal(?_NdtfyiT98Aa zyqN13rCh84Dl&pPFi6L0BnP(9&hdxA`}LUzP!<@Hve;{Jtja}aSoH=WVgKi%jt)>N z&pkjHS@$|=srHkNE^)#zCxJR#9(~&#$Ctu2Jy5&Kd>1su1O|X{#G7}A&j}kHuS^8d zUspTo35V|!oh{_;ZC6Lu^MXAOFGQ-o;{Q%1eUbQg%Y1e1_M!@#ErV)XzDni;W ztyw2hH=xe!=@~|QnEjyKi`?e?Pja<1dF!}1o!o(gcdGGT5RDOM;qvOLtgNECg?CBi zj+4RrWo8ot6GMIS*v5HEQ0I_G0_GVR5v$>VSXuk^82}@fzRjW6KDA7A+=$AVyF|L3 z`BGgiApc~*a#WEHA7Y2xl&SlTXP-KdHBP{8{+XcLaC4oP>2Gt?(en6+3sz#aw{ZXP zb|O9?hx!~ucesO&C(R7C;^eUR!+%?Ce==54GkjU%jDhSo=Hz8N^ZB1(y(Wvt`Or$# zD@pkeZ}7_g`5X~|CKHfarKYWs>s@>D+A<(nxxeAGUy3%A<8x=lO>O&+n|bt}hv?pW z5T~wyZE(}iwglx^ZFW(g>>8Pq=}@^ElkV0Vdydy@Yvbt*9WBO+tmQis2k{=Smo_i;huuOGk!&O?M ze|cc*C2Yd^a0JBp8FX?4%5WYvWu-{sex4<$pdR0J5uqycj#vzH-||ZGg$eh=<(8ur za4Z#oB%aS2dZOTAn1=0bkUlascE_QEF6^7hrn)=xK8c?=YNVC7%)VXX0%mxPPDdZl zAnB!cpyQ+=t-z={=a04Zm0|39_A%6TXFIdm>kY8XE9^|EB4iIHr6oYd34~E5VCFAD zlwPC>EDCybSZt20^?HYQe(w@PBO)kh%_cU~tNQa|c6Klp>v3X9a1GAC(Uu$XQdI$` z8Wz&RHfqYS!;M5Q-_=H zmQY=uNxA;@qpE5ea3UMtlziCxoeV288>xBtC*WM)@_@%lD@#n51F0xC7|D;A`#E5q zJlK-g=#C?`pTp-&^m(M2R&1?7YYK3fMp?M_XL%_*KG&%G=g^m08){=@xp@-3pjeL! zgAdN+t1<`xc0cFY zR);u#2r~_YqVsF3P*%$LdP2~5n`j{Eyh>B3$52D1QWY9QK<5Dl%tVx}ZBeqRJvoT_ z4He<0ByoZxgUXn-mc6W%zbe4cVq}K$ElTR(Y=r2^-0wxmU>D%Hdl7Py2w)9E?&=fn z_j8|~#M-??f4%WD*cJV$I1owZs~{ zch?q+;1D%*Yx)|c6A+K1jFx4v$oIf>f|TSB;C<-+VdZ#m5Q3ZG6Qx^5$-1I_am@kC zV8nkm#2U-0&e7&n=o`s(HRmRF)knb@-Qr6Y7J1ItRL}>_BWHf<=jfu&YxEwe92RLQcus;EsXI~oc48r+31rEDnJoV9e#EGT#|5DGmRgVS3Y1%kp;P!|51kd;nW z2P;N;?3W{JKS{7d_fR^=YZWtAlMf_Wz|QWB?|cmoo|3GRd#WtFW7ZuVxdgIF4OZO7 zYd3RG9ugYZEYan0HU*y75%V2 z5m({iF^4ix^z0AHG`ZGXZILM3MNN<{UWh-g`9TkMW13i9l8orB`U1rsTX80LcW@q* z>l}&-C5cWmS67E=A*rpcR)P>f<#RWfgMD!FZ=J;*;f_SLwO?c?dh9xC%YbDzSP@DG zJ>RlMzji}$;-ppOE24TQD_4Rws5<>K`o#ax@fhq?!FE_=uiBgRQAWvYmOV+rPwO_a zvgBka))Ew9C3g^4Cr4b}Ys{jdwyWjF&o`235z4NMg->4^)-FkcvjPT_9+u#&!GAmW zQxcWfm{-7sX(+f6(pJWD z_GNm_Y6oNE3atb$CQw7QAZ*(Dw{CN#f2N40Uln;ffUGnVWbgmf%opFEtT!;X(ALgS zoW$fqh1C()-V*fFbAp|8)BbzrfGTdA1qrZ2j$PdylRx>`PG>d&B*gSO>1H`%C*{+0 z+vjLZ*Zm9+5nwt?FNLU%w{ttFv$*;QA-32;Nci?c9h1WvZ z>fS(TCQtiD-E_=3#a2lrA4-HMp<|By7_%!CeGTWnc#rXe2LN- z;^m*oujKD;4KiRC6U4x>#5?lq&8?lA=eWsBZ&`&!>WE;5A_|>OlA#75CR$@?zCK(S zZ4QtJvnqmg-A#vD=I3>q1%Yz_7TQX6oBpe!@hj_iF^5WB{qza!1mqb5LE{D9_1FsO zUK3EKT=_FVGoPvt?z!V(NqS9AQ*ZTRWMvElc7cyxRGPiRBHwPu1jsE9%Jc~?$(X5* zOJ#AMNU^>MtaF@(XVKe@8&meO6^n$L`+-)(pbA8Q_ztQuQo7@5oC_}?(+QqTIqGlJ z1?nEe(VoZrs|83>>7`M8E3%VN%ClaRn_=gYR!uPUOjb>J&0eE-fno!u_Rfj4R#5um zVZ(*rGqId(S~l|}mCnvTNwFii{oO96Rwffb14tAx`jITED&MV&ooQ`TVjai?uce@* z61G8eX>cADCiN}rwF4&${CszDZ7U0iIM96|`6(_iQ{K8B4Py z{OfyRI+$tsDwxaZD^7Rm*FFww=xh3`7GdL})(j|UO4a>V@t1AbbdgW=wKJ`5d%&(b2r3=Pp=WNXdMy~bDcLNt{@Gxl1i zL;so+D=6bJVE)?TMO`s~`;e(5qVRf~8gCqo>R|7!WiqQGf5b+4fY@UT^@4aWPY5QWMWW zFpZacoRER)L!j97_G-Q_7q`qUPIw%y`QahhXb6P(KrWT!`^GfW&N{kpLy4sRH}D9LrQ2q|>IA8MN@9W0^gIIOT0m5rdVXH4 z9~gxa*>+Xao#pZy!;~jt^3tZAwz1!}XxMG{d|vUt_8rM{>4&oGU92rSsKk_SQBqgOg7ajDtWk3c&qDn=()aUwhvQ!;y# zp>dzE*RR2Bl2yCgI=0F|66vPyjVO*TxX|)lvh@Blqs-sHHcRGZf%YL`>75U<-(6c- z%Zx0WJkG9{Hca9LBgb{9>VSU&Wjv~Y}b_e%?)LE6(AY<8$}NvQ#$oSI4PmZoSX`t7hz@ za^$9CYzW8kce9<)ER67*I!fKPedxW3zH;;XQEiX`qIGkHQmx#Uj4AkGgKm2H!M(rG)|-j;+kMw5qq%Um zYe&|4^Qv@vmN{snSiO5zgZTB*FN?1mOowpRJC~&V<;ev$41g4(Q3)E_>DfMW#|}%Y z#A>ld2$?y(G4j54_o*7b44E3b-+ z`RQZs0iBEFw{JzqB``;r7mnhGa`5dxeM=%G0p5W3y)exOJz7}0l=({6%4nq^)Z9ad zUqm+4RS$2uL)2P4J-v6jmXE@nCo6s&I2$epwur1|@%SfcJ{8GDZIt}&#eQN`*wXUd zX7E^4Bs-8hLjU8C`z`?TS<;BRg0pLCItLcEP$P}%Ys2AQD+Gwo~%;r)Xw!#@V;(KuS} z#0wk*q97Npe6oIs&{vFRVmWx{I)+V%C8wq{T1M63zc!korM=;}7dI97p1U}0f6VwT zqnKvF#@c&sa}Nzy43ETId!E&CF)md2CV@dcwR=4_$_fANu{ey>3S!Sy2wkd}TRI3Y ztM5FIX-*D<)wAPAjyY^@6_<^DL^0oLkwP04D924x2m4JG`|TD@>^;hSOOr~lY4IFU z7YOVONn|5fCO|wt>u5T4&A{C0ZcXJEPPER%a-00h47uXVa$Zd)!I%UL-QanB#V`RL zzlppc-gfJ0@7yd~=`TF5xmv1iIN~=3@;r**Qvq}6+73(b$icW5kEEfaPS%4Fy>yzO zg);dURQ;dHzb2UDoy!J@4ffAHkK#gtBiy%F7*W%E~ArjUY>x|H%uJz>|a8 z{eWMC0>%9aD?9xEPre}KF(nY>VwA@S8 zH~D-1KwZ0Xm0BLVa$fwcP#o{2p`!qP=r z&K`EP`Js)ZgBKP)r?UA+dbIq-cQfbGjf~p;#HcOq<}W+q-)y z!3<9+h-WY{+6}q+Y)uX^rZazq@qeF1S-Ld8efw^${z)#MLBvA+ct1p&n?pH&XA0(a zTUORbT4mV8REt!y*Izl8k}_coC@IKuIQNRZYM`_rdh0JNsQ-az;7$JZ*?MIBP09%t z5U*n&ZD+_$GLMQ`dDuF*wNB#_gs{WQoKd!Tb9B*Al zp+zJx%z6q!y;6$r-vWN)sMeA$tS!v6T5cx|A>4>OCC)(``+;|9Oy_H$RL`=2+tqUB z`ja=#@r%aIdeL@jj}BxHFtfly`yV7JI>!jY@TKb+P$-{ z{HRz~bu^=FD%6Yj=siV>-)tKi`*y6B&qX=s;m`7cv#>-rAJPz@M%M*a9^tRa&4Dgy zx(kzD8&`|Wcr_B*QhF*zsa^?gSHX{s0JQ^wTHzMSjb}+{E=( zw`+Y8z-{#4;(QEWnfTtpY zRiCBs}Xh^DRAkDQ<^XYzpZ;f6l;%e=w0p)~C5Sdx+wZ+B#?o9dVA6 zHr9l9sXG7I114?aK&iCXK7=11Vs~ouc}5iqY6X#$G& z4+U1YG-S=U+Pi@!7?YG#RBTM|P;YOC)onXB-S~C#cXU;HH3mASGrr?S0FI^qor;g8 z0^-B*=Bl1TXm)ElEgHIjv3zdw`h?$hb`hS;gSlwQk4Li}Mwp)Bw7;@kb}2?YeNd&s zRbTJLdopT1+FjLP`7r;Q`qg)C*|okzDgVCc{q0ldxyzZw-xa2Veom{_R zcfKhEi67Q;qZuw91Y#c_y~}i zc;(dWsA<{C`eJ`UI^`}x_EwTp1}&b(6K(qC)NW;?DjEo5pR9!Of=ru5gz$*?+wj%< zq@n&fU2K5)*4onWzx{vv==jFR$-d*g^8Lrc!U9?gK_LGK%o?G=c~-UBywaMavGy#j zYWcj$lqyY&ji--TjciQ9#VoUq7}}~qFb;f5{s{$L*+SG}e9oY@<>RHioA8B7cl_5* z49dcX&0o@zJ_OC%Um&B*SD!5!Lr!dFjXz1&o^c+p>x-dlt!6MFEUhuEzJZ!I9B1* z@h9CN5P^Tvb>-1v891A$40FqXJ5OJ%^ew`FeZDLUIXSc@I3>|TaXW`6dVFI4bEs4! z)mJCymmPh==PWDX%_4L zF`Dcabi~%0E+sB9>Xua1HX0^N;I?NsPHi%*#nv7ZukY_qfq)^>QY2wSB%b)g$8rCC zW2FlN1B%?%=+*f6h<{!>*?_^-uW}@0J=&J`&nCyMOMGLArpv8U`M``~`(oG+=M_R% zSxDXr4G;MGUidvRQJFxA3d~k>!s%uL6oR%Uk zC9aLM`IDMeJ4hIeSZM_kNBM)!&F2P#MpuE69WkpYj3B`3e+^TnQkqm=T{}WFS z5Hv00zn9{;Un{`Z`SF_*ZNL4a6Cs=!fpf0(do$9Ei^a(7h z&Ptn+lIMI)+}UmdU+La?YghFny8or*RVd0uY`voEycEo0+V8iO2LlR?f4gHFCKzvg zLp-}q71UBlurhB>8(XCR$;X*%$qC1r_^)FgzW(iP9U68&uIgG`1i8TWE_t8!N8Y9U z_-`DPYNhoRiB-KX3Ca|5o{~O=z#K<(%6=Y}{3-2X62EYzg!=#O z2o53JJJqG<&%igi;v0MTV9Z~R;1T3(l+JErp;XoV|5kJ9A5V6`s)Gkhhf5F_j&5?& zg!P%LnTm@K<{^cb@Rm8mrBi=a0n;ggLO<;sBC8iUg$an)f2Shio|0H)JzsY>^H0QV z|A`E;=0XP6$i4A9WrSdTp0HKH1tgwo&o?e|(Q-0Gu~Mp)l^0Z$wf&pNnSb-}Vf_vG zxl&0Pc8~q8)lkn54r*mK$F)aV$EhoJml@mnEX_F{qTa*tlj^ax<@pfSbW(~CBuc?J zCt+(gU!LO8QGl#u2T-T4#Vz8VD7_8us} z%1?z*;pV}y;D}R(ZSW+9UJ=|7e zF2LRAa^xK!h5yD4Y;Dfg%Axmxns<|Fp{mSWDLRLveU8wz1_+9g2tkrU3 zkw7NeGEPV-Us0|aTp7*!t|$ll=PhbA+p5blxNln+`ab6|J$I9*So zk8qX{^ODiYVFxi2Oy+WLbZ?`fb~$3OR7F{uJ+(@c8J=H?;Cq#dpLwF={O>O^GGD{} zYYNd;#hum*X#dfpE4bZ1v~af(?2IMc-Ci$-CdM>^4 z_tRoY0PmEtmjSGXJ6OxRH^z-^OjhA~j1lIftxw5Bw3OZs_7nZKi9n)d{yg8<%(!+X zUtZbR>HXrEDPL#(v84tn6&_eeXZi{=8S56h>PYDLh3+t`nY>{1PC``QrmOiuP|im( zKj7WWdf!v;!cm+eDu);hf`!)c?=i+JUe-rtU`PkkpxBu^l<)-aaX>arP8rL^w|~Cs zu$P)F?m^!>9C}(WYJA5^*4}52{rXGHqJFcZ)(v63EdCU)Gpm9(zI~5#!n%6p=kMYB zfkT{roy2)p=t5EGtgO1C&Ks>MDbvfJ2u|d}CrE z5rb}f$vG1EiHQ>3Q77yGq|Ob9cgX-JvS{Zg0&0~_5MNKksUg;Lg(_bi2e|B`;`wCj zId2;OzRs&gvCA)$c#@vh3Jg$C+!Qo*K|B@kVsu!~Dd0}_E+ar{gKeBj_8VnJF*&n8 zb0rT@jgbp2I>Ot3``86bB@>)1m%;W(l@rLY>Hd$FCbJ1Of(bBLfwTurt+M-QvOa}X z)5n@&v3YLh^}oG03zG$phn6lB@rsvV6K*>Ed)J)N7B~vH8`!iQPD0vw>jph#df`F4webro z+4R5g>%1;09ttzj2sgc?Fb;Ji(kl__1cOK@#kHes$iF@9SJDjzw^8-CG&81kW@cF} zW@2`(E(;Gv=m2|`l8M-!eDoo5^VHxeq*mlt{oL|DhG&?YeJ5$Tmv%qZ(D)Is$bQ7q zuvPoK2?sWV%!^N`{Bwr-E!|MbjajBze5e@W^c?wTv- z7Mp4^>c5h+(=1x6Q$~|SP40JBr5TLe!9UahJGD`)!aAob)_)p?M25GW_Y!3)l90RZ zpOpHJe8y0b$8OYLKA9(arYj+t=a$bke>rMlx7P#VU;Tq&@A0ExK9^=ynawWjsVYTf zgMYWtwC(~AwN_dEzY9Cqym?izw(cA7Iv+Py?BKiW3<@d1hqL)5Au!@8sH9vwJAyMC zjb)()A*`VG_{{#*r$g`v%BWlPcd9!crcF&PMfYE=tGje%@d63$%ANrJ`JQS`UX87l z(yU@H=gy-hN!i#s%^%lutRKdAaoPNOR2(8+=F3?>f~%(1R#jH!C9;sj>9&qiI!!O-Sr-F_j*PFx=<~Vtor3d0-F2=DO_W8T>Ka&Ve8dJpkUJH)6{|-Da3P&s-pjI<5R$8; z9rVJ@K?dtEG*X@qWyM5X2FK|#=FE^DOJywD)=WR1x|)47`@VM+H~bACwuKpi=P_!w z)>8AT)laBGZjkV0r@sI7GxZrO2S1NtAT2xQWGkw^U2sK$0H#yor|kFYnYw~Q=Nb92 z+cEUYWqfzp*f^d_!)jloR~xr;i8~OyzNJYJ1Z6g@r^rf+`cn4w`rehn*FpP|TgD^& zG|@#`YUX>{^iJCcZI@4(EZ|hl^#A~y-iG1SkUbA*|H{b*zoKQQ_0HOe`;qZVUuKL8DUQnh1_?NeHnHtH|(bqH|jGf z)gZfcR~Uq+8Ialfde4i0}-L+~7HL=T7Pa_9Rjw*q4X#2Kz70>hPO zE)c{(=vk|KLzBV~LI>f422sR#ZOy5}?zvv6gkB7(uVLEoGvjJN*r3G&Zr!#q?7-Qz zb0sGTs^B;AOpuOdAaKk4&l(zdlga{ey~$LHe_6TSCw=1TnxY`;$9_zT+?!+LP+mQj zA;7G*cdI4-QO|YEp^hcz$Zmw$>->HUW{B1?LL*h7zdzab!^@AL+XVOtwj0X-a5-tG zlTqE$8MsEFVKzS3l4qLkr;AIWN>@|R(_rbBb?tXMC>w&o{+UBa`Qr-r`?{ z-J`M)gzW7Z)5k`W!0m#q+L2+_SovaHS1|hdkF;iq{L=&f=j^lteK@|8Uyi&u0h$nO zR+K1;@dBZ^1CbJYp){);q>yRKl5*kbPkc9lnJ2^zxqknRqY^f6&wSrQDlQ-U;qql6 zH23g_Dgi!OljM{3F9!pGvD97m$!*m->NRGo9DJYgbMmp4Su0e;|o^&gYs{F=(l5BqQx@o+oG@ zK@V(u+DnIYX;^z=KgP`D%iU@k{3A~6@Xdlb@x@~nmUsu`ZK_-R5BLANh`+T+i2R9= z8s`VWPY+9xlWnc?z*mB9QR~IL$CUd}>y)JwB3t)B|Izcgls=l-!?`9eQ;qk>HJZI4 z9rtRq(>%8CR_0VvZ<}>vUC|hxn>Ft-m+e|?*EWVZWwvGFR4YV9) zzWP3(c|ZPm{o-cnpFNd#+V;z}A$(8D|C}eVKZfMgOkpS(T~mc_4t%;HUi2dQMg2i{ zJ^lA<$N91sV$CNRKIY#r`LeVio60BO!L?K&j@Qs!PKRP*_t>lMxQvE-mW1cA1-T$Q z6@8`HCyYvQu$`Yda|a0AuJlWm4Gz?=2|XXE^Ab%qvX{`I3WRQFjR~2hDVSW;>O!mb zc+Gwy?TDerasNYp8jYO}$GD7V_S{O(EUxRTW>Surr1K;j8n%!GT((Kq!f)=)=eq`q zZ(824N2qZ#7W+28X0JoPJKUS4yFQGat_i!_CV3Q37;g5Dh65*%5?k1hG z@`lTF5Ob_!RVW5-%2{W(ka9j7GZ|Y?%d6~tlkJwJvh)q5>}xasdrNswz=>AYFaNN8 z%UIZ$0KMmb0-MZ4m-Wp5I!?pe}`q(U&1BPo`_Qov>7is zaWpqbxjKGP+haXPkVE5+x089t^pQ&SwO=|Fc}i>?Z?a{64XVsCX$FWz*huW9D}FhQ zx%%&YjL_ogmbMseNtf5=0jMBzU!QA^TF#Aww&|6H%N^1x(5(rDQ-Q=1&(uLYuZf<( z4o5vs_VxHaFU|$K%te|~h>s}0E1mu$#VGd0s7{%^>smVe1w5%tj@%xV5B!JQQ55SA z-FQlI{gC}upQ`Sdu{$6XEG-{Hj-Bw?dOMZcaLnnCevbP1fZ8+^grFl2(h-&x1`cx#nkkmRG$A`0= znOUr~GC^Nmjwi<4-2RICHID_K{ld3j8jz*O;0G1s6}FCvSfvY9Mz_B6v3>mhDXS zn$o+Bu3NRAZ}R%z#PMo8dE+NhKg%nuf1P2L*Yq2I^_p{u4tKvbwfXSU;A)U{x*mRo z&joG2G#fOZl@=F)zNyJCk+?`sbA1&_z~5qXCqsF z;z1t_H!^M#L2`8TW3qB1IQ+*eMzH{-TA=~zUT>ms0^2PMnJY>k9SJsb+>5v2vFQdk z(KhlJZB4kL{WG6y%Uivcld$R#siPC$w4tGnbR>6XI1BTmQ#{U%J{g#X)M%UZn?a-WNmoe$T*Z3*X*LWF$X)WP|AD-qNW~>x6O}X zni8Y+IIC=J7R-17urQKf^z2y~-%lw>aY{j5C2hs>r36WN6+~62+X5e7CyihYY6FBz zvUmK+u5`#T^6{*g84DlIOYk`m%)U5dcLz~*u|%bh^L0s>)JY^|R|g$>F5kjRZ}NNl z3VzB-WfQ0J9rBMk%+#36 z0Vey4mA&{7Gi2%saNj#huGY$hzOJpnJ|An`74^&Rj&bOg=Wx(lO>So4JnYc3m+iE` z_pAmT#=a6Y-%U-;ESJGE^7PN%&PnW*1uS4}dMndKI3^rYiV90nmf1(hwtC zx>mgp+s&yvd1$T{HFg-v*Wp?^kvV>v z5CPlijFjJRJTm{ZW5kc8O-HdR6!VDzkLxQy2X z_mLLdu_cmS^w8~Poyio%I>GS*keaZ@eB$X)dB`}J6#G^wzV{|@MaI=^L4ndJ0U#lE z9f|!&0pXp2+E|J1d}z-H$IFbjJ3E`%RFDxjosqxaTC8E45yv9971~qWsw1{dgItvW z`0a7hqxHhQPTk*@r(XxtWG>-_9f&}b(dU`0Ol7>Nej}prYp^S-NKBGh$Mr=|!OuQA z!WKSxb&0G(_v3e^l%${bTV+h5enlj)AXHIXhmFigte2(L>s_txEZbk=%+umB&QT&L z+@8}K49^!Pt`bMzeQ`I*Zx7q687Q2L?PI6xQ>rhs)<07kRl{6*KQZ15?%a^04i)6E zZmev9B2hU8U|6N?kb7N$F%Xsi z;6o-M`<&raBb_fTsaT>6!OE*^?ndi~e>v-RFtw2^>NTcwvcK>W#B%Zw zC0FK|m~&9NF3Nt}OTQVTG<8V_chw1Q?(^w?obq` zMHlCoYl%!pjQFpb7iU#2HGNMUkXr0iup4*B8{g02RUc(u*OYlJ+ltwyjrNJZ$Qape zsQ4>sTb%r8VGjYoe`CU9ab#9VzmEkFM=u!@nz0ev{C00blTj|59Z0I6Apl_Iy+9{)vIBgv+rd zh+d9=Ll~8s>hwJP{W%sIj*9yM{$e=yEc7hFfzC z^c0)RlQ=F8rrcIxJP{yA!PBi4`2Rq9bPj+*IO;%6-sX2-QBF?J>0}$x%2zy) zaF8F;u>V)0DY`#NAI+X`F8ru8SUY{3mnooW2@hUVt@;D27O|n32zx88TDTR*wLyjK z5%d>*WpoF_AwwECzlTrQZ7mVfCOwqt(r$YJ7?6W!wI3NC06;`mN|ZYe{ztmKOLIK= z-KyCb@9|pgz8qsX6oZ&s@|##D6d3%I5{TV=zoqyx%Mm8t%^c2XGwH;Rjb4Wu339~qP zuq!ZMMx!Qy*_S`B;l0k!>`;6?!$jkS;S&kj=%t^;l$4v-sh885L%PVLv*uX!L`3+c zYp`+|SpM{c!Uo7x!ojtAwwBbg`VZ9YugSOl{Ww$uku6QFLEHz2&N+lo-E*CP$(BNZ z`s$iv_bA)Gl0-*QE}kw(m>bH%$Ru!365!*1C{A81cgg0foV@?$*NbFrUAtC}_-%rO z{EPQ}Li#AP?NdvMKayzTOfzJ?>`PE(&plEU!!-;)#*iHK=Lvcj$(^lF{7rFbC;DO3 zHIgQqv->XiQKm4bK6_kV-5~bl=uA;2NG4v|-`^4=6j69;lT+$eTFiVSt!KT_q8h$L z`8osRn|}*=?|*PiRZ64DMi|k9pg%1px%wW6u%@(UT*nxF1};`|2jQgUTDW zs{s*z_QU-oerhCnm)2U@jTQQHl1A*kkHxRubK*23bM;zY4iE~m;9$4@F6bU?gX>t6Z5KJRF?2Fj>cPV!dBS4b5W5`rNd#)tD-( zv0|OIDD&Cx+z*$@KM{j;&!OCpSeKICN-2;l`x({`PxfS?9}z+Y&vB;~ffIb2eM~)= z{zg_-DkyJi=e0y-JqK4%Z{ry(%lGHo7a+6*%OM0ZmMl4F*fEL?0NJmsk{MMo5iKZ| zQ}XR!qUBNVl^XAP8Wqkv$FRCKHh=8zK&>qGbV_dkXJZhl&EjZ9+>rX-)o`7zzmI8m z6*A+`MP%<$J7+NC*Xikd8c3UHrJz_6yeG@5P-kD=G12(-Q!6X&#JIay*(X{SvY^Wa ze~1+qm^U)tHo!*wNt+mU06ETHVo?=D$eRc%o3GuYn<&DhV71Aal`E^3a@E5h97Rek z;Qh>w-=^kDGL~O{NFi*TC)RAJV0e7)Vx}K**~JE>o!zv2O8r{mc|pkLYyaM**my?D z%#q@5P!NJ`ujiwClxrHPe(%@hBJe7$DTMK>xO&h38WbK$zG4{pni9cVUv>D+SKVaR z%-o*;Ha(KS?&pb}3n2{}hxeFQ&YUShtjgSnHSM>a%Y(YwU_!$b1X=yJ0XMkc_fjHc z(0Xu(u|f55(aguk4fejT`RLhqUcD5($k<+PCb-vi!QR=|o7M3d!2z3+Io%S30!2MJ z|1GwcMLdce)x(^Oc_>jStsS;l(sqjqBP9h1y8<)9;8T=EdZHXRqwmEYO$Ir$tZE4L z%A1PoV?tdeZFky8VuL+4trg#gvN+&5)wA&wu{S@o_*p5M*&&|Rard?baQMXuy|v^m z)hguIl+PJ4wSShnck33V-PRHXA1#4boV+?(($XZ)z7|(Ub+I7UO9i!RCu9!G=+d!e zLjzQ~CpA_h?I5Y3JxO4=^QY)eu+`iR^Ju=lGqgLW` zxVapd-?q7`HsTV$Htmhy0f=Q1;$eM4ggN(0ssi8~Doeq>>i8!K4~!lPJC8OmeDAx# z!1+*Z$0xV0&Jo{V2`uW=x8Jl7fa<_^2l_c!UEGF$ynPtOe)*NG2r9etP#^eF`i_;( zCKBHDA!D+HjjRz@N}Nx7*z{2mC<}9_cCUtT28U{MSw2V$GvbD~_C;97N}7Ae`!onB z-JnZsAp>y|?&x7`$1(76dUG{5e}Tgs4u*RLyrxUq!_e%UmVd&uJV16`Dl=3VMTBhT zv{XrX`H)E2+5+rz=a(BYRzvf2MT3L(ZxgFDOOJPgYj@m1BwUjhmQUQ%GpCi7Q)r6h zMou=xi|;RzUXBrAzT=oPfv_=%23-E3Gl8mF(PXPax1RPs87f|a07Tj|Ef1SMe0EK} z+sWH{!*p*nK9Al4RW!ot=$@O|H=S{G6sx!4K2^lSL*O0csm472KU)RS=j#=TAeHg{ zXZ#?jzT4c&lE~Btkt<6>!&s6ddOl)w|30XAIgwD3Up`5OvF&A>OHL}1dcWNqh6b5XW7pY^K`86MpN1VhXzHGI?4 z^nOZ58mMI*b;%h=$)bW}2Vr~0`KoqR1%=7T34+aZo|0&^OiAjN3cBNd(fZ6QyA^8z zspz2H`KWk9;qHP#i*pj87{*ieM-&~Dms^t;J#%yh6yC0*-W?9g4K5F8GsHz0@9x`L za^jiorrD{(QKy0rE9%f6BZ{6<l88e+cx@s?>H@rkH>X&u&<;w!q2nzo; z-GWmMbEE_Urzh3eGHdySYcsEU+t}7UiYf{QxIq>aDu!awQxN$zdfrw1LtKDM2VGjQ0=Qy;IkU{syCE0|n!wI1x zr>7XVedNC0KBS_1-li10*;v#3;q5(~>N$wKskynmJ=TJ!R@;)d1H($^nVy-|USHrz zl}j0+Ps;}iRo-W3Qu@zOQ^O2`nwC$HJNZydqYe9&JY=b(k*JJ;LQNX7`h?oyu(60U zB-~Ujz1EcFYV?om4`ctANRIpUKkY`7QU^D()!EtpC=6st#TWN$<;iUWk_M7#tjK*Y z3wi4xrL2^^kqkuYmm>$2o{{>3^E#7>jLV?f+Eg~Ec>b74P=>K_G6rMezLv^yUKHV0 zTVD0kdT8l3)(cW0sXQ1N$#6TOslMPjbO0@!BbPo)Pqk!uKurY|07az)DmuXsJ|3{YmC)q>CUIk3sd`uyA}gXa+-P|8GQb|L&Pb^*<8YV59`t z*HWaIABt9+#@aCb0BOu4<@d_PohYp{{R)a48WjA_N!Kaumv;g*%wr;t%#PR3IpQ!M z?Q>&~38LC?YMC4LX=eXJzVfAJ1@HUQ{`qWf^~}f<*0lFh9S$L02MyjwN0yJlTcQRe5-$Z`kjN@4EN;Xap<+7S4I>~AEIN-FTfnB+i>(fSLH1BMOqoR**8y9$)gE+n^syX%_d`8-^o~YxQI8bvA^L9m#J0 zAELekp6c)aU!RheQADz{cM`Hm2pQMRmc94pB8u#?v#!W?k-aX-%HDh2kiGZ3{Lj7m z{{Ht-sYkred7tx|&)4&H4lBEx7barezPh0iON{TFkg)3;4R}xbHd%zRbL00PFd=6* z_s@c6tGO@hQ1TFQ_)U*zPB9QS;cM3o0{wg zGS@2HP`^^gzuEGUfCm@taP~!6N2;Tz-O^4c5hr#HzPp{_6^UAvUg&4|iCmp`gyqah zO+QXVl!Nf;zx?3_n}x)jUACE3#9Mpbx_z7eJ%Ok64Wb*bn)SqlM~sff`ZFk54`(7T z))A~MAp>4&o^mg5UmG}MNU}zzTwd=%&fmXPTUt7f??1d7VEjO~&u)h%Z)t|!@2PdX=J3GR5(AAyO|6mJ8?gfH(Z-{?B zzsQ>QlC3}c=6&%*+9bB_3KC0Y!gN{rVSO^({qz1>gs%4VcI2>j()0{(>m%nHMXIWU zz*5E7l$?s;gNxGuADKIraZ;HzR?3&|0qTbiXt~xnAP0+g#Rb56p_2~bGaB$SKq~Bm zD_?vj_3hj`1#_4}E?>BHNFPlXjJ7xQK<#?wEF$ar46JV3dk+>)i;Q00u;qX2Y2Pz- zU9{)N#w6zrj}(k;+XzOV-U%*cc$6Y*hrg|JMvj&~b|XGTi0c=l z0~ImBG|U+@SpPlAQ*953m@syhG?_-m+tqkYANosaPp<8+#FZ~+1_kY}(g+6A$z1AH zl%|i9t~Uptd?oZW>k#2UPYTOMuv{^I$Ah%7hsDaVuDVX?&NsfL?ei&YPLY^+_RB;! zU$u=~H(?R8jn;}Fo~`L68yg!Vzc$l+%~D$=iT)@Yxm-SJg1INo&;EZ?n%g@=PE?i7 z`nsh=(^*(ZZp3!-&YYd~JXzzCmBbc*VelaES>jiZRw|(*J zF}F8hVZA5Bo}J)AI4QF?D(Gk^b6f3QDB(@B3)@`W#g8Bx(m1>WLc9=0ec!`SDwH&< zZtV9!o5|~%9ZQa*psS+VI&=Lg`t1nth%i;_pFeoYCoT`iSbL$Uy(O>9QqdHBg2nh@ zof_vR)Y@HFzVaI-zj@5woO>>&5Jz*x(B+5Z`;L`}j%fxMs%gk-(hjxV-=HTU*H-)+-DzQ`Gug_xahY`g0uqIwt2R=lZq(6^bDGCytmoo11Srguv4T=i!%s$J$9!tW03SDgd^*~#!wlnwD z&NvyT*F{z*kEIKf%;5-cLwWksF-^-@_tEdyWEh}KK^WkHT8!DWDTVMXU(K+X5cyV5 zN!e|ELvSK(I7h$cq=T^t@ro!wH3VUs*R%D;m-%o4|^BR#;9@Af=U%pXB zu6p}4@<#SjtvBaOAN9y7-r8A4KLhJVq2f|AtJJ|A*SN_wU)$LVsan<;iO_WS!Rl=2 zPTz)UfcW7Pug*M%nUiJCHD1(Ca7Nw)gyPlpq3_pF9|%G)cR^5-|FaCVd#B#qqUVcw z*~ntS%O#oE&aJ!NUp7+)iR-rezRzBlxHrFloT^>iy=spm=->$Bh~DLv5W?{Juo?y6 zb|W8V#PvV(meruYX90I^;Ow_F6}b2JF21Ro>=(q#&?b))!Xn|56*d@>^VUn~(+$bt zn^5l}opHU*h$W4y>3$!#0s#vvT-Hn~yCKS!fMYFK(!(9}9*G zFzR_2_TgeU9ay(gm~LrA_H?ch?Z=Uvtyxf*=*HV}|%m0Pxczt(OFEhZd|9rCWtrQ64{2;M1$)oj^C zw}PRgHQyY_JrYvW8>RNT zUoLylg&U7>>{Jt=uL)+G*5&tFdv9Q7F+3-#Nb%WV=p!aX#=;tpdQ(%&h})MJ;KRfZ zlsMKa|0RCfsHI*5DiJN1^dTiAn)YcWRnCK`F7}TZJr9 zTsx~@gln>y`mQhyKZ1p<7JaU|q_AK+I1@`=Ng$;dQA<*f@J5ofS#y%fhyw>pQMLDY ztKg_DC;p#`R|9@NyAhbEYgVd}2~5dvdBM`WK(D;wc(2HEq`*l#sSYm)ZtR;7p{4_Y zuIffY%Z*)_LiaZltCtso+Hlnu+m$4vQ7s=Qp+3xG!76)$K_>LfQ5ZYo*O$`Ab5d5P z(AcwkisEFO(i>h^qHFr_?K*M8{_CQGdme-IGFlpg_Ord6unFyN9bE(wyNNmc`Jp1g za*pVYfrMOnC5ZIyNn+>`#rer7s??{9nE2#!Xlt;h^eMUYxy8Y$immT=17A(1&^Hu3 z&aALNd&c$m(NsJrzc6oQNy-fU3pOJE{etY51IA}iOq=K@kpoIFy$HViNB zGDXo;$}N551gCj7rzsJicr2x=h<-(g7P%=mh_Hk&av}%7*?C~co@Zc`M2u)>%-Us* zkJ$G_ej#chB5$<`=S7~C&H?Tn%KnXmi?x*ABG1!s;vnuAm(A+G$%>R!JU!-0OtF_I z*pqoS;zvsDvQKrm*tCUYlfW6+;PXV1sD(Air8^A&^jCFB`^B$c8wXsS&S^b{rEDI^$Sf9c$Tp*E4t~W~4od8=jE`^U z`v8+Y;?1+w+EeyPZ<`TYUSg&Zi!d*k&sp}zZ)}FVk3^u`6=xj6ikV7Zfri_$ zagON@60JA8BNkgB!p@c)`V!zIezr%`$$$1Ub`_HUK=8zNyoNf~BD$G&M;ee0qkU8P+Iu|W*{jpMHm;&%rUb8dNc2M)#EQ;HR zy&8RYy_ZF)vMp#|@IO~B_V;Uzv1QjH7LJ^r{$Qc-H!4;512{YUTftM4zkgadd)KFV zxc8s>Cg>|24pv-$#-PW=R_hfd(@2L|mk$z=#)Fv>f7d53P;scxP!^&$1KHXmbMaJP zpL-iHg+2#I9Qy1pe5LZ4-#NYU@sJX&8~-!5Vt<2yLGsc2GY`j>^e0+Xa3&1IOW;DW zc{oWz&PPp_d=L9Jc1(>vaa~w9y|2L^?a2KoOe+d~8~+MB8Z$hB2yJP!LTB{g#2#X} zwjySPHGz(+=X{vfZN{mcpQdncqCnr5RrSw?I{MphvEIP|v9CUUnDKajG`l@!4L4c% zMzvor*DL%(pWtI&5M6@2zKD05D5r>aruqD5M0s}+$21ML{w={LtULSX&i@985|wpue5==0~4>(R@o+ zAwl2#NwWR<gFmL*>GZZlT-~!$ z#Y#3(ClDX*Y^#y5BuQ5+BD^|DIA)F(_{!J#YLXIZDbN^{nDdqM6DxbYJ}9`|2+uUx zG{vU$GX747fF2!O!>f1ym2ko-G=y-{T5dy?G6bFFR%<7wq#7`0B{~D4{04!5lTyLw zldx8~`~2-`l{Ym8jJ*6)irtfzcP|8LYygYluDPh`~VsYx4v>!6XB9Y)fTF5 z0SwDllN}6arFSc8>O@TT67HQ=Zq>|IlW~sTBws0?EL1=5RvstkDKC^-yYyDpRI9c& z*;&$8E7F-S$PHJ;gq;xof3{hIh|u5S*+gCC+g%*cPa(&yFL*dS?w^vQ9?TcsvtixOnuLJ>{aoYj+f`XOM+h8Ga~}>pZ>TZO z?&V}ok|t`g>PWFr8B^5fQ8`tLGXY7XXPJ0p1E_PS>!jqj!nIH{!hD&{+IW|iyPw46 z^gW#IdpASKmwV}CJgp>W;|4rQo$Lgv74@_Trr%<`*(WXNzJji$m!CXgc}z85Yh=aNwa zC{6U!UWxwG!~5awk4E8EWY^z(CH)$$&|Yn<)zR1ZI2zI@VRj{Zz8A0H%EFGrWt^1t zwC#rK+hV@QhR~f5gxWI(1+t0x@2M#ddoi)C*!Se9c!!HWo6i_H#?^MZ1C3N=I-(!g zop>&W;czsFxqL@Sg?UZ~9Zg&Jt^9H@_polE_bK8_`xf=Ld{Q!8peq>64C@uezp2GH z({9KX4Om2<9;`UbdW@UB`LVxTsA|;Tknq&`XV{7v#VNlqzr&%*(TvY5skAp6QH{Q9 z%thHoT3GP>-ZPFz6B0W@=qF;m8rh%aH!?v`o&XEE=NiYHDot=BmTAVNUsF`bLs84{ zT)*CPmP%v4qvKYaxJfCciRdY` z{nhqd%z3`yfN}(8r*OJju4u3xI*J=4imTiKRtQ!wNozFslcRk!vKwCx8&jshx=(-S zmptPVUqy|pI`2)vqm1%e_M00CQ~UNe1T73;u|=XjsJnLXF)jDy=un2RdgHk3f`ZM>9Qv6?YFHk3f2EFYlcV>5$<`7+DwqcqNB(7ke}lwQgKFehV_NKgIbL5 zsTe`T33w?A&KedzK4Wl|i%8*eR@S(d>2$Y%4}QAF z6Hu!B>wbZX@~?un%adOkqQXZD>&adFBo_{nFCrdhRW{$48?Yxp|A96^E3@XvZYg!F$j#9^dEDSu8;x;vU452t%lk;h z-)p4x7-NwBm1O{A9&DF{{LPMOPt^a ztaDnmtag9YLnNDfKr=!yR{oH2$@WJrqETTePwnUpWkReuo-`&E#Y$Hi{afX$K$!+& z1g6sA1*qfZ;;O0i3uQ@omTv8JDsp6L_M>x7Vlc$do%f;Wmq?R{t`nK8M=jhXA@Myl z8SWT9+?56Y{(|R1o@eJG!sR9xP1|QnV((>k{0oe5qSpEp%bO_?cgqbKb5maE*iVt6(caUfPq z*jWGvzHPT}h=yT$=Tb;DbCCXUC1otTGQa+t#pvcDqD5r%3m^YCjFk5^Qe2X}MnB|+ zIEXpI1@G9L$<`ejX>jn8Y{`)d6;miv93@jC2lp!0i|oE|xxL)#T4{3p-z!^J8^0aEV-?w1nypi_)5=8@gW9S>S0VWi zDWVT#3LR95DNl@SA+ZM^KTZmZG|c6uf6YKfVH`7WsR&o zNkRjxV#W|mV&{D8G{#u>w>G7$zSE+Ah=Qb-8YqTe#1j$5 z9RGf({}2S0@u8IypaFV-F#r#%CcT|?mVNJ;B~M5;CYz)l`3iJC`<_DOBa<#&4duO& zke9(;6kirAcw@bfB-%$yEl2H~N7_Ax(TXR=bOnJ3+|gA|7hz`p*$DDBX*CzHT=C~o z`@XDqMu|F4hBFfm@RLPeH0G!XU8!4J5MA`<``m!&H;#oV8tZURvtbTPDcVl;5`BUj zZca{3aW*(U#}-Hp0ks`{sGq%u)6+6b$aO<7W>aIFKB%1t+!=gg^? z$kA_J(KYJiV({h~k0q%S32~h7t8ViTRY{4uxZ%?09g`CPZ7g=~nL@yP)ew&IRu=qj znP8; zCAIPO9S2W$n63%rM4ObpcmHIUt&Q!Gn#J=SVW*O;(N8WuRIwrW$uZHsqXH=(?Bd>@RZ9P7K<0rrd)vG zU+7@2p(U66O(n53>yQ%`$`Z>j$Xag}QEgQr+Z6j!3{Nezhm$FqOM~cxZ`c}liC5xW zF8FD1w!jOirSG+fi%V??cn3~FS$gp*Lsd?G?Ce|0o%JZR|D9pC76;$yhZo-V6MPj5 zB7{xOH(+O^n|G{}!;%O`5w%)Hq2`5;Xk`Y@tXw(SVt|Dq_^{Tx2pcLbE%^d|28`p^ zx@1y?xHuYJkK#HSrO5P=sab6nvXpA-Rxc6VZX~{1{Ov2rH5b*Z)y?eBalT*JS+>6n zDYZrXP)VfcYl|AxHF{pr>j3q+RLmcRal3w(9Z`3HNJf2k12_KasM6S-A{D!m5@5O3 zSIMhDK|8dz3Rl_@g6PPDC&S(F=z@mnmJ}~c3GyPEh3hKD9nkXiR>7P2RT_bgh z-^$%TMpcHb<*T>Ycbh{?H-1Dm9LNoLIT82jm0x_x&(aricw?MzAk3RoTEX$N@p0++ z=eWls=x|(2dW0rb8U3oWi$BH-uqD}XI;YgFCTZzmy?T20K{9f7BQy={+r^15%yt6$ zA?1&Ve%bCoJ7f52(&$C*%h{b1ea#Z1ruSkn`}3CSfEwKw1wsGh_$Msb-+t$l4w$IN znKl>;G1tj2snhlEs>&17vwLY zz8iaYD{B!xCMxBTxRNa}_P0Cn_@g8nDfVq$q;}p@23EnZS<3rAKXW%Y+Us3$=*PC8 z4XT_Li$S3|^?t=yD29@s2)~RGFZPS71A|;@nRnfU%zCh`6c|Z()y0hBB4_->xgaqm zlb6+@zw2G%C$*DjLv`@Uj>zeo^PhSi_Z`^LdMUGGe1O;)h$(j=h^!7c>9n%e<^DMw zPmv9=!g9;McdOy-QiOj_BZ?0C+-+rhZ4-JK-=e4Ae4$r!eEe7ZdQFO#dQZ!sK=@;e zH(UGh*DM2OxADjt#`~fs}Twf__Wm%5%?BXk@ z4^vUJrvG@VwLF9TKTX-JCAliYcA^M{+j0@X?46_jEHFrGq(hRq&UG` zjY(+UZ_$QAJ;aDsS?Az`uYm<<>3o}O){{)Sa?j7(rvbU*d~rgU(a#hj6oHc-3Xax3 zi>!f0YQaa=4mQ5x{N$2}Y9>{u)OL{ZqvesxVCJSRcsDV4kvE~O?{T@KSf6iIf-Tay zwil~Dn&P&5d-g7IO`!THcr%ec>b=|IZ}TN1Jpy?i-J9iqhV}JD(|=rz3yuzf*oK|= zdyDg!a`^t+HoMQ?6ypDsiM3_(a5L8;jtlW^xIDAqo$=B00Cl)KZ_BV&5~uGjPkbBM z@83nlMI0}bc%K(Z8zxs%l$48S4nH0kc(CiqaL_$UPv2@{X3=#&;;%)88i#hjXK|T> z^m}+!^WYTQE&o>QkU-fHR|c7=rrF~?#^iVJnT8HY)iaeHaPPh%>nZ;9;-4RDyRBjx zn4>Hs-N3VF#*QPW5`>TI_TAN>R8a5ybg9ym)7~o*B{pa8G-9h$?6dawegF}E)+fuP z`C$FZp)v9{N>93_d#kSPpLFgtg5?HyRg45wN-h0`8CqTOdCP=$_gZnX@nk|n4=t0V zMUHE#c|Hj~5-pl3{&U2Rt}Ukw_J(mwUD##wJ_4^MDe#f{)=MkR6DrZ#q{JzCc@Wya zitR}FV%xK7xH%vRiz07yNAK$=CPj1|FXr2TWjJZdb@KH*yKQiJ1dn3X$@zui5+{`p z3Q^R3s-{=IOmkFsklVDN{xm@uPna+YC^5h^RKYbf;6vb$POanmvbPk+HJT5RH@>so zOV(Kcfs&bR^i1osYf`MU#kZa9Ryqah`))1W)j0jn3%iEaoSj|pT%vueGG1fkqT=1< zQE8~?S)Suc$fB?p!qw}n4Q&ozzPhsB303O_KXEE4*>Lrv?6vDnmZ~Nx>rn^zR&d8d z=QD64feR;euk=YSQCV$`#bUC2xa-&00usCxE~q=+@KqrH>N(?Z2dY?T(K_N7t{)e7O(HT&mV?1efN zC184oGH9mA|MZt@u~3{Stb#nI^r6-Zd1~bUxB$%?9Pp~+{`g+6?Gt~Lw0R|UFG;96 z|1@OC*xAVfHSfe%Sz}Tmk8pSIDSIdUPm!rTKcOx4l!b)X@1&WzU7^FZMR2uxN0xGP ztrIaZ<*fsb?n5X}Z}sK49F?z&oo4KlT*H`*yjH4hDFIMzc!!H#vw!7OKSSr+x3xm) ze>Q?lxuK14M5rULoEM2&WHhq%v2Q$u%fgvM<^T>@bb3U1GesenN21KqZW!3!YQ!@> z!`kx?sY|$fNkb45X`DTO>8EN>egU(d)ydojZ&!^X_-! zPo0gJxybWoj)bwpO~hkn5^IdF0!sphD~~K2a<`y8XT(ruJ&Dr;I@^ zyP1mbqdT|PS@2zG>QCx4N&RtOXQfW8F&AsO>8C|&(c{yS|6ux2e5loa4>P>wynlg8 zTACA%ORb|Sr-u`OGeMHIxS?u27~7}$rge+5)=DhGu#&b;1PPW97Yw0MkD|}x{a`@_ z&s?|`p-OfyFy?P@AlfGX5+}suq<)5UMT$c?v`LN0DZ^Ez+rN>)>0AgEol$G2QERBO z;n`wT`_hqbx%)vhtS8U1n5D|vF!`jBm7~hB!@ZnEYvx@v-Ad>|i>QqtlU)r{2w!T9 zs0gRTxGH8P#T-=5%+`2T-83GyyT4Nf!TRWCg}@XEZtwlrNQSmg=c%FkK7RxB<3$d} z3l`Obo>)z+N3@At93u3IMeR>c1{Fyug!$}$f#hS=()u3AuH^!$rP?piswhT)3Bkmy z_xMu|Ls+~_G7;&@nZquEM_s=cxlD{dS(g7jvs+Ut*E8$sc;?p4YvuwW+rQsMOe7Pv zScE(slSUF#+$$@6Neuve@7;EMU5|INb&`!H5`PcQkb00ZL%Z0z6+i=6JN98*bXMlQ z%K2_Z18#?B_-gpVM<1CUURqJ>aiqDMt|+fQJR~GaJX{Nk(v0pAwD@a8<$HGWD^`|W z8!~FY*SUq*X{!6GArE_D?dM)MDqRtW?LgQyl__@|gW#ggR z<=#vK)9JJ=fYGYW{c|8m&$zYZI``XU77NE6#x(;KEDQ_E-@Vl@JL-?D*DW=QFX_bV z?(_gu22gMKwq8Qx=8mtqneBJQ}II7c-TjlXcmza!u|Y#>>M_2F9+PMC$O^ zyxr2tj0=DHeoLD3mOno$HwG>B+rFw~{AgTqp2*Lmco=)w!J^Rw;SGwS^HOus8C^dN zKh#K3c=S!cqO8?A!up;EAZfUtM{oJ)R?3W<3_h5rsCZ1s$CGG!mXk_+UD)^D@am2N9WDLDG&cVBsuKpP_i6fra3{u7am^28=+@t zUWTJv+59kJ%PYb5Ez#{JMQQd2DE-6Tj!z_Et5FYV$;48DCGPdvnIDx?@0<+XFn?}& zfNKUj?G5b><|BKkqki9HWF&jZ25#lhkwlq2dSTU(mTIxnk%jRiSR1AW@qcj?sm{Uc z!EKAeRsgJoe^IuhuX59bA%UouAxV~qGs$~b(ulh^Ae&qF}m!D#sl3#PE7y&Npnrz z{)ew-c(K#;Wvz?u%h}gRbL#Qd|AXZ6+mfof?MRauc{*B5mk5C(5vfsbGPNZnuu8HnhvN z;G=7k-1vS*QFP1`J;kUrY5}tMnK4X^6^9 zN0dC9NpwIVdm$M7c9B-3K(9Q_{O)z^K(Abyifkm!D zl=|)(dC&ikxmX^ep7||5STGyAkzxDls4N_3ZN20)tOj~9+%lX(7&a~gaU-LnZ+vER z9xSov$h$R-G`E6SYQm5W?=*IB8aN!PrUE=&`IgIM;pEJ%Ju6vV_rlwkk36Ax(qy!f zu`JN_;B>8N+i^U`6I6HYQBIjwIZark2Az!K`BsrXHygpn36Z8eRhGhc@6DS?iSJ7{ zG8vL#XNbK4dG{xN$lIQ|qZ8{h+5gC`mt(RbyX9vmqq{fVZAPZ7QoWo`;{Lg$_o~SNJpJHin?n;XLoi&xI{Y_p#NUSVc&8We_7xW)vXH>W}HRWK?|efhqe%+a^lcxIa5G+X%;~ow70XsTdmw) z&oo@rgry7;p6y4x{w-Ryy4tbCS+U6mcoqElRtUV>9OZo6nl{s&&aYxZ8~ zCotI`;rwk0)l-zE-cx&^t*`*uLDmB5>t!C!j;Q|TsFq#dtxg$aY zK*bDor2Szo71DPNSgqBZx{`zAbHGhWt}T6Yc;_UAkm?20zK(`v!u0B~LQVg@(AkeK z#X7!=Sqwt6w;Af(0(^*^yxjU>db^Jl55ry9duYa)^On!t>a{W-e}Q?OSj_9#_QoO3 z=*No&C|ehH3Z~SL+s_x$sqwltvW8!k9ArIF)q>N|j}K&c?f$#~_|qzzgFl_ehO0Qh z1zvaca+^3uSpQm_d*I~(;@POtwF=(yxLCf282jNb3%b>BtHG644cN4nxv^Wbb>-6A6$$2i8m zYHF)n(|MTNu1mAFf76k*_83G{NW@aBAcqhwumt0=4^?f;ML~3lI$$r+NQi-*L^?pr zSDEsNGr`lH()aG&{ljUPeo5*liW$yu`CdLGSD{O$$j+s`K3r*X?i?kykycf+7GI9?`-|6W37F5&9M%{I%pe&|xv&N^tGcs%iRpLPLD$r> zq=Z$24;*jVvm{Z7Sc1cdUrgU=sJW++F-)?3ceb@B<=10$0>u@C@runijh52xNR7wp z5!`rp5Rv{gHl#HvJn{mSeqblcjf&~dTiy(>OiMclMI^0hJ&!?2NS&?q7O1JDpJJd_ zEG!~W2c@TVETT+dJPQ;H?c8ggVh3^yX8Lkg+I^VU2P^Im9icUt$dQiMBLO*qlm`mt=>rKzV!ABV16V_$H`hc z&d~s0yub21F{wAHWCgKghxp@+;E?507i?aNpV3FG0Z9Ga@p21b)NYE8pE5UumRu#L zVsBmmUSpWd^)kz^imD*sPEnJjf=_SkNguarP2Llj2C_c3KjXxgDy*3gaVI>{vf2yS zg7O?E){d@^Wv+Kn#34!qetuy|QGmrf8bOyTKk;Mc`R6xX19Eg|eabh@WIpbCsi_8s z{==15{#<`_SJWPt!!`$R>3H+-`KMfuL%j2pyri@hUbEAX5-v@l@&F{wmt*4%5&_B zx|fwmq|YLtf)MFXnYt~Sn6cDbw-LDqL5w^ZX=*BOf)GXQZ15F^+nN5Ua(FWb?xH$c zrmE^m29N4JLT=Id{&hqJF=sfb^lxTB^W|QH!g#_n!K7!;hNL9CZibpx>ODOGaebB0 zH<9QBA;Ufi4ZX1-qOPgeN!oI5@z^-+lcg>7Loeild6SB#| zN4``iB_XcaF&V$vBDz}bE2(fc_bD3HR9P#4I}Hs9SXm+9hZ*6{d^~5#9OdH3)SZi8 z&ToStx-aXPX`5oczUz8Dn(*en%)1ovb_g$fMB< zFU|LzYl4S;8Nb(J>_L%>IN*GS2JA5?s=G&hHSnBUe+Mds>N=Bbb|3Rh+pd@LO?k>T zywf!@;Euk=uiF6KFI1Zhr9>@HqFHA;@!Uklo0%~1 zyTEe|sKg5A-hbrl1#liSvyVKAlg~{{M-1<)v8YIy8A+L`n3{#Wy6!OfQAISda){9T znn}avIKG}kBfw#rAC1?_Mtui->aK}8(HKdE@n^1L7ycxa$!C*`j3QsvoQri11>)r?NBQ|7jRq8& zf6n?rWrK$OW?nQ9!@eF&ezx3qkD1w@=}r{UZv$!h4|k=o#g~0%t66X_KjA9G5B-%> z6h6tQmb(s%ivHpQNE9ien>WV&H|kJ_AfrNqu8NwTT0|;jv6Z&C;2N#vVi5X1uc$mrS){F{&{gj z9`D#g5T)CYyup>Oh-jy@4}w5t9hy8ytwX%d7ymQcr%{Cbhk zjXjBJTeny_=G^#=hA2oLGt5g_&kCAidi8NfgQRhns&&go?&!YU{tPLX@;~ zcwqw@CYW{9eE#NtN;w|}B6`tpW;HFxpeUwnuw_7H3+Ti+rgl|U1AZLAKYn;b0J4Mm zujM^Ok=ebEtf`l)*&U~?KbQ2LzjJoYj@dR@Q>uf*DU;ZLHn#5n-jdemb^DfGtqDss zd@axQJrj6ZmmT6&X|VWDLfbaLLQ$mrP_gvG&WK3V5|66NAPKF>%GMKd=rX&jUdELL zm>qycqw6v80--Qz+eq}I@cUx-!bgs+AD!C5-us#T)k71x>1oyt z&hB(*f18>({keW{`DoM)z>y}UA0yQ>>R0zwIKI9(Z1RxPzc5vRm!Bl408ZZ0KKCSz zwlqx$a{vxV3V{cVLLv{}8Z9Yo5U!fj!Fs31m`+d;9W2r&!{6}L1g0-JDZv|MS#49tfgDNquzvI}EmNbLEedaG7VMA(|O-jaM?&S z&Y=bESql17UG@zXN6on>*oi!-v~{QDmb(`F3rt4R4)yAQ)e-&8bDyUq?-^(L4< zTc&;ZhBv^{@XIBn@jY%q|cP6 zft}5sP4>Rr)7Am6I);FYio02Q!Y;o6N`yK)s}8Rip~Xw$LKV2;jfex-?F@B$OR=d$ z{IySTFOkdRajb0a6?l{;A@g*VGF9O3v|4T4R&EU9cSK0*nU9X|(uWI=mD_hrt#BNq znoJGz#L4Lg7iobWE%mA_AheE+L)97$6OQT` zK3g^fo|@nTar_d{W-|Pnp0y{R-UxJW5T4@p%qcv_2)~ja(=9XH<% zV)}s_?-vt0m&m~VzmwXN=scsG9dui?zj->%?O`D0FY`|Xu>7g-bt`!6Cco?DoYEUN zjz|37In_|(e@Ept7J2nkG5*d)vzWqE{ePW7H7%#z)~vIEU7o4Ah= z_1Sbq1-vSQ=R>kpeZZ({;gJjNm*yzvvJu-jMltY1qGNI*Lgf@>Ai1hvDf{sL<9x*PUCL9`Q^s^n%-3RiVY!iCZ-hXwW|3Q$e$tRtQcY|C-eeK;`<;4rO`E@Zq^mORfmh_fw#qdS_ zY+o-rMhBCU6;Kt;lap0mbNLbu*n(*Q69KFCOA?k$^yhWMsTB9fy!YjkJk{+8WJ*6aI=&2E#487xT@W~l?joF52@^jltv^P;hwJ|;}T~R{i za4_$Z60M0IL^JdydwGprSOQ^0)__H5=_PhMaEO08+@5f53S63{)a>-TSS1k70P@;2h|rg$Yk!wnA(lsPyi7H7z)e z8mgbd9^(?XQOH(MHuJ3BPS4X{c^qpYIGuw=9Q5oVxituGv~Rib@$g%%>9`#9)Oeaf z5q}SELyD;o+YQiv*O-{Tid{vVlB|LM~Xf|E&%Wxo>1B~=5(NQ1j z^nSrsrFj@si~~*(dWueIJX6l-w%;}!v=oaK>`rW4GT#$crL(jFfAuAuw=I*ZFc|tA zHAOV`+RiG!cO~TbLhzQ7Q~rEVYy-5$pe1Yi?1uR7)tK{0r|ee(ss#dLeY;yG*f@{1 zUh1^vs3Gl@VT4Ws%u!ddhnRy_`6_5B-4kT2FD?1KaL}$N9rb;SZwslT<=c5&uNiEL zP3S7-B45Fp>W!KUHUfo`?=8k*&dGSQ4F?%t7H#i2i+YL^ILidj%7Lh&&lZzI{Ky8a z%wB4-$PNC**YU%T8J%r{UQ1^H3+7#%U*9-HPwV}TK%jvRK3%=Ght2A%Q$DledbxAb zwikzV?y*RJEgkgdnBJo2aG;29eeV=S!!gXxzu6Ov;(qXC>Z*+e>rX=KV%E{?A9Z!^ zUKU1HOlvVi+A0ks`N^aKQa`yh)X5&lowuX|2C??`2+Tgap0Lp7k~?!$mA z(9|%kqJE-1n+k#MO^Ci-&$BLRs7|+cbMcdRpLDc@acCs>$z{JI^Tdb*0a*=QVyckY zv9#3@+ql~O4gpHoWweXe$W{@;LI>u2cbY4JL1rNPt~&YYIKTjZm=A+u?1J%k{bv^I zpsM05gPTr)W%z~l4_?OOQq9c4K%Oox{yZyCK($r@x_VWG{v=$}e8Wr9gqn7G3XereX89TI&37P=*qcvqdhvAAK`wc zli9o5DS8Plnk2I{f>eCNP_MDLWQ!m`XnY#F043}pzwmBlHpz`|#T}=;nhpA(uC8+C z{Ef?0iFci4#$~&Rr}m5`A9n6Mq5^~Z?xxlICOtpwA`BuusQJ_^QC0o;KlVqsd3>*4 zxNC3V_?}7<+$e8M17|GJGb}%N0A8r3*&W{UBySjF$qjFz9Ut`}_^e>?%c$IlcdfOJrVUhyFva$$Qf^ew zYq9w$wjkc?sOLp#=bZ;F9CojTx$*eD3`T(~G0&;IGUZ$xw2k}6noadO`sbYy0|fCS zW+Z?UcXciRKqK9c3Xq&+7&hUa9e5`cxb#1S-h)b<+1$C)70_{9}VaG#{cDuCmBmlRf==;fNm9y zmz(Mz;4&_l(QR*fYWwJ%)C&Lc6c;CuwOZ8&loyhQ3y;@Dl%P@#y=Z3yMbjWo%3ti; zX#A#6Qa-5PXy9g@Bmgaz6EOQDzRjPqnPnQ;O^oE`^XGcb5G|Xru5+!;&K zKH*QnUGp}3w+x;s2LdM@%B{KZ$$IU2+fBP9-ObOQyyq>zR6~GkN4IXnnS}cK9-Jxz zS5optSaB`Bg%;Ckhh<+U`+Rj1_H21H#YF#HZ~Y)>e;3}iba{R>$8% z%1bGt2=$E?@XPSUyAf@O{--= z`ik^k%<#s?(I%*8f2nTy_NBd6Q=EesDGHrM4U#yMA2n}o=vVpn2B4B&+&tUjkyvs) z*{ltszLohlCW@KnF`*$B_``^c>r36m>mExQQmu?fLEHXl#zCR7 zF~9R_nQBL1ma^=uI^U3N@b|d)5Pv1AM-S(2h5b^)))aAk_ct3SvcX~B`AIaqnc2s6 zyBX%aBa2Q=XBOi}V zUgc#&Lrob$=hTAb;OvmEx65+7ygcWOBdtMmN_&N z9f?VZ?5%F0&yD!0Mkmi$7?zj3$H5To39B5SpZ?EG%`1{kAnYXsqM%25dGd|0h*IQX z2&3I4t{Y8s@8$WQ;38p9eaYUE)0D4wFH!wJ>;-&}{YA&#ETt0YvZ?hD(w z3!m~Xe{{~_Y>{jAzVCmlejH>p-W@b+fT^ zyoi+0ctSeMp>a2J_i_O~i`bYc+FB`D8TIW!KyEspABIY24 zujqs)bEkkCXNpcmXw^qjWX#LGs{QsF-^e-Gbg`qJ5d)6gg$H?zQpwC zU0x)h;Eg4DM|dLjFoJH?nj5C#4#x50Yu1LnFKeFk1}Oy7+|eOe{P5v^km#;Othu68 zbv!k9O7X10w|dY!`6BjBSA(uoJ6vZeW<(AQ&gSH3OmNzTZK^o5@ybN`>|q)vSugk`K>>`Ly&>SF?IawA-JJhI(HU}B=bPKxvd zPZbxT<=DMqDh!FtPrl`pO+@22zTU4CB`fv6#w96S=Q^!L-L%ru@-Q*8(CE!_toK^Z zt2pWimIS*mvknNSt&OtPZ!XMt{`4Le)@STZ$G!a%`*}eQs0+Q@QK4ecE7SuCKE2)`w%uc-H2+{OGN*# z(pcjpg@`lH+dS0Czb*&O%sgRYQjgysNhL-phZs_9dVS7wY;><*Bw6mBy-?oXzW;K8 z^>TeRdhWv6*Q6GHi%HrPc6RD>^Pt*nnM;2L z!yQwtlrudapCV|9KJHaZUtLAQbYh!3`wm5(zB^rAL-xnpj}&l6<|(PXVdlFjKK1p& z8@o-`rLBkcgQB~FgTnqGwB;P#zuX+!HK*6=zy39J?Eaj{aUkkG9Pd;b8|Cjf*z%S# zB~pO7w6XP*8j&P?f;i`TW)?Av-RQAXS$?!J^A7ny)`vZv2m*5Mn`*oJhu4bF0A$;*Ty%et*yz?sC0%uRRyrb? z&A-E_DCKcSW?A`&l`g1D)0$ADM+s?^9yee|xZ@PDbe{Vjo2y&LqdUG!Nelx``om+wA3W$(CbE2Oh1MD^X_^>;yNADZCrJkLCUD zyZEcyN13hwuhuV9o+Jih#_9{+`;w}3cLIJ6eFcBgc$#}78Y}=Rltr>zDTX=POy;f; z!z#m2$G6$wERA@zPrBG)q2@Uo*C7Ak2Ei^TF16LciGcORl*~p@>-oK-?T&VxG8Ny2 zuQShEE5tMHw>}(sdNr5jO&7IpKK@_D-w@N>H8l$HeARey*4YuIc&oR3IrHviX!4Nj zv|jqmSlfuY&Ug{OP^XB`;DFW6Bxx7}4EpO>v>A5%bxc3Ojv)K1U|#S%KleExIrnb} zZ^3q*n#&4`3wpR)Y$ZmxoKU+S(+A2uCk-EE!a_lP!>(%XvOIM+qQrdB;OWZ{)|Ufm zd3=f7aFVzf?gR{1xfHD#2Zt1`Z1E^{AP6(de^wxs*AeS25HSKZfnpQmc$z!orkdm= zici>ZG=8$B96GM^`H;jOrWp@0BRwh*6~6108P;Nn@RWqnW{EXqOFJNM1*7yg}FCm{CiL^JuhTXmN3L|e9g*1QJ7 zf6AcH)yKuc~EBmB`_1;q=(g$1|rzu+Hu2UBj#)CMbNjP8xjIquGGACb||InXjsvw$LaBMc4u=4 zPQCKBayac%H!=Z-#t*Q&fciWUk9p=i$9v7uX4=-7tM?qrQI1fXwsSn7)zx z0yS(e9JU|%D9VuHqPsMz$zxHSBd&02@-}pe{rHZprtz8 zE#pk;ix8PANXcuthk@_Q$F?83j@1IsAqo$&ul~^ekb|^wqLm~Po**7uG@M^fofof( zo~>|E$Gi4ecHDgAykDs3x$@>5CIoi0&{I6L=DSb^}jdJSgMNsf0-9?zCPYM1Sn|o_cf7DSnDk|u8KJ?3? z)^}pa@fYAG#JZ#zo0^|nC1ZkS#tSr7S%3JAPG z)BOqgTn9ToxHggU=-Sk%;y)l!PaD8R(z^;v!RQ~|!Z((1B4X)kJUJ!Mr+p{XrcJ!pd#7PhG#qL@(pn zS4jikvXhBmMvaZ{Ve59!& z+{~&6%eyC@zZ!1{Qx0xZ`&wQaBd2u^zm8)C(I^cD8wqgN60lk|An4vp^KkjwNDJmB zfWH58sgueQ9C@5#!}VG56q`IPRG*EOXR2dLVSXnEd#$v`ZVzXordHVu#ov#Gano2`{j(LE$B))OSB}ajU zu$2Tk)w0UC%J%7STS77sw^qokWz6yoc?{jjA_CLwy=8DPUyejAtThTECYvj|15;P6 z>S~C5Y^+_Ld}P`wH=yc89UfNJay9+>SCa(G3xd>pdHM`WwOVpE7c*SoJlUbwFFAU7 zkhV8#xDhTm#XDvaI~WOw$GkUY_v$nGVzsJOqLh-dE)apluduN)vU=KcBcCERlRqW0 zV$#v8=|it{>gL7mVkp@eCkZ zTk_+iX2>v?b=p2Facq@gIs z{?u?LVN$1t{|-_R#m;3g{2S|2@bCs{qv6hLJA*EbpvoyJ&WQCWHsUP*@VIQ7Sjn3p zUOC=x2ARt5QfiC|2Kp?EF4Ub8uKfHd^(MMkiEi{KKvK3+D#dvUiNfh5H7XH$Dn^WA z1VQR>ZSI}qYnlnd`W zcUWE~n;jUbgu=Km9mAte6yyRfCh9B?opza{O{j!lw99DuI4 z=A`qa)|`sf$j$h+K{VHR>3~2a;o3n>Y7nnBSeOmXY;$x@)t}bT>Z{xsv={$Mi3X#+a0mc z$Q#HL=a=uLNE;F3po77U%YF%bE$Yn`Mwxj(UPu{iNFc%v71zCp z2RBWAohs7j8AzUS!YGT0(l|gw*b7HJ%&TwD4Qk)gw-0_N&HB;wQXH>4XIz z@w;xHT3I9V4xmz{$OC9cM)TpvijVx{^zGNMtg)|7x32leOobdwvaAoi<(BaoY&A#?g1bsfSpfd4$HA*U+LDfwSawI$I;_+*VIMo=;A$aV}B40IJI1 z(4eE8x2-FuJnh+EB}#=;Cg9ub@|u%Nqrb^E`iD*?P15V#IL=H^D49!EP^hYUwrmVf zguv|R8Fu;{FNAmznIv_2@GTi8?7s|nqVB}4&z8ivw{!^9sTyzuB0kN|XM=S@w`)%O z6Vsh?n)m7JRt}DK#iGAnB=lUzdZT=`?!EAlRE^y`5ocjo*>hnr>RNFSo~`sKT_Z(b z4O57@D;c)b-B|N`P}y07H$f2qGhmGqi^aEze`$!#uBpB!fI%?(>1wHx69v?iQ(S_T zd@p>soK@*T+r_Lq5Zg?6oh^(2KKl3i^u{b7)I?;+;Al|d)$Put-umMqdoOFAhT`Fq z69?u-5x3ZS;l#|H>AD|H#pIaHdL!npPXZQLEtDA~xf>})&&>g&eS8;J%bV8+a4sjsHXbzA+MLB@dq{ zYzJ|)zot{1|K+h-kq=7(FTxwn=U`(5B;r?$I*;e?p0+Z1vrd*s1XUV18B+A(%*bDN zBP%17D1ZbJeSSXEXHBCTdccdGZmuq@K!;)o{??Cs&}0z?M66C89?Y+{J+DWvWO@yU|K`ZIU3s%dxyxZ;E?e@_tdX|b zB=Jf5>PiZ?jYtt`k)KZ4o75tC7MwQMXT}%X+Wr1lw>MSUvlbX6!`Wb8(B)cNn_5<1 z(x~+LuBhLJe&Oi(=6IrkgJW1*RSx&k1?Qv7Y0+jWf}4t}Dbp#QPOEbjWj+(ZEYTPA zHbQSSqJSQk7Uj%e#qy5kP8KALkvAz6J!HaF=rQqeT!4*C7$z1IUKy3=E+CbMEcO3& z(_i>n%js2gd2ui#V8C9?5mW$HhEg6jU6qTGW^s~*ts6)>Np>mP;sZZ-EDcTd__C86 zuo@}rQ;EK|@P+ap>qsLSI35!(PSsgaiYP+5nyK{s_rChlXvC!VdE7V>hn<1p$`$mS z{%=p(5y%qU=r3`I959MxzE}j>IYXl7MY7EL<;nM~iLA?+<>j;bb-rN6ozsj2GwLe3 z58>^ugq$n%mYC*=xyN_18VBm_BqmDm4C+to>fq}HMA+H|#EQ@{A-1|$kXub6tM|%r zt{9Hz8cb5l))L(pkhi++gwkjh$9fYc4kl&>)Vfhg?GXvH^{h!ePkv*m-N8+%XHgar zQsc(P5mFu2#u3;Z*5;AmDWl3i@TLlPvM*+Tb-(-hLY@@8Qlvu1D6e<@nayN_vx#kW zbA98;l2{O(%TGbAhx1L9A0A}O6_r}8<)NyDY70W8Kau>e;>N|uXTM)KwPNt+$ses4 zii##BE&eW{mRZJNx>lQ05l}a?1*Bi3C8gfnL1qt;BtLX_nX@Q2@y4s(w@GuN3Iy-^ z&1WVjYAZ@zKcieT>Sy0jQDZR{S^H*Hza7qkJS(4?e+2g=xhS$pFQ@4WctIBnyjfnt zK%8uu3Ish|bW5&Go9LxZSFg9&!<+o9`bWnLx2u~BCt5u4Hq@#0#{38B4G&U}5@sef z?cw^0RVopf6X#&P z=v`aW3bESR_~hgA>Q$Nsu-_N)yz2d;BIG^Y`g84SSpn(>AR&sXaL57 zGA5tyN7w?3lY0S>e9#+ri+99tV%dwTfVTDyVbVr|Y5t1x>3mu8K^9J)r&UkIpB z;)v<%M>KiA#%%g#i|5hE{%&HK$Gvc1AuI|0JEn_X{mW65?d?yylMC)MT<@WrE%L`T z%{<;tXg?}pI^?ZK%*<3~4n%!3?&tTnvCo-*@+f?T!D>)>0CSPD15U{YQd_pJ~_cN8u zt&^V3ugPTvKs}K#i!*&O+(&on}$F=vsv*(SdGEBi7j>EUwLT2GpVQ~goU z+iK{(``>zF1vsa;UmiB$4ca@L0GvlSnps|2O3=1e`)jS%86<$(a)GjAnAj221K-uz zTSenCs5zwx9gTOpf&=sECP&pphen%_d1e`TNK`E%bIm3Gu1Xw9;FmGqINSrdGRTUH z8vS#tiUOIJa#nZHg3H8NO|6jbp{apLeIP`Y>OVz2rH`v9ZFqe^7@O@Kwd@UFd4|aI zMvNOAeO$SRcR*Ktg7tzDP_~Ta;f5(Kn{pM-x2pYu5hccSek{@uoNcS?kkXNilM1s@ ztB$QzGca>EGq@`axKe8yj9#9`%KQfU)Rp-!R#j2k;7G68YoA$ABe+z3P;sz zU;S-~7tFSmq?fZ2DS530>8S{TSIM=!6~p_Nd~QqWN=g)~4qi2-Uu?!Wa&ItF*1MtJ z4sSdQcmZ)p5Swfgpzw*2Q(*_hH_7WH!5c*%AGXas;Ya;Z-e zlKfvgE~9@;e$kvTBPTm!%kwAJi)ynxUvd)gQ8XlqHlh;rKUp91sh_MVt|)GbA^P>?X^Bji492|-PtUVMf`Ndz)rsoX!I!m6ol`&M)L-Gp13 zv0Q)6)G-odd@F;cMpk}LRd1O`V$ZEHNs0q?aD1b*T>>EQpOqAZ0BpuT$O7w5FoWfQ zVqa>?$Gh!uQ;BZ-KUXhL$F4cpz1gs6`{q8V zT2`!yA_w1!!H7V)S37Rm&yG)qokQLP1ITZsj?(@_aFCW#d6hD3F5 zharHs?cZxWo2s;GqzuH~hd-0Aa*4a$-97@1x1r>qk8#rOY`;jjf#ki@0p6-X=D#xL zy!Hy!uhtXoxMn{)H9Yd&<+}^-3p5+{jh)YrTxzHBeVY$5dKtB4jny~o3)j5@mnX;f zH+@&z3dj-JCCkz$h0oNYkX})!>0)66IMH3K2^uz>&tVYo+Nk)jEJ(PiD$#)mtE{Rn zvBYj_4{dl>wgaoe0jd{Lt{+bqhAtA!1+)arr<2rW)=jMM+l|oUv9+=S+_;LBJWI0z zTjgY<7!@J@T9Q@!eH(+W(}Xx2Y5KsONG7F_R|z5$Q4c2o&}4t}@1eS&0k+ki@d*5* zfZ5#KPdqV#vXEqbR=E{aoAs(UAj87g?dhc$P;{&c^_j6$p2BwH zCRi2vZ482R0gipbrt60zrf~Br8>x|*1Cb@DpB7G^AD{Zkrm_F>?@0Ju;s#}c{aPId zQ0~!+CE$+gQ~#00P6+lcomCw z@y9}LQcGXTf&Yla;LDDU4ngI;h!V&&{E>E?mc`N7b01)G@8R<0lcd);y z`h>Q@G=}gncT|+(4^koad)wu1N$8#_WDlQnJL~ovI8Ma)Rb}3)DlN2FfB!YS>GEb-J8S_Gh2%?I<_ohZ_32Zkkbg~q zoOnfHXwWkCt_AW!qj)vRNcBLGB;oT{HFT3&!8`E2L39(QkU*j_TICMNR=Nx5mYRt` zRiH&Dy|h@6dd01N-6ZGdic~9eio!lThnth%W+%VX%FaX@;kl^t3sRq;zl}_u$SkqI zjaoVPTmA5q?QLDiw6^dX|LaW;u5b66-HqlS-JY6j;Jd_hsY!;c_jPiJ@`+%OafATD z15*Kr?lw4&_zTVTtTv1=hrA$rA?#se|CngFE_M3b%v=EOcW_?F%WH3kaXx4;NLec_ zsI{BRMRcMm)@GW}RmkR%11#(7Z&kHvvyHW5=yGVpDor9d7DUWPgS@??jcm_sNBZy1n@O||y5Oy8b ztcUB~DbvWhNXRb$uHeJtu`~J2V8_MUU|1lFpv|7n-FXIP&hep3V?irVV^Fv{b2kPL zkDki&#oyG;3yoTZy3(C(sH5J-wARD9y2=kd@(F@hjBel^C`Hh1gwlMYLDR$AP+85? zL6fsnvm@9=+1cFy?K_fDMr5KMHv4S}yU#1a3qS9zE~95>u3>%Z`1Xw^XT(K>6{rG+ z5V`b|4cXSmg-<09CN+z1AfE$u^*{!Cz)w;6D2V&sRm+T64Lo%94xkx936?`Ne{JQH z5q0)>Ya~nRj9#VWh&l^4I}5yV;+EZkM`RrX^rHCQT%P`IwHm2GS3#(Nhr{X=dV>4g zv<>@uRf+X%sQEkEIE=&s=0v+)dN65B2T$42wyv}=$}E396;R)QukWLM0*3&zBc^72 zo%=4A+xcM}TEnAHU4D{3TAr(6o7iNVonD%r|4~KG=AK6eR6N$1o%633^>+hg%*z={ z6;c~G{D1yF9$Hm5+@KtcMUR8ZSN@zu0cD9;hb2fF*IR60Wl7)gVTs6hriaC0Osey! z@DTyFPfhB&8_9*w??#vkF%{_mrxlqPhwY^miyVNiI!YFns?+$$n_@!^Q!V+YXOfKX zMs{DSp=03D*|*;ubl4A}(B8R8ff^!C$muJpWMwol&@>QPtjHvxRf`3DS+oy9*WoK4 zvog1T@{sT=9XuRcUVdxIu>Ab53g5!`g>#>loD6>-osPh5_V;(>`jEd*x{|d96JXy( z5)!76QJe`j2J2xWYDLgS$B3O;Rm1E?HEf-avPJV%|* z2toz1>jXXaE1kBjf2bc#2g`j}{CU#8I$ZF5$R5Jltsz*d(@6!OwwuI_T)V&B`9g8k zP0#=6Z6wg+PX?BPj-(US#M^my=xV)81>8&pvaQy>JUl|+?<8UiN<8M*bvR(@b;?cAqlik1nLZ5378JiT+j!%QkAX ztC{cH?)hPLYaGVNQ1@eaZlUu?DjhZa7bxWXmY>m$dHof4yHz89F>wx!vJZ{!8vHZ~ zpb_6)yrO(&ukxhx1|k%na!hg{>|A|ZNwscZMvEVHiji08gGo#g9~VbSgwKrhZB&+QEABPnFtfEw*USSsJsTnh~h~6L@5__PREp`;k0S0+1f}NK!9=+1M{RA z2BVbINmE2bxu4I>;yaN}3#jXgCBpW%Ln!f@2C&m79NVL?S_GtDGqsl$d24un&>7y; zcbN7lfv~>AM}7_l`lj8jVh^0!Wd}iYbhgp09RKsPXj77~73-)xuRpXD5|szAIpC+- z;gYQa*Nh`oiJlTEE3w?VQh37OcIUK=#ll>keK<3Zz<^j{`;=|HN^h1&9)eJJW$PUx z*GsAPs6Oax;UHC(hBbANdI*@!Sh`yQxrPNBmkNLAg7(|$7_4rUg*{87- zIX6A`eJlUSW9&>{lT$4l>+>g~AmZ~L&H3u02b%E?8tGft^7*}TaP8g!EMC4$yQXo8 z85Lr)o&ILEww?_di|@hfr&#%Kva*h8%LeO22(bDpJvlAmVRexer^}sk@v7%6kWQj;w5gQk|2sb&%Ll!E91a8FK zEUOy!&M0ka?v{L2L-b!Dv`d_AftmPBub`?CAm#(ob8cE`n>Qf;yR6`QSpkiNY6{tA zAoKQH%SYQYhIrb+b2D=dz&2d_TNq)ewme5~cD_u4pz0L4m|tWaZf z7OsC!-zT*n_fg&otJ0tm?2T%kUFlIJ+IxCKc*}jR8mgQ!xZpbVEL-N%YDuXq+X+WSQZrcyJiGq+Gh2=XbWu0DHJEs#MDpr4^UD(%;-C#NQ-CPv=BTV2m4 zXw&ENgYpP*Jwn_ouqDv*05aAK&sl)esVWTP{sJN3&x+3N0_h)6UT_>?R!6|hBCK8C zf)j_eyY9t+(oFka31yMdUWJ@QFS0$3LdpH2sBbKE@X?y)rG~wsxg*A?k4UCQeB>A9 z<`rUh^|r(W`-N=hLYqA5+7xFTcWC1VjXuKb*|c9KGZQ`6`=8@ze`kyCmX%X(iCz)6gy6)euqEG-RyEnsQ-TA}bv zRQFV!vC9ls9;kt=3Ilk`1Ny0m(oFCDwzO@(J6T);AhCgRYu$5K@+lmgUEixbo?$lh z1dl&meKs{KX>Yv=qX7We24U5&tM!|7%+o=_M^$^8fFy`JKz%kvaStC^)NXHYpTP&F z))m#r0S~ns>6!faN6)cZ81o=lK)Ns6aV4VvxK8{KWF6k-~rIQKL zUF-KAOl3pMX$+>RI6B;sl;>p6=c@SaI9ay-TbIh<8Pi`?Wndy+A_1GjuKd`RWf~PVf%*TVU3*Fh-GQvQ&?tKA|sf3lAlltoM$xFt{u8qOmFNz6qelIN@{}NxE5qIN{L4SS_mFZCh-QFpg z*0ySW`sYm!S5Wy)ic5++>pn`jx$)qq+UA5=FN2jhy7@?tiDycU7C}!=Oh@5*}ki0V){k2%y}VnUua^}o!duWkxHv#0=@W}r`AA` zDvz8}_L^}q8xQyR+Hn@7Crh2EJqtoCsrs;e#0=ZS`LVh zZg1^x*&LDZHE{g(XJFL`htZ+9_^P@1I81+hQ~&O!4M-rp( zcpNNeE55>@3SCDZZPi$!VqSu4j5yOHpQThN#kHkt^s~eOWKPo>lKzr=J3K$-OVZx4V2{<+j@IwwBinfFU*|$pgrW0T_l>k$KVPC zv43t3TXQ-Vp`7w7zyP=t{Z$b?R1(tZxTKS<2!4s}1OFfZ(OMX|>e6(RGBojK?Qn^S zrrx2@*$#%}l@uk0i0ag+2JxM&SdTh9Xx2%Zp zBM|{&K0)f3@UUtP<~B~;-M;ChM|T3OKa-yNR*R$;Pgu2ngVy8*dkEWF|2gH#@sDEy z%U2w)vHL!Q+OAuNC5NrS9d$ib)n&6}RhTIq0rf7!ljMeRV!!K(F?!@_K2ySia06`o zQq*7AgjJbow&q7U2TFuC2^kTBGautiXSMU@?45Md>sCT&1(P&zTSP;me)j`X0F zG!-8{n9#?&YkfG&&sJG~$R8(zg z;dWC=T_p`(e=tznLbRk^!14ulWf%><1&H?*?NZ?z6A zv^DsZD`@Unl1Fsmv7>zA=ci@XAeWrCRyIZXobU3CcJPDk7iFAfrA@JFkObCD=x zn}vb|{?>7)hht$vi*=lpMsxQHNp97^DEj+`^)L4^pA;dM;^zT!&lr2enK=KEi@F_W z_NC2~se+MZ-XCXhXc|sYuPZ#AlDf+9@1|wYJfGpoUWb_NtK|d4mrecSHigw0@s~_Q zRV5prQq@Te-{Z4_Q3BxWu;b=$?Rud^mguT4mM`{(s}w)r0A(wJl?kljYGUI+Z?fJW zQwSMOniu^YGVc>gb0=JNr&_1cqj1{t^)!=X3flGHZM#E7or5J(DbKwOd^`FLv%^&Y zC&(73i@EnyE#@Uhs!R}JH+Ta`6oW*lIRwGv2Y)1afQxM!+M}Uoh*xMCaYtg5*-%UG z3LH-x?p)zqu4A%UC3sdP3m&8RW6=Dfq;g8Zv4BsTL!K7>3^%1mP+EK7Ro8(S>J>a* z_n%_}OZysaCveYh?d;#Zyb@3HF8Aw!l->SQ9Kun%ny!zdzH4Vr+sPL-G^JU%%iLVW z+f(=k9C7lNE-34TPb>VW{-5Q#Gd$tFwjQ8K3fpbC>x(Rt&_B!JX_~mvP0hgNclN9I z9&o=ul2je3^`%RWqJQ<{C1b3D_>5>iT?cda|;1CncGIlA~M< zE$O$|c21r)NaRVHG+BIowVC4CCjbm~>!>&9eYa!_Xa+;Ra`t{H$oW2|W;{ims*BTi zDq$*?67Pz4OG;ulyNA{_fbY?r!CPNZd_Xz^ZIOrGEdQ9MS0{yedAYO&YtFU@ z4F8VzUc0MN!&OhV)iHH!2YTdx*K@H~i@DG|BJtH`e$*Ti0(JI2}Q&{B)mGsM=+{)*}w-+AHg`rxPYu9DJ$fI_##T+Xz#3GXDM%WS_SB z2OJ`m!lTgtZx-ca$I`$lb1g&G_NH|S`Co&H1Z5FwAn2DZv^KuLd%(Xt10dX2^m#tQ zLN_&6Go+y1#`g6`vMnjZ7rs*N_qq8}sEXmO1}pjbgTc4FN<$VkkuLh4nZ!0{0!Dk^n5S5E$Y}hxhcbEb`W+aqnL$dkaP+#;AV?EPMH@ z?zjJ?yt17(@OBhYUu}GQ;o$mFk(-btk^u_es45XpNKtxVVqG_9;p9>ee7gXj4=>ms z)__N7USNB1_eN|Mf0hNQLDrX}0om?0s60rI+LQYDE~@k<0qGR0RqT|^Zbw@e zk`((6?D}DgHn&agZC$|;zZ8+(2K5g~Pljt>c(D)w#AA|^5`KU zXs!0W&NyAIOwHo`G+=$!4Y``~V?6b>mX?M$wKkX|(yPmg*IJ^O6&2I!cz07Lwb&ECD=tZxU`$ZU4LSO?ZDD zc}~pE8)yOAAp`Y#?BdTZKqk}G4o^nW5iMQ?%hb9vmeFdYMT*-zu zm+HlATn-}}l_db}jo-R5vybyhs=5Sx>{(Wu^kqzvw{-1RU`goDDX%p@MBYx;=SaC& z6=O;6#&n~M&Zm$^HU{;K__)`ROGhn-iudj3-Od(_Bh~IaK@b8wWvqKA``rt03zE?+ z%Ir-`52Aa|ljQxX(a$vy*=e^lO!4S%{js)*Bx8XbUEh0t;!rFuMzzZ@z$(Sc(r!sx z0IyFxUAyy4F^1*F3iqBN;ST$*A>n)u=aeFJ#=BXGjmuzNrp~980igwchh1*cOEyDJ zA6JixGEFkQzFS|7FoQ6V?O>J))G0-g99RaY-J)KwduQqv$NKmRS~FR)}e${#l8y@JO@6#yY8U!m>)>TO*7 zgA{6qG_ykn(!7tSF)$1>(v33E4FkYdH_0PpF-vWo-g(wF4w_g{vF@iCIG9yhLE`(c zaUu(~%5VN<{C+GQf3BqqeWo^EKe9BLa?qMlm;;rM@d~5sr*4;(|3@v(&}w8uj`UR= zX2D7UJ59Efcg@|haUgr*u?-HE%46=ma0)DAJV=*|K+@o1kOE73H*QYnn!QNeAlN;u zeu!i!l@b@-jp<%0N z)7QT?OKU707+kQ=0idi4)LdmRq1S) zZpn(Cs6t2b7y7Z&R6P$!kx{&U`wgn4oWF#^pSgnVs@H(~>&^N}dk91G**r#SgHc`f zDhZL&o$r3v7Cn@rmT%*t8fyMK(@iA4Cq(VUSm2Sul0<<%7wy;#Q8sa=OgRX-Dpost zlTcr95_RZ*?C8yS5!BH$#mX}!gyy}vA=%xwQl`$*-S@9hsZ=1{+Mm4kWmwW#%V&WJ_Zk&5REeg(ToHT$>PQ+h@=ikbBOb$ z-Ot&JaT9?PPxQHWOpjE!C3Q}1RUMw#r#Xg4wa;e#H~K!yCA)7Lhx>ePS0s3;6w440 z`VY*M>m$j1`tdnBh@|S1WM8_t=AY3 z8v=IWlPQIn_(;#x??oJCDj72S{McAEcR@Tcc8|evF(lf{iYIJqfGod!#`>OLtS{8m zkjOP4p733C6XVj&#|(0s$RC&I9k{xWO2Sl2M?u|eZRq@%8~jYIryMH0HZ_ZJ-;%vj zkAJBYW)Wm9_1^NG3_W!}PD~{MxG5L{hQOjiZW!LwX}0xS7g$m(Lt>u1zWZPL63aFM zk;BW&$HU79vU1@)zD&XoWuk5of{l7K8k{~{p5JvpxN$j~#YS6Mhs1c2d0*Y!@o(&~ z{RVa9{iP`!F8{^(_Sewt@u&F~rD+fOxyQV^@=KFFluD^d$q=dN*F}hxeWAPsKHH|7if}94rrCaPq(DUIC zngpu%0g$B<%(JCiW%0NBVdvQ&A7!hNaIuEDyly|qqmQo8ypGJ(U1!tfq+QdJ2vLnP zncG~%OK(91=+x8N| zPb#-OuD>@t2#hUDFFp8Q$1yX8(QRQ5SbhgLlkf8P?Xl-_S2nQ+vKH8usT|i!VLO7b z-)W^c%|eZtz;0E5de{(PMg8LSgh&~C0Z^;Q#G36!WpFZCBf+<-2K|+;(6g~x>Sj;v zi`{#QdrW#b3F}^(gRg};*ZGw?%LEXkWt&wI1yN=vcK5Y4I}I)%l!LBCQ5GlBO>M4B z@}qQzRoBJ^z_9zy>4y=$@TO0H^iuW%PLBF&)rZwjWFD!Ho)*ii;8IFG|6=$9A4w-G z&_@qIezmSXPX!=`x_wmjXp5>E2TN4{dbMsJHl-nNt0IuK&6VVq+r5+&^e;Y?2uE23 zsT=A_iYja21!w7|<>I4qS{=6C^wx{9&x!xz+W%a(q>6mV59{r!(<4ay(kZ9y*X^y>~A(L#K z4Nj<;=naCqSR&_%@8t8xvcGk`D&wDCTu#>S8Fv?+`XA31C)E$E-(%xw=~{Rg^HB{M zs)j9_pPr~{#^xCMI+Xo)e*Qn9iBD+M6>8(H8D(SS?%B$;1d(uc6LO1`Xb8OzAi;ZJ zu5F%jP}1m|v=Y7Tvm$`nv9R18>1{BK@>GHitc_Y>e?+)8?}*IX)~d5S-SQ~dZxR*S zxrFYA7GmmJpbtobszwBYE0S{~Eyt~S$Zf`DMx`ohH`=xmTwoNDhnE+NQOUY1ep<@O z1>ALw?`YA|=_c#Q=G9X3v-q~%L_D*UPAQZl$#l7ieedzN@sm>WsmY=K1!S4ilg~2$ z+^n(`(6OubR~Um6R(1HAWsRp6ao-={u_UuWX-!ebLZ)iH7b}a+q9+BK>^8o2r%3zm z{n;);gVQSQMB%;P5wjw6*hX^)uH!$5Sra@`!0faVicSl9A2k&)c|ycgZhm=L%&%%U z*SP;N#)U&fovJXgqcCUJ*1G{DeG)rDdKMB!w5u+Vx^ff-&JA~4om;zp1;_m8+~hMU zV7E!!N>810bv7OR(%pEQ;fNx2MsOG-aOphXrVcM&%~oTGC<*$3sl8mWZ`2APl~f%g zi_|sizSl7g+qtz-i%2*=LHNBUN|4WSdB*ZIwDpwE)4Fbi_}v$!!@q?L<(mKQcmOk3Q&g6s8Es03 z6e=Rxfs}fd%Rj%&-S?_T{`8P^XGqBD&v}Y*#eZ&AM7q@>lz8E<4%|M?rIzHy9W1*w z^6S_sp+~!+uAe{$@#d{7&Ijv-$~{Og_udD+ljle}TjjnvoI>~VPpqO6dlu#4KsgP5 zmfD$4)VCzPGbMOZ(HJK>%?UbY4eB(bUw>PXcVtZpdiiCkqfM1h_gSQd91=aEox`Qc z9H|*QEN4@xMrOks8{=YA34fnRr4`HPKi07;?Lc82mm35@OXTP*PMFwov)kGw>fOw4rf)hxp2p6PHfZ*!$;( z70#9`Yh4ONG4H#=vyv^AvhQn7D>Fn4^c~9IS8rL->s))4DO&;JGNtO~AmC0La9-rOXGL6)N42b1TPPZ=b^WxH;ePrK_*?AH#pW!m_awzsf3`=9fMteu+q|7dxuW@WYUWi$2ylUd5rzP6)y~H%tB-Wb>^}l^;BG0m{h<(&sm} ztQ|VUY>(;{a$&g{Qfo+EtT8&mjl;(E5udh^Pm03jF5Wb7v}3)nw8hV<#~Q@l*Y##vSxGZtg0`t>*^Z0W+Q@a!xIPw%IO6^6w?cMB8t;q6oY%KG zb=0sNY>J%KsHrJcZeGWW=#BIU#W3yNiNBu0a`2~-(7rCa+MtS*L1_|9)tQ-)eM`gg zKHJoJuPx+gr60M5wzorYdFe{{*=!Zg-Eis^Q}!2q8iuM9HrI37eT=?+e2ujMPE;1x zFn#sYRTR(5HYLNiUb>hRJ$Ci#>^dp$igcf>-S?m z=#3=oM$9N=_I#3@SqKxe?Uc1kB`R~{*@(emcA@4LRqI3?G39b zk3-9}tUU$MaX^R6#B&1o{7i9u%JfzKMxgau7|_v>l;>xnCqA+(rj;ubOmFH4HmaX_ zF@04Ho9FWJ3=c{-B&EeXV6tiI;r`+KyFdhrE$<_)Dg)?M!MbgYq{#<5t(d_YSd z_56mj$b2*1A>(MFaJjp+V1n<*ZA0I$R_41_<^x+D(h^}nZXVtr7c1osghdMyFNiEd z&B4CrmX#WZKR4J-*3gOqaZ$eq?s6t%$%+kslkRmA$n%Y5Q6RkTy`&pusLvXdCMBq# zenwG=IeH>5nn!goI*;N?HD$i0&a7y9Msd~KE9W%AszIGqQT>a}pQbXBH*MtYbY?t3 zK$_%Z;Bd*e5cV3zZ?PvNB)m<0^Y-nVq{IYk%171q_9C`kQQ7C|4+jt(T;*~nWHwY@ zr6MrT1sZ*v5#~o<)$!3{!>O#q(9*ORUy{`Wuma}&(LIW_%cfkDm_|0{q>f_nC$oFR z?pdo!b$jvq!Jks@5uv%cN5$u8vtv{gYvlO@F7bt2q0{$ELj+*?0ut*$vL(();fG!~QHKSyTwyeoYR(XVi+VC+o|f6)lF>bC=#rq~P||zy z-T>+EIk2o|@MD%2<0bhETdVKSHU%SDxd!F5IruLc1mV{uGrm`$otZZ~nne%PBz4sE zlpQO-BP+kW@9s{GVsW9ip7CO$b^D*w!PjiJk?k^4H+Jh97I9IfklZ`TebZnk8|<5G$!nGtycQN8ENst; z7M|@b)GP$A;+ON^GrkXgwX=WfncnvXm_tIgYDa&%g-vhq-~v^;8~H~M^|;LIC@S6T zMx(le&uf>bb#x#fZ?$i9&@TfDvccoaS?V2UmFG;Z;J_e+G_^vG77K?(2=HcG; zP)8 z3Jb#v#0VldlRn7;osKmu(w-G%QtjtVNbs?GUedo9SP40U zuyuw0#J*fk4r#?o;LgQP9wjEGH=PPPfh5zrr~Zt-^zl!nQ<&h-9wKKBr`&aV>S5({ zn%P=ZH6G+7iw+BJd+-(~(Q8ro-7eia4ay>A`F zX%;de`#IyXWMv+EdDxUhY;}K+s>{FSvek`Ed8>_N{~h%xqbd5*$$+(poUE308P#~b zxO6>Hm0lT@yj4!IM5wRdjZeNxmf|Eq^rFuOC?$`$%0 zz25UJ#82j~XE_#R-@~O08y^y}l3<7~#b}ql(gK!XaJ)y`?4iiPBU=8h%tt@#76ZU6 zJEJ~HPf$4Zuw7zHZGbB&i}*H&_||6so3xR<)DYL~0*$N?LyDAeGpbwC{k{BEJbC6# zt6baP%xJEw&J!OUBh?sK|4={rJIFe5EIunGU(YmFuUT+`kkzbi2v0?dOWf}{~NO)!em{P%hBJc_B5gNP( z`txxWae6h56*cY^B?s@|1pexn4&L3Klzc~gSfXJs6rn3kEEB~S$RO7R@n6L7y@L2P z!Hz<~<+L%gv(C|sV<0*VyXnEQL&zueR>B@V&KdKzWF5+aH@#G(Gi-DO!>-R`R5d1Y@*h zn3e>ijsz1pkChD9YRa6JTI0QZ(3QY+W<`+mO7^;0HR0Psk(xC zkyn!%?6KPD5o}B71WQ3Gn((lT)>#@Cx%k6$@Me8qJc`APg~D}IChtu%-kV;v zvDV`J`3xfPtrzh@`1qjMhX`}@4ZwH4#vQX{J6jm`Qr{WdPX)CDwRQkCt6g}Zr!>R(6xX7M@2N=!Lxa6#ly3d3J~GI8?vL4v}Gyh@Q`!10A(MMCQP zk?QRC)iarYH)U=zB|PZp_cG5s-AK$=XMaJg%nQ!GKEd}2yauBhvRVEb3LH|{AEwy| z29*Sj>tR}v`3EdD`&tU9A*6}v3jq#m2A31SDP!ze^`F~D&0R+^mn?0&uBAt$H8I~6 z(L{mL2S?-$Poq?$0VReh`X!GQBBl+_TVI+WzIv^;~>oKQYmDaKLuEuZ;HICI zB{0NJMkrgupMZ-a1t@tSD*g^SB!n$RC1T=yuXE2Ad*d zTl6pYVL7Bb0?SivK$iqw>OVt%bJf?;rh_%7Iyq@jLY&*;hjf`x%-Sj_ait(-R53eK zY^2R~PGR0Y4H+%vAUw>+_!~j%KPD9M!ym89uFD)W(}@8qVmIt9NXL0ue=u^o5vGKo zC4e^mOs#Z>O-|a@ zvd_Vjwshr9PiZLwhJ#nqdO4|lJ?E-A&r1O%L!rj(`)SONqssI{GL;OkH}+l4iHTG` z!x#-3n-lZ&GxDHG?_wJdsvg?Pikn$i=)MT%iWh==+ox}e<%;*}$MwbQ33b?XWW`u) zS{Ne>0hx;fJLmycCz@%g$K64&)^@bG`2nia03}ublaYM}9*hq)GkPQ1_>cV-f_<=#1-xOs>g_pe0evuw zHU=@rug}z5?rEzV!;)=jj!v3Z5OsVUBG}cN)e^E*s9zmialnJDSah~^4nxhC!7!7j zjzBT%QB&q4rl*2TPZd9XWqRs`X(orl`1_o48X|9yDRYo|We>kwR*_{W7DNg@y1}p` zn<8`*ZZ{H^WwrDkJp^lY0BAcQ5@HZ$b(fnV#qEq31J23xsMyKbq4!0<*3OXSVZikh z=PQc+uh6Yk0qlj)zy8JKLF{>jOpPgLBlPKKq=5SovkHID0^y-gPbq+N<08LjXq0aL z=5Gp_x_eI@PYHTBJlgw>8x)Jo(!?L1KD^$0Ug6PUg{0C@wEAI%zgg~{Zg(#pLSGi7 zuUj|;5=26cd1~KB?M&OmLVePrVtHK(d-dXqnepDu+Dwkyx5JDK=~)KqalXc%B)uDA zjlUIptb%UiY{v_1b=fE55$*dfR%_a#hTTI+wUqrA&O!+!mIdN|agykE!x6-VPNB<& zEA))GBeg2@`p)Zu-rAMol3C}v69hV$P7Yq^AVqf}q;79K4Nj7luMzin{`4mP%Oxvb zaU9qt3%gmw#~?7hwzKoiTf$|0>c9aY2p~`A?K#5MZx!iu0Z)Z329+Z?Wu$tnBn*^# zukZz2vI}bsy+juxrPkEc9CF3#h=u_-cy<`D+<^Ikh|j?f#6RrHqKi#n##wMi$+ZoH6i)0mtl{Yth!b!`nPP1XyaI4;1X zlk0lB5+vR1^M^m1%|xo@b;39VDTmr?<;5Jkn}=SX;aeC~jPu7#SO}@c{wR-*`WV?j zDE~DT#GiVmlWSbm{n;a)m)NJR{=Y|FWmEh_C@R17$P$9MkV?Pb)sh-(nL^h%j@CHj z2292oa{Q7Pn5OA}7T&Go*TL!pkBR?t(5f9wB>nmIN!@XH>F{3%gA}}Q)33vyhWB8t z>Yral#z6e|=TFel1b7z3uj9WrgZ?W<=zo`i#JYIV2@tD%@|Q$8p`# zf*W$ndEM?+xG%1tOge1*@8}`~**^H~!aq**UlW41Vrn zr9s_DI~9;>JQa1B6-vRpH^qfP+uZ7zINS3qDrp)z{j`v5rgo;!tn_I4co5rC*(8SB zuRr5M5;-!qYU)Cl$Ne-7y~<*mJIL!H6D30qm0N?hj^)!a+!y?2-dZNPkD!sBU!t%r z#CYh5QVF=7t8n(Ayf+}B`Ajy;Q&%fTHgg&`yL^_M-NYf0T;p87ae9-T4}RniGF{>J zK~fkKQkzcA$_vECN&33F%1MlLPSsjlbFuR|M$ zVzp`J9z0?8r;6OVMXDI6&e6^kS}Mq-@kh&(d%}fl_tr8pGNO^i=J=TH+I`B0gy(H- z9}f9*f@gz@2aI>$c6nRyM9Hj!&t~Znb>UbY+s9D%GLX_cma?J~bs9g!kNeC0Jxk(= zHT;57p@rIa7cJ#?E&aAEGoR}T(*;y}ZP$=G9BWpa*mTS#ptW;}d^{Pr{ zlZ&8k1$2^$+jsNQAJ6fh+PB66nQAt(9TO8045Pn8@BF^U9J&+kWPQ%x9893;CO80X zboo)iim*qZjiOvX3L$y-$85jVnhK(N1fGO?{$8)GEmMet)&pd z?wg&PJ?u|?YH$LQtxtOl#ju=L=pl+jb&)68rB((9Y9v&9&6~WJoRbBjl?f$Rp*eB+ zeNxxxPLrgt=%o;BVVB&lUYBQoXQFg-Q&ZdY^HYZv)E^>|@*CavM)#@PxwTaC%a`WB?;aVWL>^&}W_s!B?9}?b#x)xjOtzdh^-y#0( zTl8k833ysXdMnA7JiqKYP+0`s4a&1OWn_f>oWhE}+ID)NKO^!3a_ZD{T+ zZ1CKM`bWkdl<~+y)r3!(Ii3wdj1c>*Lk(#rO&D+gym?)*yfbajC~Fi&=-JQh92t}6>I5l{BZ7~tOUzfJ%mjP{DQJ*Y2w=V zI3*>8x-=LTg0I*`TaeN z5pWRKq}k>I(5`!M|L9@ywg6n+?fgZ|r^{=kaOcoa3)rR#N~@dy|~oWoBkG0xF06lZtmVCxvE{yq4N{{p!yqb?3|7xY1)Lp(7^`WqklHCAU&X z8%l^)o_-1XdjlygAyHyGkb^NQ9rfM4fux5h^(D+u1s+5X%pV};S7Upus&gj>el~4&Z{+!z>=vL4f(h-75eOMrBzs1TK>ER*Zxj32LVQdVK-g0B0{ z1*n;JNCTR?0z$o%1fW|Re`5LMKyY9BUO1aacBJ$>Qpmaco;opyAz6nE0q4xM;kxnh z@wAGIVNGqbV5Jim5Mo@ja=mNOAWOMr`K`x~8jiO^-Mes@H-Js*4Qx_psq6Cl>#zb% z8#$!i_F9wolwiZE&YjG54ZOs9@uGh303*&x6|AP?d~wfNM-mDwT1YjywJ>N zpGqm#w|@~udnddQ_=W=tgk`g9AS`VUJ9o*#hICS(3FS?ij?G<}@rOj}&ii@G&;_W* zOJui27n(b)l=kaTp(m~!QcmwCcL%|^Qp~N2MLOW9pgAs!`U~CS5GyOJ%yV#FJp*Ln zqL;1hwOu({T}DmXuCiR8=^)f{0*#A`iiU>9OW5m2w=S2@CZ$z;>Rb3!br{MDPu|~~ zt&DxfEg(ET z(J=<`AA53X6G0NP~U zl!rD1f%+5JW*}V`Z;$_ZR!xpHn#`tvh2GP2rKw15w9g8zi&)1Kym#&%3W)CesH$b|n4 z=sbN62n}4+mEhoWu=CU|JkDKc^MpIUwLH2XQ(83*k_m^G`_d0m(Fa-k#Mr}-!0YsR z4WrC+tT3%|6>>!wf!*C<|7w9H5CK|CAo9wSTH&aS3%Pgi9*c>0J~9|YnZ0el{cSEv z4;OK`(mjJ_*=uySN|UzR9k`i>5sE#xP35XmftF5;dFI*~$Vny-xBv#WCRZWS@Iy$K zJ}N2-{>}LT1Tdb6h=@%SCg|_RHdfreZS&Oli)X-kUoa&k5Li2U}= zTcCI%bq2OiW)KB*!TuspRLlA8%FsYac5Q}ZWvswO|&YOKY zAf^$6&vnVHw*%4LjI3+Kme&(PZY?ldhX`t_7)IWBk$El zB)Uzr-`*6;TZp+mDT>VwpD&3#Lr{AbU8Yf;XXi-B4T1L?T8alwWI2&Y53=*;Y#_vai&q%0V6zo0CN$-<1_rZB|dpQd)kULxMe+ZB?M1Bk6I z0!FOjJU~8il?$ITfouEduFfO<$m<|H!TA* z1sR}z{WOhvT@&ijGDY*Zr8>Ymtnz`mal`4f1ZT@T zkW}Ze+mJmMsYMYi^j5f+CxwB5#;n|S`N%sO)~iZiNV~~^Md@b8>MrDcSzTT2^E?jC z*#coWO~Jy*28kjs2>jN$@tlrej)^a6S|xGq5HQ!kV@$q_W?Yr?>G7PXsavxN>*Rr2 zUk?ut4(%flA;VDEJqw*hiRa+y+lCJYl4CjP7+z zcrjE@3pt_z;2H+uu?_`l-nqV;nXr?GVs(9|Cb{-K96KO}ytG3pcTb7McbI#I8-iU9 zbXi!BjCoi9Gik1a%>>TFwjU?MNOG$$k$cl7)ae`TVC=J*jGj##Sk-!CQ|#FxKERHn zr@3PipO{D)J0|b3-XV#Qw*xVf#n9>V1kA`Af6U*qLvaqqJ!eti5@XJ@Bd zR5d@5w_qyFp&sngwIxWaW9 zgp}$h8Cr8b+r!&%44qyFd8pEi(r^}O2`TQ0~FG)|gL-jA;( z#hbF`%zlF2u_SmdWN;ARriL1CV57VCaa>d<)Qu4AurLwd-k0R%;G72y7PK_f7Qo3I0<(Yg7!Jcy?;`02;qm!UasK;`ybXA|As z7RiaDq(q%savw&L)_-&-Y_yC@Ca?@RRuW5QWoB;yMAvWNNYs@F$xr*H5VUa`&XGbe zEI5e;cmu+G)!@3f&8P@r3_2{CMk2W4}m;B*`o0#bC z?pESWEUJG?^9}(_o#q_*J)FGDt`UTR$tVQ*C>|IBV%Q1C7#do; z?N!Utyh=tKg***egL1uw3Af#bpW}u0*AV;9r!)ao21#_WQ+nC(M=@xtrOf1o=Ca?R zIm!RL*#1MXFy3gbABqC-x&D45bjJiH?iF7zr}%BV`)x<(dQU&N)>^Qb!bO=IsHJXV zs+T>QrLisUhBQ*bKu%aX{y(aHs-Gb6J#KZx{6=#rmOL`$6%d>p%fq z2V*ZA$)HA+Z6@2bF77idi0^mtg>*Gx*g3Ca;z=wXa9gC5`t6p&krm-RPTzH#kVPCS zEsadki&0fm8vzKwWT&15roBSq&gF*GUU^DyvA!g7y^ai}{M zMjJo8*E`&QpcI=&?x&!JL8f&dc2$%nro|dp0HL1CJqeM6K(vJJ$cI!MEFp>+Jg5Qj z07-^m=RyQ>q*fcw>YzGdh6xi(9n^2ooX>#{D1d1LpX_?3CjqD#TsErxq@4+;Gf?fz z=P#_L5FPzS){{#4HEHhD0t5#3bk+m`8JL2Fr)R~G3gl0fxOsC8CZ=$;<^(SZ<~*=_ zW)|^5b8J5~4KgTvmv#{1;cjh%EwccFgJB!sDjc}pE|A_}w&~9631N^wf5Q(Jm>RML zcLKM>2;xD^TBb~bP@m{NLi#H(>MDsiN+q&X&nd7;Iv55Q9}IY9UHLgE=KtjB(+Q09 zQrTv|0bnBlrMNGT*2?1x0F8@6%8_1!^babaNqbYg%ir?38E_7{pn<@EbU|=}PYw=- zvX2L5_3P^s`vV*J=a2ud#^3eEi}k~vLK|LpMwiSYhMTiTER$FQJt{eO(; uCH&{e-+zDdOFa)QfMOz-b!h82WW zRNSM9UcJ#YpN4nmPMDFv$1uYCqAzC*9^^&1NtQ5cYan>+urC!kFX1O`1xX#9h{asd&Q&7Oa7C@fQ}>!D zinC;t<>K%kzsU|i`mA@d-rs#D_NtlFTiLawqoae2RiW~Totc?gNXR;oXiQdLU*E)J zfyP6Ciwog}J=Gr~aF)&2$|)(?>w|7xB^vu3?^QEDKTk1Yg@4#X zSFeCKN*?g4p`@acW(c=LUs7lR?{Ja(PKY99h!mqpk`=dV|_+M}QZ*2U3rh^{u$T@_Shii#+Q3f_n`*%1qg#Y7H zn{28e7(vz%Iy?KOf(92$5-r!HE`iVQcod}X8)y%>A3WO$KbntAD~W69pJ}%u&P^oF zU0cgPp!vR?D&(=VbA%3vCf{Y_XoCDk4uqXn`BCiM(ivnGm^M>5TMzl>0ge{n{SDPM zv2;?eOmzo{rU~igV^tAi8t)&{=^-E1>^WFQ_|;C`!MKI8uLD87+%i7HDH~cGp4Q%2~7WSU6k4XSxP}(SwWu5;d*Ma(%lHM zqz4%`Enz8UwSla}oI&$9&zBi8xiClOscvIArjLe14fe>rvY4?Sefjm)v%_$*IcbFx z$C>K!vhZ7sG99>fRT?Y^Y8~Qf=lk91s)Ea}VBf+?rzq@@wZ(M`))zPSlQm?hs zEK8~v@g*IDJ#$>*s;Aqd`S=q&c5S8IoEYO%DyI)_w6EqNhtfhrp}Ak z|MTbd>BWqDeldGkvz_-LS|TI*1&r4TMUkntb4iAp3J`Q&Z0dGu_=Q!j{1?8adGYZ{ z_C9@uS6|1Byw%WpgojmP{zPTzepzA^Bv$-Y$Cvk0miuSt;|gFCXW`e1j2w&8r2x8k z639k@)BV*%ft(+mlc!a(M6OZfvkNSbc5H8W*fMq{*f6ouUiCBde|A4$R8XFe7FL8M@xA^j-5D?V&1-|xS^CTw&KH|o4Xh{g z8g`!)pxJwKbZb|#YNy4QJQy(y~MnFGgK>@pppm5AC-y`QGn%e_JNwBUf*(xJ1`5=MKzzuT>Q8Umxm zmdDj`4c8LkkYG88f%{(5B~?F4(tE3s4Y|gslTowUfOKMZ5}zmjN*N$4S6Yi{Nc$|s z^hWw`$xa-fgobFH#8@~Y2JKc=sTAn-y9L%3@Nql3bWtyiZou+3dw;MpHFVlndcU_mcY5T!A zGf$3-H-z0*D@;Nhv(HXvlKcWGhTekOMw&EHQjsNA)hK0KQz#u}!2Ncy?K*xzae7iNlr&XszK0zNDFQxSsk$0n!Qe?NIQ(uw5ARfrRz#au#=8S5-u;w`;IB2i&C@} z*Bcv*%d2&w&&IZF^c(DyT#b>Vo|ihSHb3JpQn6f3Rd->G%Mx0JWD7P?pjX-LSW4}< z#dn)^R6Zusr)pk(=o1r)ht0Br?_;7hM9d%#NgYU^_d05 zmQbngZqSH=leu;gx`iS9MWd&^^Z1Q4ir5T*Hc-)x96M>!Yu)m^04Gk4q6#%PMEBqp zju0zTq4u8Wb&+Lmmf$+guHb`CUdv3D;YoNtxe)WUd;P7!8ixgywZ2a3mjBF`RO zkJK|e+isN{-K&02KpBq%9_`{FfOx)zxtW~UD~xzmZbeTZs?54}3+_lRng4@Za@YQ1 zw`n3}n9WX&^-uL==`I~7`QE4dCs*+aw|ly?Mp}YrD^2DXi5f_8fyH;6rLd53)E@#9 z*_$q2kS{N?)GA*-D@3Ak=T$h&bL-jksk$&^!gZ0i^WMEC?7?B=n@~1+*=+jcA{Zi` zQXX1?T4rr!H;*4t6=S7T9Nl?x*y_-(*+~Z>@#`5p^WCEVMUCOLSo`F$(WyHC$q;L| zql_Z1Fkjd9*zTxn{bDCYn!sIjK$Yzzs=Kwll(5qTJWQ=4=CSqp#FR;Y?96RRcUjMQ z$UBKlD{JgU1%XIG64o{6YD*4XceryRMJP zW|kB;r<6>mzP-X8B?&PG5~+xN1Ica?YCX7ZYegM+epEi^yRj+nU(GIG^N$&RWOxt$ z!>0QOtm=65m5)dFAe*xkIfeVm*g{fAS_yzKL@27r+RK4j_k4j57Ypb_uRpR~;L!yv z#(Zn^c?X(Gq1yVfwsqZH3o;rK?7p1R3@`n9KQ3|_rfDK_nwT!YHQ~WqRgc@uJ8RCk zwKFu9Al;kYs}IuB{5mF@Sk_Gxx6)U)ZN_8VUnBzPM{GCk`%@yXP@S&0bre&|w*yKC^VmV1?> zsrd29ex=fBUCGlWt21(HuX~XKZ1h9!lOSqUL%0%nSK)br6+fH|sM!c8(A<&8;j8<(qt_Lg#vfW4xt<@xSnx$qB}nt9S5vkJ&$=H?-viMj1N+XSElBRV zk@L{|2z@%WGa@{*MXpc^5-`EWxw-ec*~S?!w1-?+eGFsP#jJGCcz{4Rm-s$p;-Lko-sA=O&eOu3mYm|Y3~RY(=C58T zY~yW7%f4Q2wyM(ilb$&4WpsO$y1zk;J|EWIns;50f*Ekz^?$l_&j=g=QZ(NTD*tr& zJO{Lm&Qq~6xutww7cwz8d|mdAFl_ZFC~%#@rT@gz9dc&z94iBhzH@qnWJ{_;4j6?V-;qDEwj`UE~&B>x>a(r@)N)AO&Nda)6p4 zCj6j%D?*-SYx$S+u-(+Wk^Eb}&gT^*q}tc><13xbvavyvg$wMmPi!L3uQGl^1EA zZ_$^i6!)aWU2;OYT-afUYP{jrvw~mOB`+iI$My*eMEGlb(+8*lK*X1F?*;$htx)W- zYJ3*8E>G7PU^MYwV1MuE_~9DJz9I)En)_=bE7>r3A41cbMJN0YU{0rV)`7b zqj5O0f$YVE{~0H2x@ZandoZut^I}No6#1j5+7Cft@TFqL7}=HkU$4ImH4tGGh}c!1 zCML+jTC63>sh#beyYW1)J4|u@wru@nq&j7DKtz--59pb{jD0L15b!D^bHT$&h`<`O z`q=b{=*-=>49^q7BoB0Mpv)#c*#vY*#6-<(`1m(^KIE2j`v^gK0#Y5C(^#%8d(}#+g1(o9EnHG)YSV->mOHNqTJXy%su)}5=)}Tyw#lUn z05(Ygt*=NmTB#tjySl2{ekiCiBQW6CXMlMwTR{;YPK>-mEyaG=cIIEWwY#bKOyCzR zTooU8?j)LPPIH};sxEMrdbLq0rphZ<;FAvTCj=}LBBUR8Sj=;x9ySrljWzIra=e*GVjAgh^ zh%sH-OGR@uU%^^;91Nw(@F@FRo34L(5BVa>IizN+zXK>cS?t}juKJtz#mU?Qm}=8r zon@qoD=wg6<>~UXUh!(D76rx5NR@q`*3EV#S#I~tKMK$b+2>u}kC`)yEW^+DMgp}$ z_1T9vT^jeQKwst1mMW5Z@Fv`n`DP zJDD$O;v+|+p^T}jot^SDmzbp}n!{=19@rtKyrCpSRS_hkFnnlxZNGz~$!Y5r&co$Y z1FN{twD6QIPndK>#`z!B}&CAEy^l#poviWzt9MnaG3b9_rx|b2C?-_;9VtY~aho%31G) zkmJ5`(HGwVOLPTC+?pQLq;y7QZ(qK6L!*l9Wv{X~ngyAMh6Gi1M;UUvOVo`t)DZpr zQzxz*?Y-_jEs^p14bR;Jf2dg1DtO00DF&*JgzfRmb`uY=3DcgU4njvsv8hh#eTWhG z=={NZ^$HeZPHIqcJpvnhOclXjFQ1w$GdL1nUBe$ zoNbp>SNI(;3cF|!R3-wJo{qKiT<%ztz=gI-*DasGH;SQB3`6Tt2{wZ6AlI!AYs&$2 zt15!_ZNkH`)oLTQhaKsMamBss?TqvOLI*Fmv7HY%+h989pB5!Zt9+%2s3L?Z{%H0?!F5T|jj1K6-$lEGo#_r`DAsytc^|vu6sMzGIL3Sx=moCLb;-?X zo|Tm;S;?#z?*Gdlrmwf^_D?H|iy5QU%mGUeZG(p;%f#|KZEKq--i%+PY%V+14SpQy02Eg074K8g&8=yaXVcAqQ2*KG`;D(rhS+f;94J3j~cBVa$At9{$ZnI{Vm<# z!8O0yfvRlQF{7fdnh3?cj2c8!;Jo`(x7lIWbCpaw=@n1pTj(3=bN6MX8(`1!K*1b9 z_=MFc+;TaRsO8H3Mxwu%{=6vBJP8|Tn`5A=!x{yV>=Cn5c8B$Atyl0+=!1Jhy?~93 zINUG0&V%z=n88J0(*jj>LmbHw{(OCFBCy3bQNY^9m(3xz(sXy2owFS**3Hhf;k(b- z>=@Xq@7y02$Vwv5c0-Y=8hcVw(xG*+O<42AHfK(wgnW>IIhac zS&4oIzVKR)X^I^(0`v1-c!W{jXC z>rnch6F58TzTF~8DpoNKvd3fNLz!76eDPjOpcGf4C=PkBYe%HwmG*rep`sPW8^4t9 z?v4`ywjuT{u+{#3ETc@c+^wyHlBenPX67rEZrX>MobX#sZlkzUkl4Ry5JU$H=eWRJ zMI^JSY5D^yo=5DdN4dYEfy+?(xQB~i!ko}+uv>`7G4sIvGUvnSfC}v9Y%t`X;WbI@ z^i#V=nCIca6j^&Zz020i_8nn1t|UQTyYpsIv$fgrtk&F?>nx7ry6 zbq;<9rNTAw@4m`>eB#8#4qN)f9Cb7zbT)KQV(u_9ls&G(Cgi`6j2jX5I(g#4@YDyF z8}CpTq(`(H&K}`;6Ek~9awCDC`>Ds|7>~5#&0g`$CSPy9R!92gi^|b=j$~gKGR@50 zUiRgkAz3E`A4Y~lO zR9p7ygg*dmDt})Lznupa)0FB+~wbLgDNEF3?&;2DDK>oa`=m zb!!`uHzEXeGNc`Gs*!fl>j0s{n)8c93j!_;u{ z7vL1!y=P_apFh@ZPydPoBPn?{+m5D7R0=oalEpTqD5HtvA67DDHth(r3xFX~vKY>~ z3+-?BS}t9_TZ|?X#Zn{{P_^l$6e&MGO$JgO^YP0g2ui7||5od{WrDRAZ_~Lsc_a!# z=7ppf_eAYta~xjtvMvdfL{LDT=)9wlp?2rsDOg(z@^1E!Nl9 zr@e%aCmM6k;q9G({;_U6=l^WFm$Ay05t!cZ^E6qJ^KNS(%iBATlAe!N<%lG;!5sn8 zpl|p;Yiv$v@zSYQE+H~Ug|GJ$;JIG3ql@eGW414`TMgeBAaOjNFDDGZ5vE&%0ic)L z`oT8_w=5cZ#cj{>vu){KFgNSmtYmaDv0G$-9JOAl^Y-R7^n0T!kL6E=SI~-V+rUM9 z@>Un2V8U|Vn=MuYHm#_sR^-&6D0-v4xy<_4tj*xe;u5EA&6Fa?7ux0*)15{Z(yJ!y zPDXiWqsD~y7mQulD_NTQ4r7-|>WB zxJVTs{&7TQ^Yo|b4^Hj0QORO9kH&c{c7N2&rnQM{=cnfKM4!ilP1*%KSuYQ)?9;-` zh0z0kXMrGTr?;Cb3?y@R+sE1};mZyE6PAPVf1Y}~b`$58@>EPC4N%ALW;RXVV+2ZF zn-WCOBhrstUx)vGW>cyz34NB;1?&r^UL+wh@;MVoLLeY2h^hefdSgDQRgd|3VD@~1 z`k?SeFBB5U>RFJ&;Ew|3<)@i$fzgX;BVQ7_xHWU|(=Sw!4t>tBEx2 zN|5Ij1bj6%W&B>)F&7DaW$eb32LcHgUmq z_FAy(LG@w|jiM872l;uU)DZ?ze8n3F+sNvJT7qiqNMpse2O{C2Ip|4Ly*wDg51Iq$ zP7`q9_2*{8*9vFPh4942<;Vc{lam+W33+a`nA%RnQ49gSXFCd8xV=XS@No?{82*8Gm%;s96 zXauZBORPqwYW*xMEC9d2o?@g!XoXyN7l#T>;2wM6&rW(?QzfbR1i`n{^;A&3!Z+>Z z4l9lu<5jSU>a?`9(b3WCj8Z|jc;;6NJCg)pjr_XNL$uL`Tt`*lr0FXT0^sUnD6lPBa1mPcF zXOU|6!|f64inaVkdf_D^9bMf}I^hye%+bW@9unbhT=(g^z=ZowpC)t+<%Q+tH-o{j zwUE=zHJFzh<_OJ-v6jSr;41l6izdk1Bbngo>1p16K?m@ix+qP9!z0AT1j=jick(^j z!Qa0(y&)%)dm}JJW~NI!a(H9}X*B}Qq6CUr)&w_ExVSc=b*&HEOvF@GR3d6#!2TAfK3*OPd876gUP+oH%$eC_s7qR{H;{lUb$>Su7h9yu z#oA8!P*r#7?0zGmdt_frEI>|0HQ~CFYh`7X4rQba9CO>Ks;{qy9Q-6uD5n(7Y-wrf z^xP{1_x=RN>{UHHFiQi^H5kGd1!KuW0vczWM&C-meY@2zFmZBJytq<~M0%}RKxqVR zCdZs65}z}vfV&Bk@)t!X8jL;wnYpew53Om4+S66*m+ZV7R6heh*so|Ir4@^!f(^OZ zY*C@gR(^-eAsP6m1%?s6RQL--Vj9J@fLKAG;-%k>8Z+lmretM)O@)l6I z*cE&{2}P>Fdh5!qhBCVa4K=lIj!#7BvCEpMM{lR=MBVlh6e6qK_M@YsJf_Lurq&8u z(n;&3GaTHt9_A=#dwwf1UsB1GtWOw1Pm*$5~9X9t#QJ-8Me2 zy5}n3f zj-=@XZC*~-`P1-QKIb^ytR)Qv$vu##pRS!+T#UvChvX-IGSzFn87q0bw-yi5xgnTF zRcz`#0evYjd(?y+ulu5-FUVx1#2zlso?dFcHL?@Ny!PzJWg^04{{M~yoS=x?}99CxcTk`rR4sZd{povaNF4XHcZG7K9-+P^$Z zE#WVN2fJ5c8^;qHCAITHA@Eyow4Q~@hsjGQUB4_zj(paxVh3g8vFa=k;WW$Z6H4!s z<55hD(q=8>jj@H=L2U&tOOE0VDeon|ik^UYdL;#1f}6~{Xo+v2mOb;1tMg*GUfP$= zmk;D<^B6W&AGCw*i~;p;&Az}P!?&eh&d7F;pcRB zsQHm}Jz@aA@Vm(Z$(O^^wYG{BM|p$tW!onOa?F_agQnZU!BLwBK_9xuG|e;k!IHgH z8&&(`rRM#!cY{0% zkEN+uWp4xeVQ5IiOMXSog?!R|@`~&tz2i0l_yT!<-M@^i!Yix{I{w4ktq^~g?>e!# z`v4MEkzrw*>lGUsX#0cBDP5$syo?MRCujc(`il2s#6ZmF&rGbW@J9~jzdl@k{P?l@ zT6FG}~`xA}z^%Ugfqlj-`zfK;ZSHv;9suR^7*+Vo` zR08I`cfFJII)~xBW-3pfJmI^P_{c%0$`#!nFAx|QNPNZn*UP)??6PulCtHn>+L{`+ zM#Wfe$&%NX@J#hSUt5=|O6ytL-afUhhy^c~k!0mnLe9?3E!mf6C4m|){HXu8WB}gZ z-79FX3Km~Yt*<0mrxY5gUAz|kIV>xeHYF-+YQD|+8HSFx{YyUqg0qpaLMQX{c9ean z0s^wrF>TnTS#M3-&ohnMIZak+F-Vr%-q~Si%UTW39YFkW^`43)6`Qb|PZ`rI7rtdUZbyA|P2OhDDJ(3Eiu&}v7|&b+-_yrOuEe06 z4$j$(D(F0I+gws;D@y>j^n3x!;$kfT< z4jGHwr@%m-Lta+a#-X9IBQhBo8J!Z#*u+GuZL??3>X!SmN02Zm=8l<}Sx>s+MCn^Y z^-F2E-&Jd7c|dqHgqVs}CcKU0hu?Q2V<}Js{{1 z%Vst87VI!$-3U%&qF;lr7R;E^IT z)wy(wfxJW!7h5!|T#`sxmUR~(I$T;mB$^1Mt12t`EeC%9AkOmjuRffQR}@8mMk4p| zL$h42cuy^*!}FGxKHpOnJ6=tK2m#baqx z$^gq+-ZwybVvaXZ0*9ujCx=8-oa7GeP2lx_%V_lV3_!i~50v?qVxXS>p`ikYivT$e zL84w(=qk+5A1X5IDSbP`luH7J`{#Te6f56IBsXHBnTj5kt0BKgc^4|WKPK1wDu~(b;MIMI;zlhLGqaO*Z!{@)Pl)tzJU3*X4qnN=YTk$G?gcR&jkLZNt6J_o^Yq*bLZAfqpGSZ zJ3?4k7@=3z9fY5olT%_nX8slo7$?2{r>+l&w7wXsXNcpD7ak-bimIaPG3D*h%YVe# zT!+}t67Z^7OcrIBy?d4W)|S$MkYXr##ft5d?F58ZL~0W1)=*bx-?)_X$yiOnm}bOW zHcmcqfPx}BSHHV!zoVd<-KVUq95rBPXO}%(;C^TuxdQ0@_U7gT1Q0co)!0xc+pSsL z%V^g^#pv1yW?8vBuj4hOqod<|;?l~BuyG4HQ2+>augA3)cgU4ew`GcTImaoB=VF`s z`^|?YT6Ene501Q1fn$7?ngg+he$C3HMtl~dpYDta2aXlL*$5~0d*&7X$vCxy8gh%t zycOX!%6T_CER!CGlpe;$EMgHz&}wXN+wPEv*e{0VM|}FH2mYDo<~8+V2Zeb4_R7E3 ziHM1b3AwihW+EaY*fsOCoJ&6j1P010;5#@v(u=v5GP8pC8Hrc}&h7jk=l1&UY|TBo zZus(vNFoD%T&rfMs3t7EO($P!HSb?9_#CX#Xm2ebLz3z}KgHJJtGkf2H`W!_?e5KY8;;Dr{G&4O-NJPYr*k2nN7#SJa z-bq)4Tiarq!Wp9>oKdRj3bA@{9+Qx$s3>OEB)z=?{m}DI&~^+($}MM`!qr9N_^pP2zQ;%CSFk|$0Mx|mg$4zEo^_AhQKcZP zZ;oVT7J}XYEmL-7MwjVd`1l;+m5Ok&XbA8iIq#p}_~DyZv30aJ57~6q4elG{%$?0% zNRszc%pLR6Tg`Kskro{lQVVfas=Z>rCb*J0_1X#ZW520?#$+yIp|in(xJWs$v~v52 z?cQ9G-r*T5O60Sdlo-i^i4OvJwXv~T>CZ(0lqf3VRfbQKO@lI)UAefnwl+P@(0piK z{D^@eW!v@Dt5;@bnN0WYtASqb^Jg^|Q8qT2?-5_QzN@njVa=}LNihCT4v}4xnh7vM|L_t`keinG7_jcD>fmHjL0XdPmsWQuM3v&Gu=CD+*Q zawe88$|f3csjBZ^BSt&qBd^oLzvw%!MlVgMgSh4q?VWG{;h^Jg&rnXS ztg51;rA-2YL@x&QUw~EUA=4RQeF;o6`!0`6YkaKRwZB^X;#f-wwGIJn} zPU^@MKMkwv=~cdIk7I?qcQ-aR*47$!BnYu8Cgo&g{OkF|v1F<2SOqOJJ~KCGY+Dr~ zcN5U&2W9IsGmPp1U%%eY4EYQ1>qFInb4du$@LD7zix9G|j?PE@s;$%N^~F0-QDBg> z+~@*o^+v@?s%C@JHF76O!R5fs{!1GuUhDM%@ql6U($N~J6UiE7w@z9XK+uibq57H; zWCb4;6k0erM?9FdSM~RRzZI6I7v`r-HAmEWC345;EGqtX(bm?^g`%p#Z|WgXr{%wH zA3c5Mv_5(`8>uLEI7=2R#RHmTKq1ON0c#-`%L{|UVYXuE^~3~JC6#~ck7?9;_H^>qV)g0J--jU`fjgblfG z?bTXU(OU9xM}fO9vwJqWJ+E<|)qUIS^?ADA+Y}w64?A zo(!45iD?CY#FcbaR*FQf$j9^ZaaFufr}(PU=kI0=kWoHwWN`3#R7zH~HW)3+Bpzg+ z$&LX3-&vK1DQP5A(NBo}tO}OqIb4279SqAmxWm`Fi}xj~XnR-d(cB>c$-v{PG&MGH z_+A8D+D^G5g1d0uo!Oc*Q|nHWg8s?q8H9KqGCr<$1(BrG2%;Xuxyj+-;e^M2BC}>J z=$=IP1`UBAk!KzRD0Ig1scW!QOD7k=jXnv=!X^7hWvad5+F1ZFo&GC)+%lb9Ly#C2 z5rbS6QMy}zw-Nfh?g>{#(Tj4JgQUldjSkGw-0?3@jrEA!n6J)L*7YAo@BAXu4M_|K zVb1dGigxC+UG|NNxHxSsHt1QHAJfv&L7k_3fV5y_WCT1)icdhoyO98X;qz|-0uvLH zcz2z?#^qht>u?(PuSL8)*t{G@s^aXvGz2m?E5834kc(94fCgzO^@lRtPK9^Y)6|Wg zh-FlT`gsR=#NKl%oY33y9@O8c+Evr~3a3SXB_V{-Z6X%n|5jK41YR0SLnMFxXi~@$ zdc}<>bbuy^rlY>~oLF8bB@H!6a(M#)Unh5Od#)Agz9k8oP07Tt@bIowY0^kL-t2O= zs&C)wf>g3?SNb_3SN8VyZoGM@tL~94Bs85@lFb1esDs zk@0aI(X2>d=9Sbfh^!_>^e37M!3PCBb;%fGwyO?3->%~yOMeU)j?h#SLGNq?y&g`j zr|uE@slfPpcWFyE)_=(79OYc4Q@e^_6Q0|%%>a74&5OIbx@2QG*ZOng!>WKTt5ssD zJ?8*?8o8z3{x@GI&;vj^2?@RUQg4};m&Y=Sf?50H`h=bubGruRYL=K?BHk@801WassGF=_=|2&mMZ6 zp0qgSX!bpb3k$ogo+*{O6)Jw3QE3enWeW>-bxPUNii&tWl#A-9ctEy_fr0gdn@mE$ zxl$qjIhT?uve2++=VPM)n8e(zldg8PPBS`LL9IwyDYHdEQHNRCsorwT$($DJvj=@` znsw{0$0KmEZb`X53JV(oD3u${)K*ufP*-Mz{s%BUdFR{G(JR;f?ay6+j`eV9dhH5F zD>JhtV0U(0jJAe`<9u5zio?~}`OCGC;NYmNN&w-x8oDl3pf^d zJAkV*3jy~0AM1JE`I0wJl-;^$N>v}9Ps6qfn%=X*%Au{DhdI8Vuq;o)`F2BU|0n(vLlm;MdNskA>g_+T{6AV#U`*@!BXdH3%;S173N?jl$D7IM8&w# z&u~WR(-NQ{zvi|D-KC1U!&J@X$QAD^#1U*hJ~~CFuWT`kU8zwf1#wf|-(~+F+G8vD zmYwHb`g3RZckxdV8fl2l$hrck6SS0`%Urfm0_8#`)vQLk9Oxx>?EDE;`U{zE2y-uX zfXktQG?3BHp;OLFK@Sg8cV?T)b4P;+_&W90#%2)NxjSLj2^YsADcISwfB*j75}uiv z3GgDKS51P7>i1`x~|1CCtVicy5 z`8hKw8>vcpS|r&^scW$kRmh^9-NzmE@u;RjXQw^q1wZv$=v7G0;oKV;UpeN?&n;W} z_>xxIUSbBYmrVfMC2BuMMHyQK_;_=G-u((Gy`BqZZ*3%sN;>G~tL?B_KT=(lT2U}s z1&YtZ!wisO(QvLPPzvJpCW_1=eONWs)N=GI`fHwov76|B_49`CzcG$D-Ov3CQkHX+rj&fPU}xddXP&6vrSs5#DkACL z`fVYGwmOMZ^&yTT=#!9;P^1|dX&qfp1MNZSc8W%JZY5B^B_dfXF?%CYso&vxkDNEZ zHlyi9U3sn8Uhh_qN`=sx*?M%PNU~sme-s8kG(aF{fj4a+|K0WDNDhx5k|B zJkE~Heop~xEN*IOXc!-_-ahgnqPj0KG#jJ>%4thrcz8Hll>d4l$PD%B8iSnuaktLd zBcKp*h-m8oT;eY?(9kIHICd-y<)aSfdDHg5O&AaFfaX8ab#JXaA_2i9$u~7nSDfCnqOc0{i>>JH?K3nxCdAB$_vebuBI~0@+K` zKr>UV)|Z&)SWAf4tb4YZRURt;z-pK`u}K$P8Y{8VwY1E+>~IO($@q`lhRMBhsV|Xz zQ8SaP){=ky5;sMvz|FLi1>yXdE-p`uHYpV=NNmj9+I+!gpUE?;djlGBKn(V-*R;_v z1_CjA)TfSlj+h&P#cxidse#E3vCaM9zT+Mf3rn2G8)fCLY7Z8v`TfB{rc<(k^6pDU+($Z%8!ioFu_8m-{(*&|g&(eDE*?ZS4TPO=PunSq6^C==5+ z=}>wWNH9cPjD@8khPIJhRzo)BQRYqEKX?R`BW~tLj7lTTT<$DJo@M5xoS;sy9cJk`h1(k7`k56`vSw zR_@JnLQQ;eXVp!Mkn$tY%9gBbt>R%3LaDKzrx%BTfdPoqr~%LeiW)VA6%=qQr{4<3 z4S4eO$_lnqH#cn*6+5%|fyGFc0pcr9V>tCau^1<1zRKhE3W(Q9esekug(=C-&fe@X z@6J-s&T{Pq2QlG!EI%m(MteXjq2e<5oWY5QxA{LB&A0r+*C`q%|I&-|78&yhTL`fM z7T6Qxp_xW8aC0Aik4sQ^uvM9q`Wo^L30%Qbp*MQEpg^GdVEk@p{ceYR4gqqXf*zXJ z11q!F4Z&U8QL3Qi&@r<003+5*moB;Ouk+ocKMCba?Q-5*9m>o1~*E2RE6)0tW}Lp=BR&8N1G zU#k`d)CGS5ZMnqQK!p=5@~IRBp`?^l!`H{&>u7CUvE$<_E-KnRWsL&^O^lmS=++fD$|w1xu&;{j?ndTT3lJ~J}12mI?FAcZ31;&coQJYi#|ywRUOgKcAh zoC&4}gx9X+%MLBTSyu~d3i}m`R-x8ek-T< zd{0k@jh5!yEp&Js?KXFuw(?z0PELkZp`$Au@bP{NesYEYQ4#kcq0X=WyqD%#n-VR> zIxIbWZmdkW>=1imU6sMXp_d@$I%g&n@YuV^ru!op9&F50{4=q=C$K{A|Bs!;{B4(q zd;QBmhV*=7C;PIpYSu0qG)Q@?ztq&r}Ila8^IymU3&WfHbk#{oNl=E1 zT=ewx1ZW$+w8q!lUh}g%OfkDEMc|h0Bz?ze0A~Aov{l#DDLcpB1mkss1G$a_$#n4t; zazLzHD+^ILHK}wd^qCOuqO!zV+=EviXgQ*U9ajNg^4mPv+}!-~2 zYGUKa<4gpl2&U<2pESRd?THOTOjj)}1oh}wpK=}IXN6DEo}*oO<`++^N)g)CkB#us z*zgG5`{%xr1eIs2C5rv~qxSapHNfPa`d+(Ukq_n%Kt={7CwgFVanTuE8URCH=}a{p zPaS!}t5<=1Pf9|<532ymIj|J0@zyLG2nXS*e>9pOO+emEnT7}b^FyVtZsSmoHV%O6 z90#PsY;H+ey={6R$-!}w+x1IrZftEMB82M3((gL!=Gg^D&V-4E0okP5e!+-&YikR@SjG(`so2fmHJqh!$ix-jE6 zZvYh=s3bE_^z)OJlWY5MnW)Y>C?G&aLE%jaAa4=>+52E3x8m}GwaL}ceLJ&Z#-IAt zu55wJgX;&|`z9hna#qG@q;##T)U}nq?<|3j@p&F)jr?p<=xe;T(TCpEBuetify>Oh zJg@po)ICAcUK}n{8u>+^>AY=~1cj7UA)(ZEu0{NGi&R%vSJ}<`!-r@N-RPJY-U0(hK6>L-(eIdAf`65 zMWm;v4|4aKqrsh*!h!-I`F!s(rN1d|-kZS#bW|bRx-kqF)-j3SN@va$T$HKn2Nw?* z(|M_bi}mqeiX|$<#Ki0`P*71(MFl9Bezk6HZS7gIR~IcVDRH#7&uMnW6A3dwbhfu+ zb_fwaB^V}YX8k$Z^8NUe@11?DGQ@`Mwp3(7HV=gGg&p_!?8<|D@|ai@p?jD^ z3*BkXd*(xn#?7ZDF@GHq#awgT_PEbTkgb)3bM`2jCt#y3WBA zb}U=#>Boj28>Nfv<3)eAxhQ7{v!QAp2@C70n}-u9RXF=xUZ(T@6&AS@#K>U903 zE;3cqr)OqBGYhx_V2|0^7Qp2v7z`sLqp-trZ@!^4Yr5|tS8+f<0PZ%DnEL@pW6eCh z7qYUz>EK?GIcV>lot?qmB}N8@gR11aeW;qOzGdH|;=g;L#7h*EXmaAzj0u2g%a^I8 z-n;raQhqf6bT7jRcrXl14zYH}E>l}pB5_p$_fuG`QxPA=UmjQw{MxUcP}9@cJM5)m zz4j@qN@w}*uy)(##F*b3PAF!9;=78_TT?7D>DJ8ex|H{FuWwNVAWM=e9FP(R(WKJ$ zSIs+)Z=h+2Qzfc?vfo$Q_}%eWFA-=j&?JZ-84f2301t5=4|>k?bh$f=vO&E&!ner&@&FPuNy)&ns3+H4?a2x~6R5!Q@5;UZYu$NM z54KWX6F~k#KOc!UXiclKcR%!li9A$G&1<*ly~$08+an&Hn$Lev6tSC?Y4U7;Y;@Xo zu$t+Tt9E^-vu}h-dT&5qtPj)&rH{^!95!z}Y!`UM$EwhVJo~K&sl8LHjo zH~3c|B5W%~LY{g=a@1+`itmNu|MmKRO#WY1sacVlJTM|D6Kc{VeTOoe8P6$1WN#j@ zFO_L_+nrCufOQ!}{}G;N4-6|8BXO)B|0|o~C)$;Y7qk0(XM4Z{XZU~EdJCwk^7nff zM+E~!6iESt5Rg#1Es#c#k_PGS4jlwkN z%FQ-68}ZNY)(mPyhUZW7;>xq{NjMT^>7Ltd1gGF*=sJ{Iy-D0tKN0?v^c!jnC5?Ra z=w;^)B97*}Z%!bOuRs2qdpH=zR#LUOlNTX`AD&*&9rLvQ7G z(J&_Jj~^*&?4`e7A-zt1i_UekcIctp=^5cgAE&MWEAKYS(Hp4x^GMx*8eC7s`msC% zLII8m1kDu7%T3Yg-#uR#cA^OSX#My=#>CA%tp1f7L-=|3Cu!*4&B(+U=lz}@1_s;5 z)4i{Jw{;XSHnn!ae{HdExGg>jM*Ha*J%^XMy21pa&P-RA;On1uKK#`euhCaXyx(#m zze69NybY#Mew9tTTZ7fK#9Fyr>(49Rkf5#8x}BYOqu&TXZzxum1{+&YHE`j?ypq?6 z1>Wm>Py4!Zyqo^JrNrntxE1hmieJ>J_M)2ni-#yVgdnBlq zv@@Q^I)NZ74Ie7x2!uv$fYICn{&2O3{n6XP+<&t#{daoMRn$uLWgn6BcG7osEO7Ge zzTENh`MR`K!bH;~59kQg@5OcWgijI@OSQ&&@WF@heeDNjkt4*J_=s7F^x$B|#; z=IvDRES9XHruUpe0fv1m<$^!~m>-Y2H6IbWz7P8Mep4g>V1a*nOx_@K1Q_!QRelC_ z#qvCW$<%?zNc3~9p1RyfcSTj|Pv;uO_DCK*vP&LMq@y{O-{U<{>mEuHQ4rvOcfB}U zTwrN7p-;o>>SP@-s__LqCI0{Yix$heLZ%``>wA#n1c_pTzY7yhx_Mi-USD2%;Dd7L z@8UOVDeApW585M5W|9Iynv4Ess~SV}?N8wlbca9@Qf0;DT^;1bL;BjM)^rgK>cFTC z{aLcGPgOnT<+cAR32qnbIl~}B#gO;6W1-1C7nqGcIG-+_8U_7jD2~s17kJe147}Pk znxchkZP;I9!bfJpRz1a`E~@?Wui0KCJ6*u`{@S=%N?pQB{uI{+WnR~k8a=AfgbMC( zm4f|I3(xtig`)rF^maE7RWFB9alZ*3i(2=n(y=}d)BeXZFX%Df?e!a^!i35wC+B{P zf50IkJUysygjRY-{-xKVK7R!pk=2z5gMXBkSs*Vk*!tZ5DE>?M&*eMlb4vOA)V-7B zrFGo-bxtWo&i_ME0m&o2hlTDLzeImJ&BnN*+DWKi9{LEesu}E40SM=kzguBiaBP}T z@-k*@hd!&Q4GG3&E{?3#uECe~N08!#dc>pWB&}>%)}#T?*=FrerZO2`v8teGR6T{OD%Hl+BN{~ZXF8v5 zpm#IQR#mct7`uAvx%E~c^C8C&uJ-iw$l=;ptKe?vL0hoE{)W8Lk9V|hFxUJ^FUF3& z%C$T+yB5jCEB@2Y(PK38Q1s)wfj|3&v5($~Uy09B4p$75*Y_A*P5C8vWOSJBF{&0D z)Qu6i@i`VB#yNBaA9FC!KTm%4=&21K*GkcO^)0ulks3FZ{jIqb!FU~+h~>4x+(3Vb zG+Y#3LVZ?7=kL9oMw>p8*kcQW_#504h`T?r$(+C6P~Mp)AW%^2BgGb2=DYU5Vuxq! zB>bf!rKZsLD&g`#KAnXEK6N*v!w*)w^4XU!RSXwPRpZ~~&c`QLQAy{qXOO7=&0&Y| zOdP%7v9T;futo&r6vNd?(4tJr)+5Ac94jsO_GaVK$VQ73ciG-7%~HN7CkI~Q+Uo2L zfMvYwQ-X0_8UD8$)_!Bn z%?z}JxPV|1pw? zpYQ*IY`QH@?bmmU{kvQ|R8l{CdTMHpzI5s!t!s8HO+4234E%9Tb(vy}aP);4N5z+q zHkRFv?OaSJ+$;3Nn)1XrRzK0@$t2w*=#{Z|mXVYeH}sP|Jy=}-9W0%c5JXJ+PCf(~ zaiS5zI%yb-AqS7Vk-kDpprE<P%nsrx>oP6Qvq>(;+Beme#)DQCGob8xrCB-j(h9+pL1T2*fn= z1Y+h!u~eT~FkQ(nQ8us>>wAzGKtB?FI{(M6d|r8Q=a)Bomi#X6&R04cXUEy%<2sMJ zf-Q3=T@8w)?6ce5oBrFIwpMuL$SJeufe&-y8c&3I%zlHNSF|vR{+^Hj0vlF>(DU&L z*Vn*~-pW=;b@c8txo%UmvutrUt;Z1cz%RZ+d`80;CJ;Bck0-Z>;u=lO(p;a3_wB7A z?6N;L#+@FA|1n4eJWMpCzCv%S41*RQJSdP>SQ8RG@O)Zv*&lbq0HIw$4pUpqvpA-> zv~EpEUSWzv>}`oBWefCH^@+yg6B#p;*r`f>rTZJ--(o=9{CoIc6>b(sQuFdB+gzsM zF-ppI%Qj7UY@U()BsxUEHFr=nd*a8VvLDjQEo1_s_NAj5ilvg-w`0?H*m2M2UnO@N zS5nH7r;!6T9_sh#3Hpdh_Y;OC_k1YCbJf=uOOjD9i`ZD|=&GLLIk$JkEina70j7qv zY(YLl8Mq40twY~0)=Am8m#-tbzNbE^KpG~?CjGTo7f%zSH=Y?!%=$^g?(mj-M}-x< zyq=WJq*BszPq%cw^kS@>XtaXHS>LyiSGrXbO&~C1EhYvTWOR0I^4F%9=y+XsgYY9B zKXW>b>CqUCM>Tff%UzS??T?rjetD~jh>zM%rb7L!_l)};9+4n2eP+*{`I`ju5D{!< zvGfIW#x*i7>OCr;BS7pm%`=gx@O1zgIeXJAi?#p1M19o^QCw{aM3XPhE{ZzlpT7u$ug~)Qq%p0o|gXp9%$9e$DXTe;R=_(fC(c2eZM#6a?HC*7XSHpwA?aX);ki}o{~2DfiHyz~`S@yY zx4eC6VifP6xjw={C!aX4v}`*7H8z2G%DtCNX*l5XL2B>>RcI*VKKI-sFOZV0{RNEi zsdmY&352qr7`t}2X#CAiR8#@(ep&@D$M^3>7yY-<;@zJrez1QlH{p#JEz=*7mqu98 z_-Mo6_+W5S)1Nv#jB0TX(u4qsCz0AyJ%!E{x&ND>B3JE9MV%hp!>f}fvH1a%+cWQ` z$!G+92z?j((-pilL}bq5D9b9Akgp7ZrL>(4mwhUgQQ_G97N|aQ{g1j#CroJ!8{yCxLZtm?e?T%kMS?KVm+xAS<# zB~|tb&6y=^PnRrOnfSjU(fw!W*ycy}rDHP%L7yATWYZJcdJH0q{Xf5~(6nCkU+a4C zto!G)@1LFSu@>rib&3UmaVw(JTUPPs zrg4NuHgJAC^S{t-Pi{~CBK}Ace4*0kc5GDo7^9r6v;h63CVIco=1-?)LgOOZOkfcE z{89x0O{is9Y+K|9Q*P(Q<)+oOUGiTe9W7TDHiD(}t$P|>1$%zkA30N>q@2{rYI;z@ zzA`>@pVzf-h7y32=*7H-Ud%JapT0y$zku7RpO_(=M0i{(Cu`L|oIuQUDdctQ-sfs} z9HH3$j*1>guUOeKrnN-<&~_mQeOxg0pNj{qk3)jMV_za1unWd<_O;%-x?LPIiUCI9 zfbK`H@7h8Q;wjBk7YmihNJCxikjPJQEop(zf3_DR6z#k`srggZ4TU1t_oAcAML)fz+jnqHJ@XMhx6Y9hMSh#NUxU>(U(<`yAxL!Q)0I2FuBl5lNi@<1Q2sTr8tmwm zYhNx6zt7v>&|0iVk1Mi49XB>$z4v8(FVSzM*dzBVTnuk>`sF{UV$VK13DB%HW>#xC3t|Uvc5L}<%RpPvUGFr zi616+EeRlXf+>^IdXnF+IKQi-s0a;JPYyy4ksLk5@5{atJ*4l{E@foN@C~*q2b2Ob z$&KG!#r_C(l#eGD{!)90pbhp1V?s*alRB5@T{%`%B7C=gDyLmLATNR54n&cZ4u6Nb z`QK8;sw5Eh1oR~2B_xW)ry!yvO6aT|ClEQmJ`j0d_zuWW%lwcv>NLrM<=~NkI8$A{ z5uW;|_D7Hx-f+Zw`u^_&4bc1SIo03N9J6t00^!cHCmO(Umu3w{0~I!0gUuKEnUqOq zwl1$-?O=alf8@4%vlt>Fk;U853?5i>!G==9jbA94{%p4fCVKLZh;DrReX_j{iye8` zK2vT3d?Z+5{#{)gIR`X7L<30P$Rvetcbh|4G5B#NY*#p7uy26Bc}URysI{pj%+Ag>EXh64gO(;WlDVm=$*3gP($v-i?T{~3(k|6cH<+g=*N#w%L0|Hx0Jq#cSj1k&wimj+w})2_PaOm1d{$wB4xD$c0#h<+xnRL5TED2j;kU*F3pI0mADu7g^<46R}P{Ql4@2!+1R{Z_oe z!1#%-h~ZR`KX`fwAjUFxCE)235RCgRJbp3Qn@7=l_B*SI33{jkeU@daQ25zr( znsWb8;(1JH(C}r^22B5b-ZOOdXF1!O5czt6+<~ zGd5?&;Y{-Nyt#_EE3fbxVp%Q^L0C~gvL8^RyG2SLwCGFYc?lGE71pQ9UkAjI zU!8m%f9+sIRViA)nn5+-w;(FyE9Pjk=h{W;<5WAmHca1M)6hD&Q3??&6Z;w-`B-Du zYwb1Rrp>%^!Kt19-y>Ku5sdNc{{f^{2AAdu{3`vIjO10sW3+Oa! z809GibYmpzy-o{#=m>XWsllK`QuPyMUgGW8;4VwJ0hA4Yx99>oG+KNhJtYXV5nF^+ z4sTM2{*iIb6+DNCn^9y$Iu2?W|L_SUMtMJdIe~~W>DT)ePN|E%S|?@Qv;DY)8u2Vt`?&KYVMZ4TDIt)4;_ zem0-hN}X{43=ISW)l>eX_4n>)Wb*#CG`G&3Ch>_GSANDXU}L_mVmC~2H7TQPpf@bl zhrSil6<0+#BJZ3W^pQVo!NmugUPHL3`kqvQs%x}aslq%C)>J2Y=Db(YPYkxktSL{q zV`{b9^~0kq4@L&)Ho&|v^14oDKEL^`|5YU6n|m$GVWq5baARYG)71*e%^cLQNF`*K z2&$)cfBjg*5rVV!XOnQz5y@hF*F`%kvE1q@3Zpf85w(OLJ2j3r(w9mGM_Yd#^i24J z8G56b;Y*|ui`PMY5+%Vy)xaa%oVGPktD|Q&7IbQ7U+`VjrTc4A*vxi=v?r<}oK?!c zftfXfE=tPW@f5gffOij?&+lG}DE~G-hq+^8WBmypkTo0;CPCCbHxz+&?$;Wp!-SBi zqY;JF<;{F+gTbn%eM_bE%DoWFCX92 zCr<`}gawT}Xx{;49d=%+9LR^FF|n~yk-QFw$y$J1ba!_T536`QnSh4i($do093c?! z$jQm^@FrH(V%;oSnwn6(KOj^C**7*e7CeIyGf{X%1hi$93QWmv+_*tZOnmd^{q?&M zx?+-&<>nLBAFk7AX=#~`6bF6%DlaWPF*$kd=FMTiJ^-}}Xn1_LZas<*u+t7}$j}7j zshQc@r%#_UGc);J4gj0nH{HjK@tt3W#8<`E-BCQD3rMxc4gg0MT&?grbCsTnNh+aB zZo7MMaIm8z>o+shvFv0t?C~z*(&g^Q&{8yH{RSQ09&J7h^7jgg1|!AF%x+6u6NpVr z+hxe39EhQ#N}s=c=-L(y+_FX~Hp7(5DFhBBMZ%GU8%4X92a_W=E-9~3>gWoJho^B6 zy*nq+Nwr)?Sch4#mCw6YH1x{b)ti7E*)T6G5d7oooJsiKw(F}`J@R}Q;*&QB678@t zpGr!$Mky?=(Hm=OP5{0cAW5)nsxEPW1OQ$ru=Xb>H!9rf7PcMp27lg5FR@!IE-DI@ z_V3Uyg+&Aw7dv2!TiSkAER0nkyOUl*E1ObtF0o1jw)|%ugy&dJ#=(`TaD{f{xj@jx` z#e#1Kdpc`Y5alB&{$QV8A6N?%FCXI|BX5hKc&GEjojoH}lBitG03Lj`UW57mtL$mD zrxRy+RzP<{KIM3~0yzSc0M3Jw-+(gYpfJOg!Mvr;_$H7;0Ne^4{zrhj`w%^-9vE;K z$ktIx>)p_5jpQS}cJ11Y8&svrve7T%;^Kf(IxsM>AM4Lg$HakX5NSf8AQrl49zK*2 zMh&IDr6mHGgRo?tIHYmO(Q$Fwfb5c#lmyTKekZD@3#2gt0M~#2{yi}<5wI#rbPuMC z_JDqI@yZoA>};D;7#P&(z{ZifLiW(Qawse&}fY*}!<4h%O*0Qaj}Vhg$u^8i3<=7)J}FLo!vSDWVA zqBst(mZ=EH6;P|NK5jqwLJ!@gW zT~)D}*`>H`utICZx67K9=U}rJODNBv^x(A?Sk$LZLgyR{65p0$BohvI9%h+NxG7uf zYjGTZxE)-6XpLBE!?Z7M`dpx{%tV^kPC7%k<>_u=VEF|i?RHKoYU+H0uGz_2Z`~+h zJP7at#!RL~pVw+u9FPk47dDP^cor#eI-}mVVC{S->x&}e~aO*8h12~8? zv$IO}D2$eFbBLxx#R%*#2*TWM;M;K90g)HeeYfQi2WPpSqCF&wUgX?ojN2E_RP)lk zrECs7dqpr;iGFa@uq;1+P`P|2eD;+fF1Rm|?#PcZ)>uIH7a z=?ZmqTR%p`PE)=*T(+|GbRKmZ$cxI0OlZ(G<8;XGor@Ctro|oxXphj~V7&|yaq6z- zP?nkHP{*3>jDRB>FlG0)n=B&+j89hWDh^A=jwM}j`T##8`HgiUC8IoBGreqe0=A=_ zahDmRGEhHU^{?B#RfWht_?oU(r4j!mi8mRwbx+*)kr17HH||59b7sp+KAwI7v!~40zc_YE~*O z$2QJ{C-@xfiyLwmZmyw`(c!^Cdf#hiB2ck`><&d1Yi4P~?tE{+9_F@JLvcx7MoH-) zMg7?DdkWwJ_kl(VK+i45vIgykVJ*~wNx(@26IrlV z@^G?KaLg2iZHi+MyH2g%bx6&X<-Mx{bv;v`4=OYv&gwSI%UL|5aRdI)wt%vovsF>^ zfZT=sjOVMw*RRhk)4e;IW^#*)`fS^GG;pU%HwOTt`?Gij_BG@JuFe3kJgX`pCgy}Z z-i4sxVf`go-V)@=Aw+VX%{}eypv}Q=?^C65;o`-PrR`%TAe@6J@~fiYZ-5DT`8;9P=b<#lPhq!)b4u&u%Bb5&%ihu46y>-bwN%;JOY zmr`Y*(el)G8q82aVWB+$+CU~N^e8|wlGh;5otc~aV0j=%TKY-aFB0EbKc3Zl3=9#R z7BM}(bf{YabGTA2EGE|UXe0*Kn>#`>E&yf>B0ie%BmhsYxY+>jNZ_Eu|5-2bu*>d9 zfy3tPZQL)r2*g0CgVl={?M4}8y+}g{-a#)$&`)b^WrZx!%ceQx0U*W6fO_%C8*T>x z+Rb1u#lGI>ay_y~z5#yTGT`zcHh0f>9qeQe>RWaGDBx)w?D7Nc8H_i0?gq|?{nfvcGZltiz~Fo@nxqmyPD37LS0q2iG0wOF%S!YU_^p=Pi*hN!Cz}Gu zO;9Nz9Ik-4-Ut}c@K2z6Ko7Zu$CJ-tVf6hBj!*UV=ONlpQyT=n$fqu>ZzVQM@>QlC zOROX~KA(w!(R z)6~9T4T18i02tTKo*pWjyf8j6O%+EoOjHumNwUCCP3{o`x&)b}qnMa?j}L(Kfi?k= zRKQ0Rt2zxOwgv#!VFCd{$CBY6<%ZZQ@%bv*djR?7Q!r~miJ`dhQbwSzu8_2iqDbGKn)!;>gZcyjiJ*)K?ufKfe|`CTauMed*e zqRk%0q*~nVb_7Bv`3|V9DL`sCIP8DA4$0ksoB8T+QGQSsa8ZI9MGHhsOwvp))8Std z5U4=Shh4n6u`!#Qzx_uthtrfVN2(tvH;fo|CA_b!e3XKd2MpA8I?&O^%%>9VNTyzf~u2(y_P)d5Md& zv#~PE?b{RJm9mTCT3aPkrYzZAZi3xIJ`QYPo&MR`*?Hp5#>T#ClF_06kcH*YzaTfa zKmR)@&@99U8~1m-jDB(M+_|4We{NAw%p32LVq?~1xE(K@Oo4-FgEYW6aoV$FwV0ln zITN`D%fL~;=E*fl?&s|tXoY(ggZJ8hi(bMg_Yq6)r^heMfekBa4D)w;S1T?)xIKwb z7jc+`5b{w*pYjL}Dx#-$YBwKWMCSI7d&) z%q+v?GJFtK=^&KfrPw5e7XPCcxnuoo(Pe`B^8)(pVW2Q^D+h%7w6>cz)REij>i{;eKPLhn0GwPeP_Xp1~j$m%_%~+$6xxzlZO1Dfy-nSn)SBD3O{p zKZuM+HVECeI-bukX)ytNE5~FKtZkZK#a5>nimLAOarx=29fTH*i-jHfH}xTU+6UnF zf&ZApT!bZE(QP)ip2a=T`bqQi4|gKM7`H~Bzjzx`aj%a?wNt@A>XN>QqHYfRi7 zol`%jth|$*e5q0Y3u9a)HDB5=Zx9vXsSht&%t@m3?2HGpYx9fTw;uB!Z*>7lg#lPB zd5kf} z3*+*Kn8$zIDrh&5z5G%OwF>>zJZ$nQ1jpiPV|vXMGIQ-Hcn|MW1qB75CLs}^*AUcr zg$xgpuFn^@rE9#|rrd zu#9+`Z9RHk)08@`3lx|Y0Yw#+VK;M1@TVAk(H5s-1eI^@U#eXdyVe>T6?JoEE#5|j z4?`p8k=aV=18FbDz6-zB%4I`?NSZtwU~uj!DLE%b?D9j~##gUi)d;qEW)0K;*n;kE zU~C3~02Kj&8pzkd!2m(A*+w96nStOED#H>M7ZGWg@)t;daS!BbR)MSog#G4kZ1mLB zLJNCOc|qfcEMk%XK;-gub1h*B@+m6;)r)p%kdz|7(~O`7jfP06C_I)h((zW~bv1A- zMIEuwuM+PG&4?I`7E4w7zFxaA{X2>uM&&uFexT+v$hZWU)R2&nZzLTRwHFr`7lHCj zOGj4>3OSD-SM6`kF{zd6KMY+Co6*JP+iFKiA=oVS-oC4>qy&;BprS+#g|E3eyWJ5x z5WjQ;GMt5l#g*h15QBJ3k2?))f!_z>7S=#hAJod++9lRBG2Vos+W_feojWlG9aXVU zj>#0TG3r^Vd2eyu$&8CuWp?e07yW&CFcp-Qjcj=NM@=iFLc+t1GjvNpesOoq%?;uQ z*yp^ae z8Qw`HKO=yhy2`w$hB}oar)35V!k*MMKIz_DO5F$ zB_>>E85ZEj!l+#M+7`*pP2CB>>W2$gtZgsGkShgn@#*;Fq-0ji&g!O2fs5M_#Us-9 zTH62}mnf&zBB&Pbiw%gU$-6pqHyvzvi1$~tW^C}Vtjk7LbVja%wQVDYAl4E=_ zTb-|WyIC^a@%rjT_D}|_kI8G10n_6#z^diKWl$YozQ)^bg*&{keC=jTe0=RVhQz_60nr>0zNoz(2tHep7TmXbm`>%*aV;L<*E@H;V0^t|%7tLGWfU_79HPqW5f z(7=M^28Hbza~q{RIvO^4URU+UK@Il@xxpkd{{zJF=Lt|-&2dEeuFcHIC`U}QMyPdH_QwfMETb#R zt6@h)gO!6{<&B8@X8H@)jvYLe;#FAHo}4AX;OvM&SWGJ4V_R@)Q!%pEM*;jyC1SH& zGn1=sRZoU2 zmy7Ps&puO{yfbf}3hp^cNn!KIF%DuD&&l*OOXFQ(xCk?FIgg2{L}q4cny>H?*oN1KV zu{^oxM;bkKeP1*coQ=Yy%uME#Dd4g1h+06{O{$v)^|y7hJ2c`U>rj@Oo1TUm9Msi@ zlp^>H@&+%0LSP8<#B+gz&!C`q|30tzcqJ4T+<*^wdrl3+ZrdQCW@+PP!M16H===5d z5G3zBN415^eApQ4!p`4d2~oe`oRUY?J28mcu2Zl71#@KXp7nCfB7SQYPt`orOgz`j zI9JL#_g7!tE03xb@sBtkE^ee5EM4;%d--B}J>25YR!9KdQ;Cd;mNu*D0B#Xn*2Ppf zC)0CtknD{*tsTP+2NDrw%0sL!!@NLhAhjBFf~?)h$Vfy~6cSW&QD(v2neAjs;AE2-)P;YEHmiM>;Oy&e4HC|z$+b!O+3NFE;`~TgCKWR49qJyoUld=c ziwbf*dbPQK`NwLcCO!75{$o*}U?B#g;hz5jfnize+-R_&s4fMU zqKZpsRzl%b?pszLnf!ym#+Y#R*hJscl3B1wDGw9s%VGW!jr)e`IF9Xtj2_ zc;P~Sj-G#y7?7^XXSIx3Ueqjs|6*`drED5yEaXJkmVHlnlxL&atEdiwg5$$*&sBU}qyyD?_~|E*h<8WNCm zg=>MJ6Ugu(ABU>1YsSi_1T(3dZg;MZl+0uxp?0Epob68`Fltzuf(nIj(ONqyg35Md zSu#rk3OR-b+(X`4ilOn#%p~DoCksW#A5iku`KhI?%?IV-LErGr^KSxfE#Y`1P zowGU&1Wi(|8`nvxZE@DabiszR6UM%{r{*wogH#vt)&2cf`w~si!lhYT3oN5Qr?uOIu^_fEEGrps!+(-L4^k>KF^TQ&2IW(rg2@ zvtuj>$h8@HjDdlk7AXq#KuGY_8(!^$1Vb`Z5d}^lGsI!7eZ0F4MG2iDl%3Q-ClFL2 z3}4G+T4U9}5G2Uck}2StU$*jpw<74?uZFLcYba-Hm}-AC`Y)ZgU~U$0K{TfKW|-Uz zY)X@p7vU{=npL1+0j2&Sd2w-ZpB{^_Hf}RBvjWGHlJ8LH*`*lHGg5%&TZ<8F`|3bW z0&)+PqpDej>>nIJ#aSTFaRHd(tE;Q|CIcu5#F3Kjp&=*(t&wZTjI2$7bAs5ZpBWEh zeBcxv{zhzXR_W#I1pTLxqDjq?f$du7>uFrc%S01!h~RrMwUvSQMZK?s;JVQoze3M) zB?|I4{1SNk5WuFX9n>e4V=6@pgVbdr}JcTM1zD zCyQ1yDUPC)pXKW+HY3(T#HojRZzlFwPE>p3GtA>d2$kA{097~C^v#)FR8>cynhv`N z%MbO{TUIMhxVziiBM_>ps;UO)p1~0M2W<(iQJOGuzm~NRi3*0;{($A88S`~c+f>n5 z3;hS{lz3-GUtX`NoucAn02eCcS1{^m^j!?H=zfs49p{dShzJc0MMcX+0q@?OgEIcf zlx~g#$b(JRc`M)l3gNT>Eo~CCwmxOv4&#SbwH|bUQ7&`})_D1|<=5)%@Imju4 za>EI@xbstIFz%v-r_IX`{8n@NzWtmE_VKq;dGJO~cfwP;HP%ZuAkrX#{@b^$PS-?K zBzP?@0Zv1m0QvkPGj2u7*g{HGMSma!m+7Puscilas zeQ2lzSmsc8@7L+cRG1^ICyz+6%*Nq zG$5ispW*+viojdPO*8N55^SgWOHedy1a&|t%>E)ZgC;+!X^JZOr=_hdEtT*?Yt6{e zkpE2&)C+Maszom=8`rmF=B#sYZ~%n^JLp8i#|WS${P>%W+fGgtj0lP#{l7XFSX?Sk6S^QezM{v6;i>&F6v6^i@(G;F zh2N{jGL_QU@7>eqTsp%{IhyIt9MX*3adma_pMPwI+eTcVrSexw{S$RumQ0RLk4$WdFBygoZvQIUcYZ~LR5M<{3sjwToHv9vOqEbM~Jkk^A z;zj9{p4McnH*)T!nm3L}3Cu;Hp!7A8#m=EdUS8ghltXgy!P41|1#5_QDO|QXDv*a2 zW0pzL(U8zMe<}ird!p%g7Nn)?fG2>mEU0BDDD>UZ1i?2UiiwuSrl!DvfMvxt1`+6B z1C1ODcL;KOz)BqY?`~~@Lmvot0ZA?REWzL*L`y1qcP|JyZLjVNcF! z{-`sGtgp!H4ClXx<(d-@_Ci5-3H1wKe)h`Uz93OPO^KQDSM+w}d7HkT0%xa=BDVRM z*nbkVe=;fa?z}w=pim+#xks;EZ9h_RawSeC_KG<9RO+RP-fS5yw(1JO_Rb!=?9!^} zZFpv3(%#-4M2r1P7^@LHcE5i1?=iK5Tr(dx_aLJVNIF52Ya%{a4fG6A(SixR4++~M z;jv_EQZz1hOBn#@N{# z+r*$tIR3BFW$$zoWb(=Uht`ctdVL#iNo8ecg=hp@!&nYZ@m z64M14Lh1zV{LXEp10;fjrQOgn+5?Z;keW~df_rTdJbkN8S8`ydz)Jm8Gx-M9VyKrw zngqz{xkc^pAvFz6a8S@dy9_Zoc{voTP^R57 zvJiC5L0;xwLL3AKDuAMbQk5kESU-?5b%rVesN*!-sEEqSc7y3EFdn!DWxSzFux%RP zqfzBKS-Kg**F$`~(Di`X!nJ9HCerw4v{mogB9ZuARVBJ7AeaGNC5uo4!NBxDi z_H@e>stFk%1(Hrx525=50@1D@84QJ8@1J@)IxC}PC194oV#0GNXIBTf9O!ng47Bj|4z0di_4SbYb9_{?etU9;ng00QsYrY5mY?gD!-|7nc$ zCw#@BqVWJsQ-#JGtXRmmZ*-jWP+fssFey3N5z1<2MQ+od9C1O;+Y%)OG8>>zxqF#$f_E*4$q!Ruho7CI!MF3)nF1IyH{v}G%s}g%zMvj z2$yQ6aleo~o}GA7rJ)`%Ylb^K8!ye1OIi5u=$~@>=5Bm)mgHBYr z!_SeiOi)$_M-F8UP#Y_OR*#KMo>CfUBto`W4bIZa(((r=G+_&5C8wqF*{_eo=Y!zC zRpFS7j;41lfCzVIR~O5}hXDHqMA-d3VXzBGR8J2AfAvy(2t|aRJrj@OciCR-X$ofY z_YPb)5(X4NOw1%;!T>)c;CA8+DFu9I=H<)4Dvfr-JP^Wx2J}>&e-w-XYW}FR&{>QP z&_XEKev6870~JjOqvYk}Ufm~vZWPq#{XnCPi^~C8on1d9K<7BHB7S~6b+iVa17%_` zSdGoi;ZXKrAdLlR-?&C=6^4rUT$$#Ctv->56R`ZvQEDBgpcYce0QJN|ve8WWd3C@*?`@aKL9xDi^!%$$xSvdE zw!)jaq=3sdzg(($rr;^h<#7T`x0+6P?5)vE^Wx7ZEPu-_oJ~Eyt{_aMJ)UH7`fkqi zsVm6Y%(RX?wMC)N2A`_$va{h5V-`kGEnJJVskJe=(Gu}H$3;1&NHkB9vu^aC4u&nr z5|ymYo!>`IeSAwle?KL0IIoX)onVlIh16HhX*bN#kxcalbF+}gLBcc9eqFPSb=x@9 zgP^-Rfxg4nt+$CcGrB*3k!7-T>X$|e z%y6|9tyF1Eu#posb={3WwJ!{RG%7iK++4&YLpryHwq2Qrp7x3EuL_f)LpT0o!^Pbw zm+6^`n7Y-NGlk%dsb5e?bO#GyM-hGy{BfR6Ys~SnwxT*Vs5$*Br-;rjW zj6AMaoCs5Z_rZW1V(oI^%zHfQiR@^#YK9&mX+o*o{k zn(8tR=~q?O!!zZ_yqT7jHkIdJP_R@ob3djlk-*Oz&ws2gY3t8>uA%{FoYQi*D>vj?*LTpAEH;>PB_mqdcEtIzGk;X%JKL|BpDi$Q-1H$a5h_;*xezIjCyc_Wq1D-yU|CG z^9;pjm!XR_4TIu<(&bB7A7l(zA8=hhzJA>^<$mSIUddx8CtS0^@{E{t#8-fp;5bP} zD)T!fhi?=5`)-~Y$E_D)XSWlPmHVmUe`rdMmkJ$rjU8C0jqZtwoWFt#nqo^3I48XH5} z*qMzzdSGTcbazwpAqy>U{qw$FK8=rI+awa|!QBiZ!9$vVkt6>VPCWeuqx)%Qcn`w6 z74t-Ub))7ozEHq-8p)AA$;77P++FSkNpH^H!|z^5N_Ll4E$JirZ#-g)Lpr*DqS`lDXkC*U zJ@vOxxJaOS=dth5Bm!S%KWT`5J&7QdpG%Z;)|!2IlBd_rbLWocwxw@IhLyMFW1+J0 z$tJS2U?{83C^hTq1y42Pl5D@GxB59H0QYUUgO=vC>>DW|=S2G>HQF}CKhyMKbw2t- zzkH+F+3}iFeh_*~`p)6aK5k<+nQi*`*gM-hN)?FY*_f>P~ zZemUJ_aE^;(v0RgQQ}I8Um8=piT+$0UQWG(xamFpP~x|mUCt*%i)XPI&KeIW2RbDt zWEq5rk#KbePO{MW6Z((cn|Y;;Dq+bKzCBU$KCx5{YxeoGi|fLtsf7lo@SvLYuf+AM z>P%b<4ajj|~8BdJY@d0lZ1t+AcU@gW zb0MP170X>_;34wCn zos`Cv&bhggV|rgg@%}9S|Aa;_MrV{_2ksNy#2e?MWq&4Fys6L#94(YB|5j_+d8UTR zvQ@m|=ef_q@uD}_+|-(@#e;;V=97g|Y2?N1J#X@>zj&cWOEdE2T_&>tQ`INhvxk&_9QWofJ4elI9%;Bx5`Fa5M$ z%sraXEILjG8~cwWSp;q2;rL{?$tw&FUAY!y!R#l$lMsT-t&G0hdT559pN#B~QqLe2 zQ7RaLIMyfIechv3+wIbbJ)9JRr0MO1eEIxLndd%@YDiRH z?zxL;m4|W0o7jKe(}wO*+>FWTGf&M`%nI$-4WiH9fYJ}7OS$tyH_?!aCuTz&X}?;h3uf!pD;=Tsvu zUS`HVR$?Tf?800@<*E6a$c4+6of02#FK=&N!(L_kwvo||z9audyUT50<%2D+Sc2sg z9gTb+mcJJK$#gI-%c27g8snYCd;rkj=Y#t>r5(*|9Bscqt|=$v-YKH!ZqS-MWr_7~!X z_zYW;-w&{Sq2ph+`GF%7Np~n2Q6a-%)Yk@X06}p0C*Xw9{N9I3mUZGge|BWq%q{vI z&dLueQBJjiOc4pgM9FZYwV`n_%fx!+-;5a;=jJ!rcM>B$jwNZPR?p$h(d;c2~ z4H<^wc6+BdQ<@NSq3YPN^r|%1!Vl_q9(#-D+)HqN!~zX$ z`f>}Vj;$qX+1Z?{jo6bIqT;PO@V>Mjicd&K&a|+9dfm`weECP8{y}jZfJ>ymz1#e9 zm}0Ddu(-zo(O#VKiPvLmc@>u3ZLX3_l{Z8jTbDT&Olpyf&@=PzpdF=saG36H+1WyLgB;c1>)j>s4`!=BU4jC%omdv?bf^PtTsK{O zOOfLtHnQJEnD@kqK0A*juVukJ0zQ(#wUt+E%)YqYXS*oEeopNYTGF8qEr1-U7d#~wEyrfdsmu0JlSf6+E%6?-RqzjV zkHRMQBvPmqKa%8D>4Ugw^v4fUWX`tC<9!-+>%JbIEXv9r-fUj6v}?!9W##cEho8GF zJ9Wgkf=*;4#3Yo1Pa^_z_0!O)lHbys^5zTv2mg<)w~ni7?V^RZ0f-=qC?E(Z(%l^@ z0@6x%C@m%3AgD-*($d}C9U?6y4bmtjrG)gI8-(+H@4f4H{=fr!?X{km&x|p~go3AE0oeIk`$@(C}k1hc^^Wo zQeoc|yVOQm=Rc^KN%U+4$Rask=06Wd>}=N%;Yz!9&ExPgI*D?zewrX?nDlJ! zL0I3v>Ho!gd*Tn~g2hrJ^Hk5K?k=jbmZ#UEpOgm1U-G9~@}4 zi%~9=JC+obi%r}+8#L^*FIm!l>2Gf#F8{W6UK22Sm;QXNVUnu*y zn)?;^Dnoi!2d~y0N{y1>)E8z?i=z(ZPwrcG?=)$Br@cJmr@l+Bc3yxYznx@Kl(qTt z5F>FEtIN0Wa4PPFZj1e-bkUKX{+`kfzny+&qI9{RDAN-=j}95GyQUnrEfH+R@Gue|4Yl2lw0aQ#1fORU#s>!H zHs=5%bNz!&gxTC4EuJ^pDxYmiMgH(lbph2)K5C*JG#@g)>VJFUzmsHHwQ^5diOr{Z zE~%9#;4nHD%O^HI3jbz}p~%}P>+an>|B4s>GQoxz5lzjMmMbP+p%=@-eiWvDdHv=R zY9xJV?J5rya(oPac^ABWPwaWNxfxGKzRng>;9oxzMFE~u)C+AWDiea!E`A6XC)8q+ z71!6p)HUPpdS@y^x8Wk>unAG4o{Q&n_&CA{S1%jnu8J_nJ(CI{lU! z7Eg{cX|g#Mx5^u|Zcgr!3VA4YMS^$h;Pu)-!|hXRk8y~hm8)K6O;U}9^gj)%GVIgU zrJZ=;P5*R#p{VGtgON$6!f>~BN}2rep~*4#`Hu7RgrI@(TLRA`WDgj5Dc*KP<*eiI zUn0aeBIEz~yOy3VE3JTA$-NZBR$qhKCn>s&<-hgIe)bK%IRZ2J1;}h(A3pcO^u5nD zE^`4#>yu;oQ}IHmGGfvZJnsv8h=kK+-$+IC?Z#B@U!Tqiuoo41os`O5N>dloK`h9? zPp!$P`I91XIQ_bGvY=&gPP2C4sSmy4aVpm~M0zBy5!(Z?2hlvM0L3Hyrj`$J2DODh zfBjS%cbRI&NR`GX`@KhN6)fI^^GS!$RQvvZ0eL>R3V~ql{OBC@UylnHKu2jpi&`hB zC%`gbW9ycQG$%C&8EG9Dn`UhuRhsxcl9M-FIg@Q1diagHNhLjh%b2n+t)F&Ia&IF! zHrn}5sbG~A(w5Pmd*E7QXV6(9$ANiQTk>1@>i3zO92+IMYlxH>&F4yCg_#yg+YC`l ztE|>I28QlO0fRYQ8@s-mJlP%P!Qy&~J`kT=y>WJWzB`NL$Y=p$eeCqe(%|_8*$`JN zJfBH$`!iG_ar762cwE_@|4JjAxk?waI+I-J#Dn=LeVVliyY870EgdKX2371Qb}}?- z?CjaQQO=b-I1jYUqvg~9t^K_hM_t=15^4#i5CV$$EqqiD>EtkxO#s z<}z)u(Id$t$ojL>EsvP)G*_6XzS~B zY7eOa$dLrfT^vfTWCpwKp^T^*lrW{P$o2WQEC(Ff5b<@Z8S+R08oF+^(Q&{^ugo(? zF_=g2^L&1ZELp=Fn@dryV19qb*F-`?z5GU!(8x8IGdg95w2 zc!NrafiknfNa^Z6GYgp^z9slxUtcnhGRj|SBB9Dj`KOv(SNO8#pQB12kWL!1ldV^99& zk^T$+A6w*=iSTjpQ*iNoV4Xg<-K{9EzS~0yL+??~?=SV90iC50WiR=W_g1PZU8s<3 z%-YGTTJWBl^ZUWW&ssyiNe6dqCAja+Q_*v7J|5C8I2=NUdWX};joY2{Ir++TXH}Wb zGiUOVMw+qFx9v-)dxq?Vfuu;(8m~_juUdNGn)gdPDN|9E@|nd~8eeY_EhHl?v7NP6 zmXXad%o-lTg7nm6-C4Zn`LorSyHZEuN(v&95P#09LmmuWI@w>sDY2n~PQF(AaXEqc+}5 zg2%Ln3yS9z3ai5q9{8){`yl>HTnH6X-6(HlpI#q^ z!^VV3sxPHv+;`C2KR*7nv_q<5PWtG}>#5w!mXCQt4lTr@>ve6_k$u77vbcOYvrMmX z^dMs)Qa=f?w0Hj9la*ol6P%K7GP zd;4>LnnD}O44KJMl-k$Rnin|g|1?rDQ*sjbo=N%I?|;70nTW>sN<7g!oPCUv!m%$p z^LYVF@!?@-&LvARM}gQ}6SH5xUY@=izU%3}(Pr}UAva;c13MU_HIGYsZFg3aVRhbBG~t+4vT5f9!xR`kb@1g)e>jB6U8$e|COr!m8Ky7q@Y;3`P#{Q2YL@VTf!| zYi&|Zb%F5eF{zBn1oTX-5BPxk+Nla(iphGqJhg?*KE9^^q3?J3>d9ttCqmhoPa%Kn z-7GO;ft1F|`3fyRc9}m({?8{ZXgyn<%aWvF^DHzW5UK6r-Z!rbsLQ@!QTuP=&XWCQ z{R=)#otmE77HP3cBI;>EORxOtLPx6hV|Gyu2G7;~kd(TF@w*2dwbW+Y#VWh?Y~kad z=3Cs=#CTlJmc4diNxRaBk57B;kY=%g8-Udc+s{ot?4$YN@v>)ny}Ysi%vv{`wYJ#z z)puDfZ_{7@ivm-)>I2xK-cRN^M|K7d!o!rYgR{hoFU;-C6cFmo52`<)K<^qitHkQ$E*zwp)dM%=#mpT6vq>7^tJW9Rn+73QOlETNR~zVU;S6 zYnP1lBPp`TE8|<`u{;j^Xzz0`#Q#7sQrp7hotvZeJ9w>gYHn^XdK}j6v+J)3a0*pB zBJ9giB;OZY;Odzm!iaMJt=op95g6x*xZ(nnC9UAS|j+o;(4$Er9Iy^i0jn zumU(9IwjvOzEs%eX>56ypj&G}Ofoisp1}Hz(*VjK+x$2HR3{zK9 z@`{#E=iF7ceVhSprq{2#8&T|WbL~GLZvBx9Ta>!jEEY&6woNZyZe`{HR`{=DLTi-^OK82V({4fC?jm`Sj%k`6fWovUQE%L?0<*0%>4WB<- z^F&uJo}0WOqg=N%w7dnL>nqyvz1PdXe(nE>Jp!~FBk;R1NuYmpti#VwK-r=KbXHSB zhkox;^zBBVoZh%~D?N*>a2QE!2l%cpG~~YF9pLZp0$c&0@*D!YYMl<=y}5ZVr7?co zAFY%dXlvU5^=9}k8VVvLoY0FL3HM4*zs1Z&MKup_`@{OHt{(yeNjX1Wx?1(d4F3>4 zb8tyWNJ#Y4dG{Cosg!h8!3HiACq5Ly&S-xA<|=N#A=_{|bH>006cZO0(>X?;<|Sw6 z&#e0C&@>|VLlABvHkN=^@5uN5)MxCl#&VvQj%qpl2mv88z)?GXQ4|yl{Hp)Q+-+|Z zT9qNiC}^Uq^$LfPR73b1fY4*u`ick2D=BRQDa^~uOAz>yL_|c>3v{0EM6vb@Dl)gQ zdwP5SK&NsbtqH(yNyidETh-R~u)TI)!r0gt7zQA@lx5xUrw&$x`_r?MBFv;ivdwh8 z)l5Uf1v3Gyi)Mq4B`pkdiDheFF|&KpH2D!#4|U^Kf0eC$oFRjW_agfdHgIfK+$GpJ zIT@AnCi9z#0XAKrX;?anL@^_k6>KZVipdoe6=7)~0K@;Kj7&fQ5%5YvKsyeEKFUg% zy7ECs0Dz5QnvP<_?a(J`?(3&N0Y`rWfDe$!*mS}CE`a+3POZ&jTd#Yyk3=qXXKW~M z`n+N(8Luh92>UX#dFUF?YLEuw%os>Jr@>#F^u8DLd)&P;Gcv?wWCX2#`b`s+m<<00 z%6P@vU`&9(E)_R-c~+K5@ZQGeCbUF9e1%4g|1(_1eAa?1#&I!y)T}bQveGG7?O@LB za4wiyt}|9pFhU9-R_76Qb%~Fr%@c=s@vAm@)!0-NcH#QK~g_cfqv{j z&hoP-_pv|6{NKVr%FE%`V=d-NX9k=bI9Za{%B0 zAku25b7KD|Cx~O**;XL7$2fD6o4svj&Veph!mtS`3bq^_T8G z!W`xx;1-li?Df}EK=4InZEu0mt;UUXM0!zFu!Ih>3JNU4-M@bQij+kH!Jx{@QM1y~ z~dNgRRsRR(%i3ztEQALmrdh%oq z5WT2qXjlJ?sF{@~=SYu-Me{8qmq9UGl*^S|{bE%qir%^qK&)nmN*mS{0tp5fu6+uL zJzV=oE$8r^I3kx*#QuM#^tGQJKSE@-Rc6Sgk^Si9WP!HDL;J}i&9G!+ev9~=jK!aF zse5XwXbc1%9)Sb7z4lGZb4Eboglg3jC5O+?Zd*P6_MC(`o7o1V>4?usB*(znO?wT8 zgN{y8REBR-$NuxfoPk1N7pV@?kFUJtJmuv2at!dLnx&O_UQ3f=ipg9F=Mi3ZeA{C& z`Qd1GC~lVQqju%k_{gr^5y{j|nIXUsGpH2kre#8-T_mxbm6g?Nc&g>&J!q_f`ov>n4C*GmnLxg=2Qo4cY1sEE;6w`G``z-Mi1+PfdysxYs<&Wc z)G+YyROIKcr!;EqPvaqVpHS>9mIa{qxN4qu{S&2FfCj@ZV7qfiJDey>aS22V_ZvtK z^D0MoatojtwdniX(A0!<(|&}WEnzA)&#_tnx|au2Bg#U<1az2V=EpQ(?I5r3Cbdzm zpNYQ_Uwi-~Z~-U9T2aG@+acxXh(lhOp(RP}Mx7K}U~nYyUS~c_{oey}8$JLOEG}f5 z&u7%oTsOM(^3SIm{KYmN)!DAhJqA9J^5uII(E!pg8ZDyrN+B(VNA}l?iXdM`R zc^^eC0ewn?zXJ;&DS|XFu?s9PZu!!A9AF~=o8g^vfHgo_Nu1Z};q>w10peOS$x>vkEFXPY2{+FAb=fb60Nw)20dzT_9ybtL+ltpr>Wl{%vHO4V^O#m&6F!kg;+!k_H>HB{|~=$owi(%#nsy27mPgXwb5_+`5X5-%@O!$6Db5U5L< z17@JE1GEGn;t)!S39-M-Q7v8s8OUmnD`E6%TRZt?rJP#g7OZQ~wSr?Cjr%i&+|J!Ee!3uKBg zyZp@z5_ZuqoDOSXXCrWNcWTx?zh+o4KKDmr>DPHQc5oK_UV+La2&iIeUd6z0I@lb% zX_D5vfTZ#^Zo;|l2DCV7#%kd95hPDc?@e8GD+6JQ)UdVx= zCgtM#3+g1+jz(Wb>yF1y{#3!a?u$)MN`D{i$d_Bw22q5JGqdHd+FmTy?sd6Em9GzW zRn;6=+GH07a8hHbleH*7Y!uvt| z!2nSAiNiZNl`EIAu!yS;!Tw?jhK&F3BZp8LL|E7w`$=c6T?;O?{UH{pySR9`)X6X5 zw*Hkf_V3_!t-zO8iFFr$SXc*#D7pR>8ynn_YL-!TavIaKa-;O;Qt?PgI`i~; zLCiha2Q&*SE4Gfo&y|(=armE{VgZIgyG*q35A4bKNd?1eFaS4WQ-P+1dj6!Zc0EVFbDH98cYW z@Hn15ddeI&-{v`KIj(@3iDxc$6R%#;iZX=m?}rQ;nC)*C9_3fh(xAORkMpL%Y?X>W z_xt+GvBUF)=^Efu^$*ytR8=k!2KTLFmPBv3%vDDDlgRnAljs z-HzraHS=nAdu9#}j(hi>Z$u)=7t(`XMroTx$c4Rmwy+-%(V6FsfQUkRkjISBg<$gC z>9y8@&Yb$Cl$;f}BkQifSiwKplt(tA<5RAM!o!CMzSsscb4KdS-L;^Ks`FM(&2n)v7oC%@&pOIF7!rt$1@ynQj1qA=W3Uk)t;GLt^FOO+=oDjz&w2$bo0 z1gT$4;p1@#$aAupj|J75n(GKv}0#*esiiE|193TC;4mHnP)+0Y!d)lst4EB*w zRqO~6q>k`Z9vzrhN@T|c+RhE-X8U}*&UF@tj?_!(*&JP@y!)EqL?n%vGCG10os zy*cJ~I8#MpdN{Kedu0VTgp7K1<4wjch2CE7WA6bYc8~gGedv zHAh?962&Et_wQzBb;}utL7aH95!T|G#h^34Z0;aL2-<6opa=}Uql9dlaazwBIy!oe zcs{7B*87r^ch=(kcvX50j^L@+Cz(liZ>m}Vi`hT@oP;2G;|7xJb~W~EpBJbLucuN; zT&zn}=HbnC%^&?n-4||Fsyf=K^-i5jYdNFo)e9+lHQPD!F}cYiu?-3}ySXF%UjEAk z7k3D7DIO7L-&p4CV9ee-B*lxW28eXreIX&wUYk^U&&wB4P+EOfS5`P8J3I$9SibMS z1)C5=DTAfCIzPYm=Z}>RDZ6@wb?d@zfnGbrtrD`zbfNXW^z`)7p8QCk@V-LSzdoW& zQ$xSre`bMIyG_pcl5(Vc6^mgtX&C{=O3z3mjokFXG)(CW1bEx;^cy z%QqHaz>P-7&-?bL&^dmEG9H z#JU2cu&u-Ttj3;ry|ndl(QB^;@!}=xF|$%N^)CyDAZs8!`0oKvlZKL9206t=+ddrn zZ_xhgetAPJvC%jcMBmUEPfW#CXFk@}h+HjP1X5qBB-bq}hrih#COH1^Bea{NTi@Qq z#x!HG`NiX?s*+H?j(yivq<*p_=Fo~g8$JZ*oUBXrpH-oz=H^NoVPoSA`?V*{$`u)V zYZagg#H#^=X`zD~!WDfafckc~2b?*uq8a%AWF48NW<&bC(F{_X4B1)Uqu-ui)^M1v zUs9s~^9S2h`uyaMhio8ZgP1Ygo{iZaK2vU@%dU?zRv2gK?%IxtB8QpBXsRuyT^()5 zqj{XvYYbH*0ov;abb`4_46FhVACLmi^Ri^P@g*!=?+xGgvX$XeD5+$7!lJ&9b|1aY z)cCsgFg0~g+Q-`bim{=o&0%9m9@85wm)ms8zs#y~fcL!MsIDI6+xC%6jKFxMYMAi- za&CJ1OC{sVv7G*K=e&rMy?NSf)7?9{u*W!{M##~b>K07hK7>A8IuEZYW zhPjUPF2Ota=1Z%b8gy8(k@3a~Gj%DWR*i%r+pz*#3KPNjtYQxmqBfM*-}c}rMO5x( zpA&GN2P5hKVPRo~;ekAifL+)fnrAhB7bdG81I@YDhJ>WYYFLy_-Y!LsBB*u2QCmCi z_<_G+t~Ykpk9{Cci;u6@NGHN-o)ng;d;{$YL-6)#K#r#O8Bxqh=I`)&w5`C#w7RQ|^{Q=!_i$;-h=%u4S1mzmOK>L;Ow z;>!0eljZ}uo)wa0Sd5|_LFt0DFyja#DeE~eJ+5!Bji*Gww^dN7_oSnFIm4VLO(^oe z>yyqQ8RFQv6ly-rqKRi?HA)-G54>lDU%eDh>=)7P#11Ik+$_cmOH=A9ySv11^>533 z%o0k`$Q5Vj&b8Xsr;vae08k&)!UA5Ut?MPWuVo3#A+vpsp#(67F+hQJ5{FAd! z;WTB>^h&|g$MwfO>Z37Rpb_G1#D_6;#E{gRk}Qo#;%Y$ z79MNS+s9JiR$^AxSMt5>?d{QJ+x5Tk1R_BE){qS#6T|YF0ZO6gpv&>45hBe0@?~f0 z<-Wnnxlz#=TgXAgozZV8d{_rnN1Qr5>aow&6jJaW1;2QtW{39fLn zlD!8Lh3~Be1U_Q?B%df1u9gBC{efAUdpU)B!DP5t4gZ%RKg`$XGMfmG~_phgX zyMS0emW!-2)my)yN3<9Rp_4+=Vxujy|N|ZAJbjDhKaTDr}~9nC~`F4Ddt}7 z3Qykt6Io>c^ta1|e|T*AA8h`j>q6zQ3S-vJg~;wD=4zScBe}=OAc4L`3TCYwa+-UF6pQlD5Q_(rA`SVN^~n zcz@5;TW$V#;$M6IxWZ8>#AL5({n+H)XY?NPzO$;#ISQ^g|%+1PSh*)rsET z=hph+*ndtQ_^dS*#p^2BTYu)Qdi8EoaCV2hO{wa|`!d6s)A}^@lKWuK;wC|L=a_;Y z=he1P;z#|h3E=9qUH{R>tt&r(0|hPksHmv#E&t@l_bwng>#1QNNXx%_AP51eFDuj$@E6Jd=lPmy z!O?8{DP6Cfs98zYx@lEWw#)s9?=z0o* zsj3U*;-YAfmT(iCH}JaZ+Cpffb3lE=1+-0lN^Q7qLsmA;15aO1kDLF&AJBAwJifeo zmkqf1RlS?g$3!=nHy|0w8kZh~?i41aqoRd{9r{j->8Yr>2KxGMU%$rOq&YE6S5FJY zGg_`j)%F&O&w^{8=HBsbG#)Kc5^0#H;6?*U7Svutwt{g9W7 zTQ+x7TQ5lz+?HPvDE)5f+Z!_i$ubaHvSeegT5lo*=^W2NWQIsb^M}!~!+Q$f(2gn` zCVHdCLLg$*`z)Az#ARRdxmu;Rg?sL5#V@2chA{hUw!$JvlBjKAYPF<9=^ISmCKbjU zB2Zg2zLHRaL}FkgC3ku^;Tu7_QlA%74jo{ZCgddCRh2^ z+#o$Fb6rwwo39Pq)a37u zDqDLZ*wfhu4r4+D$8i*K0|Zq&LCz`qSl|icvaV#q2eNcf{{Za{P>SYk;mR1`5jXgflsgNE-igua|#c4CS2njVn zVmnIH5fYL9P1vp>|JN(DMu^5n<0jf{rFXr{;V5x-S*)_(Z(`@Z43Qh^sC}iMUEf%9 zXJ0Xu(T_eO_F>ESah(Q8OgX-qIZW!4FiT6zt(7s_G8s^9wYA-Xw6usy7cz5#^uZa` z%htN%g{IZGZ@-^7Sg}I}v{9Nauo>axy;yn~9sQ;1H+VqlXr6wc*X!>+5*CI(tF>}m zfcSnmPsg+I88)3rU{aw$S4wIsCnx9Cnj3_KdqJ`Lk92WPR{Vvt6|bUH`{T<^%GfYW za#08%O`U!deeU&|OCr-vp`d}SSJwL3h?@2KG>Ydk@;G|~_T$(DBXbKT3Zak&xc>^C zUjP($gft-D*kp9uX@@G=6el$m)niFXKIrOE2VrbnT+A(2eJ-K^1~ITTNZmoC$};xS zM>3%MlX7xym)0I+_hy1*QWyVrl)VDXuyutiC{&_g;DSCgpb0=&ij4q|UNvb;K!$&_ z4+IEc{y{-Rzcb1Kl$dmk%W@JEXCO`5_4Vs7h#3gh;Af1(izhD8mDBUm&j78RFzd6` z_iu?p&xH1G>gJD_sBO1|ca}i3mD;<6KwJjlbg9xg@JL33%<;_DNvH(q?r^g_W*P$j zG{;c>0}8x!KGdM7@7~o(%Y^sUdMG5s2^#>aQ=npBIPB~)W?Veb-@gocG9U{CBAgKP zUC;{o_;DQsk!UjKKlmI8zk zWW>a7=@ailrgCLw=APy^XzwHHmp^O*bQ5Eum3Bdf;bud&m5Ewt8w)}?koYdt?{I{C zA){8!_pvdT8K(^B2>?2k(ESM{b3o^RXNKg6tB(TI$cc@mtL2WZ_N1kw9kO>G^12BN zoN;Ns?A2B@U4}V3I_lmI{%Y&Tb)zc??MDz>9n2m5ajjJ`G@k2k3a#p$GyfDDf9I*0 zqlvIps4iGK!FHHd|A*RR;Ejvv&ckx*rV7A{DU zGV$}fgfA?DG(DuL_xz7Qs>*gM*X0nBn#xu7`B{OAxtjD#k7SFt#iXSVK?M3}isVoy z&D|G|5h;3By&hX|=mK(WTJ}>YD#(04GQ<7yGu83i)RoyF0R*$oq@&uX(YDaerQng8 zE!dpgcFo(ftEu30)}?pXx$`PvaOU&r)EzC=9@26sPASpmO28U-+(@(MpC0=F1L_KrB0mOLp{N9JRh}zrP9hdqvzcw~ z0=ktR_0vZJAjg_ipTzH)l1wX_uG5v+nsMS6&i99WT zQpnu5EiB(t^{>oCOuFbwB_I8s|3ncq&v_a3@^5B3$#*vb7(ZBbBh%Xwy1KfM+-riB z6ubuzff>lW6S?q1ZW}s2Tn16n14T|`>l&nDk_X=6<}R#cqYacY4y#rf(T7$UT~?RWmJF-n$$^-X`XYeYKM@+wPJeGX1Kq z2Q42!jSMPCN?VqRJ!P;Cz-TusY)VFQWLH!`mCwGhA{&Rd)dt^6(hcxpuQPotBG{NkM4d#1?t795T;NAc33xB_*5TD4q@bE-cf* zUjqwyZ;x)x0*9i4UuoSy73WohK5KL>m6)uXgv7FvLkNkpNrm#Sypiu3cnHS09z%}o zR&e+Vc(tm=+~STC8VRvArPkXTX{^*OkT_%#2W=66S}<0vd3?vyH!y%gO#crwp|@|} zf-ol%XaG&n+H6721kPU*zzLX{tr*gP%+=oZ>d|_D8()N!dRf;MxCwLv0R5rL>0V_d zGyy&zyFW|Gu+#2&vU1Lv=gkCVIcy9=2p}ArG8--6R-7-)G}LUU44$h89ge7z*r(#s z?It%>9$rE$Vg|Qu&(K~2(}RTNS_DPbW+@%(;-*J^h>bs5=S|v{1Y{Wqe8i$hO)m#w zZWus*EEbB~phFLhz=QtpJ?(SebX5m*P%8w06$Xib6C z(uQtsmoY>IK8!2uAr;b*WhD51q^vdQYJ24R`1v`5d_RB`O3cO_d%MhnkE0^(4Yscy zuapW^vnhHfT#$nF>Y2$n1Z#AV)-W!{vH{Em)Mf*aT&9(+Na%8r598mqczI7EhrZT!A74=>yx8`;P`nlSK^zKrU&8v4V{p-)dV zz)uKE6mp}HygX5weFT_ydwUyLAq))OPr8!^xu0kGm^LAlbbJ#5TDwc4JE9joS5?dZ zc2K(I+>x+(G59ke08Hz=O|Gf(ltDN3W3p!_RoPTIS|Ws={pa(V&1R*gB_&wu>sypr zzy^dK9w1Ez+T(99@E|P#;#8o|gRG!}xq(!@O}z)o^L=jxQPE}){DUd71u-NaA0McG zLuUkdLu_nNtBwLibC6yC^obih)b8%?e7dhzY#bcK0?vN{Aq4F}asgohDJrhpAc+iu z=iu2tmXgwd&;-sMXdBq19qx@b{_xvl8D(hhrDIN9_uRi0ATC%}64%V&l+}c;^mR+H z+w4&QFPO{P^#7?_FD6a8?Q}jwQHhWwD&#mAF~%VZKm2jzYP=t;ts;KZy`j!|?cH|!A1$xKIxLQ_aB+D`Vof~Gg z?0tSy7aIg-CT}7~4k_0|i+l*8m^=$!fz1=pB)*q!M`D+l+|ZXoWRzTLxEtK6!YYe2 zTB=-7O6{yI-%562f{ig0GF4ZnvZ?q+6mxn2-nSg=KwVlYO-T2(_OFXxqs9ZVYjznIr z&Ui3rAb7Cc>Y_Nge;Uly@lWnA8>cKUP-JcG>N=l<^p{zF-jlhXJ=f`r_F|(VPldIQ7PXEmPpq?YWdiFqr;QD5 z3yZnG%Gc zADJ~Cgra|jRx3|6?-G;n&}+;sWx}&Jz54D@nEJ@O(|46q&32YZ@q=(~KZA@nXmI>D zt-NQ`>bjv~B1#(x-5ejb+$OYLEI2~_C6^-9as4>WE@N1~1 z-;t2jed4U_u5FRqXuB_7=s|b#9TsN|%9{fAuixr*)g!{-?8fD8_8rgH9Z%}k)`Kk< z{_98U_Baub)mxEVLS`;!tY+Wy*RB&{mpJyQuiLALicZ9R++k~FO#gp8I#*9$zg>Ke z6q9mlKb?%X;)mqw%DJG=pb--}&=T&=r*q50BO#1YtlZq?%f4iEZr2l?bL%e!u&17@ z;3INN*0=Pcg?$-k)V}HT!l(UdNs` zkpJ+bp{fDO=h|z*Y45%}M7^UHpIag<*Vg>)vXmIc$b1py3f86ANaihtb8DIt${(-^ zu_^Gs_YNMttbdB4@_FCiYDU;;mB_BDf>bj_Y>8 z&mO@%9#LB7U$=957dHVrMwYF`xig?X(ejRPspcd0VNl3^A3{>uF?!{2RMDrowwhK( zB_Rs3X_Nck9K8zIPVSFSboMTu-`;K^aj=v3NgArCvF|lsu}sOzNJ~&vgIr!W4_ zKdO_+Dd5(9{Z4I>G@reLc+rE@+0}g<{68U*Iu^{G@QG2$z zsv^?|owrmowev&*6;o(Fi86|PlNlVhHCoDabNNNtt}jD)*H^^q$aJ`^0O5YeDl)xh zQoFH|q$o<@#qzQ#uUq}tO@|ybI93EL^OH6r0?j&2xVyr7mDG54=}uqgKJ)3~sTzG% z042V=_)*w+#MqOGTw%FAWv=}NT}Nvh>w|}D-D7r--d^Os(%uop&dwwI5*LB5DPuZT ztl>l}xSw=j+3K&evD`>*TR2?(#vv=XwTG4^1p^u3btx%=#iees(>Dp%&g)p=k{^#d zT~aqr$rp8%0Oj;Wn@fU1%LWDYOXk|W`s%rf!(KI+Bg_7(VS5@JD%V;fV* z31vmwZ{ZA{6`X0jkYTob9dnCy9+zC&QpYw?v(|Pep|~ASfs?JauvB|={BuQU39u;P zP_oj&MdU?xq)Z2v{K3l}8*6x799?^j!zo3i{Qa?kNp8$9?SHGdqLR)a_D>oMd%e`@#EzKj z74l+*a=rtma&v}~ADNhAw3(D*N(MDTl8qobC$&U6No}KIz-rD2pQsIPK1e9i;CX(v z+GeMzpSw3j+SVZyX`9~md@k7C!%a41CkP8W+2QW>XM0A`AQ$Sr5h$LNC_B;tSWkYC#QQZE!zctM%C$adTJ zV(DhMukpywCa+BSf4m&jZxyG&d8%M78pqd>WMZI!sHu|K%C8U=cd=Qh4K1m zn?|eGg09$Qt7mDJrjd!M`a|m@@It_(RX;l!3Z}DW-~~En5QASIUlv5CvAZU9?W0b<-6G{pnsbO^ zBmcME3%y@vKq1Q1#bvSI6Z=OCw=P@l>r+P6^HawQu_`w>F86JS0pFzCD2zfB38qS; zH`$W(SKPQdf)&|ey-<*`scqjbn_#2ruf3M+DEHhTH)HeU`|qD(vg-(M2Dfr)TAv&U zFg)6r^B2y;XbO}1->vVV4SlQkRkoZIld`2bPun;N3VU+|C$|VbO(@s3bKM4bn#!Mf zy{{;!h=7}+%uat1M?>Ld>=Tc7S1P)1^%gr4{1~I7q*nxelA`f=P3n_de1L-F-=JH^ z|8Ng0mp3)~hrfQN#_39{Lr*+@CdBxxy@Fh9BL#jGJ~kIS z-xF90+LA_WLAZ>TLng1h(Fy3$NbM_=`#7oTyQypQ=i4k*aVF#j;0n+C z>v=Nx?wlXl0|eAMd(04%H_zjwppsMe&@bKuq$&Me+>*yPp3Q&6ON5&oGGC8CtPy07 z9SF0-IjQQeFDzb!TnJ260AwSWnuMz5s8a`x;>lk!<)6B+lk8Z*gS@XjS!WuA_Wh8* zuY3IYf-}qX=i{XAtKXL0`rf&+|kdN?Ti+? z#u5gxpfS!f#7NKc2)RA4ao(e_mW=~Fiu6Hs`O%DH5IuYh2j^_d#>GiC@$Ev@)88=} zj`<*wL>20}4^NTxPvmtL93f-|`^~u>l7W598{z;WQeC7=!`6@iAAF{8`Y_(7J{Lm9 zt_r2Ib)pZ58){oC6b@img(;3uPc zW@^s(Nbk%F4Wdq{)$!rY;DK}{^y3Gr`*PaE&s{Y0#VWOt2_7cLe33*@BHU2u<&cSu z)(?fM%0!0TxZLu_u^$NcW|h#}*@Hf=G%xcz`}&4c&j#VFfi!V848nSXig(aHrsJkh zJrhqGZFY4vz`hcT_S-0VGX;+dG8cVjEy^kx5NkKi2_UB%iJEjjek26`nSM!3`;^5E zmVj}IqUc(tH9@DP#TQ$y8taFmKyDf8z_n9AK@bbC$U8=?oGi98cN@`VlU`GuE@6Gg zJS~>_xn&vHJ1TygO*myd2kE1u{k;N0%-w3&*O(;?=7#W45ya%I0;Da2cktCGdela` zPxuk=I5=lb6Jj#skbdu}y}+DFnGrUBR;mo#t~C3j#E5FG?Ey|d6$Qkkk+o`vPq5*- z{pqZiogFE}85735vcpuwu?>8VocY$awh9UXx92RZ6*SThf7SA|(eyE1M)1kos%F`* z#s5b2?a0w&J{gt&o`iVuOUO@6UnwT8yL`y_4*6~{Al_&%{F~~&q%VRrE-?c&3zY!d zeWtQe6MluUgtJLH<3SQ<#K||^9yfW9XM+RSD%bKy5Q{gloy6jkQ*11;Dkyq3$a^6# zruegM>MdFQv+&ef&|FDe>Cu!mE>(V%$R2@=x9QLjRdsEB`2H4a;5ieyd^U$RqR0#X zOvWi@{=Q0e!_+m*7(x;NF#r*ZYt8~@n2MM%|=pRVgCKk@m3@B4%zk)FcKVZ$te zoglELk^%7a=cg$G@UyP2U6mBa_sl@lskKCiYbh(5+i^kS;`pQ5q}^wv!2Rfi5kXlBB0kAM|D49rsZHGtt(Bg zlp!lit~`1cZL~GZbb4&yH~+l{`F*(D4X8h`+Hit1l-QG|gn4o2^&62~^-#-+>YxH# z02-N9Wb`aOOp&pY&_PV*vk`Q(^%(-N z&qK!XMXTR2&Rrz)inw${#g-bnohvUFyKrLv+m4upl>|f`PU9O?GEr1?)NM7>f*QGh z&S&J=0(fwF_UmZJM=K`6rkK^FmLY{zo*3dw{h5FafJ^)P znVTTTX0xS{#fpy1!6l1*P24_@nTY1DLnm>9M1_MBj?ZJ(0(_3?{n-ggeYsutc2voo zyQFoZxyViI_exs}8JT<3V}0rpKmHm7=6}}L;<4&mkJX*R|V z_WY!&5ser*x@rbskmf3jlZi6+E|bjRdb{x&-gY$K0#z>l5IF;(4TI9HL^cHz)3 zuQo!E7yG8$m3TDzY9^Y$I*^Qriso>kJ-1`%Z;M>6Y2_0eg%ttBWdChjCj()<%}&Og z{pG^<1;1Y*d4|J|dvMZ>DUAMoGWy*ye=*{_(vPIZcW5MlBp?1Hal$~pLrCd&;xm;^ zfPvCDz^$Jw>vm6iJWQEsIu<0jCI~R)T(^?d&91Eu8JTei`JDqpO%ir9L z^kIx-z*VcP^g@5Z>js^zY`$g?aMCG`#^4x~u5?b=O@A*K?zOF13(g8l74~|Bw#RP0 z;d8NcJECi#s5AC@e46a>3%h%t`5N1_RM~h}JEeVlTD~7y+AR0@CQCC$)1-4L$gY2N zGtmmGwx3yyLg@`;Cnz7i;4WIIM&~d3-X=Jd*Q5m76L?yVON9H+5}M=k*5ea$bVg%5 zmiMsON{Y3#xSz3Az`7 zMJx)oguMg&C=F;E8=K~%a(TP!N5%VLT`n(YgTEh~s|zx^@^*Yz1o$*daQ?{`$E?Rs znCvjEw%EluyqpS%b+&27<3y@L8?0XHimr#^4?wJ@#jQ$*X*f?}-@1#Zii7TvL=5Id z!yqLEF`n?nmPn!r^L%7tynb?ek)W`V^o1K@%~_|=;2oNsqDH>;70wb@k4j~m<%PkC zPxR^6)_A&hvb2x$dj)HxQFk9=)=~B8i4Y4LTL`RaY%N_TbG-0}gU;9(7se zE`NVPP?B2G+Lu4~MWuYtpdA^76=|*&-W}noh{xo=eWDxxlnfYvz4}u2-c-(gI7__fho>bMr-HAopkc6F;})z@cKK>1fP((8M0FsG@RTr-LYUee#e) zPR2CavC%#qP0_#?4T+hsYk9E{MTkc{4VcHA)p>eTldxjJ;{mUG^xy4UB9bdv*i~uy zBzG!urE&X9BQAPgIB;H7{YZ{nL<~TrgG@2$N7Y1T=T4L7kMl;z9il6(LjUf(%r zB7C}i_ypIhosHVI2W3>N9+O;S;!tq-2uUFuT0E!*4@Wa{3IomPpL54>x*7iS!kwbB z%vOqrE_wnZCG~adlA5t0`?7$o2%qLaunuBP7BcocT3V@L=ToG;kA6lZt>$1vb8Ea{ z@_VVHsXMdGJzalfGb?Z9l$v#bbI)^HNSMT7On+%1GrM5xq+S(%7CTu4oag>CfAcnD z#X;r;j>`G?7q?pFSmkh#OEWjIXW^lNBw<+sJN{?=E=g54yZ!&e)R)IYz5V}Bx#d>M zEfpnn+Y~}%iD7QHq#~|l$uJa>EF;?tgQ3EeEo9${kYxzjw~3H-vS$x5)|p{!W6aF& z%#8c_ef={JkH^e;pYuAe<@tKPUgx|MkiUJs=WYa^Gx7PYt-c29J@9&TbFsH2b!^{a zbxO{}xbwk|KmYST7hir|vu@3_gGCri-aFu7PV@7Tkv4qsBgmh=+jlb4EbVs0Zx`Dl zpL&e<#*C(o#%IS%MbB%?MO%4h%E5EQnR}t@_?eN#MZD7j zt<)&I^lOf}UR>Fu=N=YlXtWQ*Yt}}Vt>`myJn8ID{huYpW)l+ul|r!|1(+Fsp#_b) z&ue4dH2>$=-|+1QKEpVFt=OB2lH(s=Po@zZYgM6Qc5`cPg(=fx~szM594-%)( z$BFUUIU6bk>xcaFS$RpRb)}i-3>ivesx;Ez0l$ews}*5>#~=eSNIt#)#&FRKm@{Qq zz-G)*O(d5YpkZxIUD@4WHgL4i2nn%6SKI^M&b3#8Wqku*%~-V616TTk zeV+6rM`tt^&hy~i6s9xy$1xZ*Gk)|+%0GHXtgH}jd!6Ebo>vSe=fXE%YAtR=HPP~T1TB|0=n{(;ZFJ?D#~0=G0H!9usLV^526GE zE{M@=(g)801GHb_D&7Ucupp-1=HYzKYr&ZIU;|cGM}a?KQYt&|hYxX!Gm^UZ1`f>2 zZ-V`dVbp0uMuxS&q{Qpp4L2;a#}V_vKnh_0bgpof!sGF1dUzG$>g%*D_oaRO*oF5F zEmGt|yPT$qqFRt@pD#njHYB`{YJ@(I38{7OG+@=3jiraX_$j?kdmj-&M0j33BBvm`;x?Nc1>0_E6vVnL-5-9i@tdsWuW2jRmzVH*sxJ98Dq3Ah)sC8zL)jkd z7b39hOuiKjoQ3?=6q?mdpW+K?s;m*#&;!0FmcLFg1v`0oW0n<@YeNWK-(ao5KJ+lM z2ubudqAs|B0W+?eA}XBP-4A&Zkj&qVF1jkB;#rB4H)I4T>ozgOhxO-N^R~c4ATEAf zI}TBGeV>bbdR5j`-}E1IgCn`jp6C6+jx}!gmePQ3*wm2DYGPTz4Q8Vb9dunNJ-w5M zSF@nfk&p7+@nPxHsi8{B_6FiH|kU5YFtOmmZE zo|Dcwu8lf8TgI}fLSKHadwlbd=d2|!!SoOTnHyZjbQ!Qinvs@Ll?65Qjz)LNY}Ye3 zzUIId+`v{mznDydxos_)t79K+6v&Mq#)qtC;5LqTNdC@OhFYseQ_2eGmA;-3@@BXa ze?ATId%)QWJa;Re)VSwZxNwSK*84JU zg7zW-Jyi{HX|CR`E>LjXPk_~^Hc=&Cr}>|!0uR8`&|o>mtApBcSqmpPF6&#KvC(r& zoNjR1tUY~N4Jo#d&|E196 zX+QJFjiVYG9@l`k_(MoXv#ZunixZxi0bG65zN4w<(w0H-8o{jA`Aj8KENlH~G;`Z( z8AHay0{XWu3Z>d#!DHGw-fpjj`{vdBS3s?ghvHdHM8+$f~U z2?tADd$qc2r)dr!x3DNzh7s4#A1j=P)l^-AZud3O!9DVpeW|0jDlz$H|6b{Ymwxfo z^9?#Cc-+flxQVi@Uj?)XOYDAKU;W)-goxRzV-{9;=OoY%3wL>rM}Bju5ZFvMPUp$_ zdg_vyS`~k_NXqz}C}X^zI<`!4>fEOJx5YfkKjAz0D@gOPX$EUL7l|N+Ug?RCY9A`f zQGwPCaJ@9Eo~v-TLc+4vQ|t^h3STK^RDfY2uJFsar)WB88j@*m< z`(pFqQQuZ{PX6_V-rrwG z3nA{ClsjM7LoYv2VQ42|R#j0~FC4kjAKSSnXwj-=e(RVyZL){}Gx_{XW3`LrePpmD zQXyBoSjqRq<%rvhA;ng!*`t{5IU)IEH-p9lS~GhB=mEF*&1Uz@uwNn}8@!{D|IWk+ zDLJu2@=4+deb_Q@aP?KK@*MaH{K&#ssJz3R-h*Q$GvJO^Od~& zFk75RJ_Jk_qno!?n36bHb1VD5UI5@`M1}T^(%3bN|JGGbLtN{+lCr-hzsg7Np~gg@ zRO$9bqpdC0e6&(MRaMNEkDu^7=+~O+nz`}1KjApetoMLOQAy*rmqRi&O`HU_>q0TlPM^n9H2q*w_C8|woTWmmgB!~hf$C?>Gt+|K~ zZMl0c1^wYqC~K7j;M}Y;>Ede={9$wyA48mv^~ zu7vi!jaBy|b8>^FAcHy(deCU39Xy1=;pd7YcIG!Xx<1y)1`C7LBL{;Yn?lLLLfeC5 zU^|kZJMQ9fvb=xx>}X(kiYF(o5i(10CV9m4-JD-V#^uwbkp zk@#DH%o@UOY4!kD{pnmpS{|POf1D>cYG@P{eft$r6+OH9XxCLX)!BjWJSZiX~rDB1x1Xllz zgN2!TyMB+>;ZIUSF=>K2jLj@H&G3v{n&Yev(%I(BoC4d6s`1+mfu;V$)S=O%0Mv=k zwTY|VYW@%0Uij~MFKtwLHJf)gNJ`AeNTyJ-XZn2)LH^`QG|7uZAds1Tc-jH6gcHgb(pIS+8|fbu+xob5(TLa5G{d~&-P1d^ zkDg9Xbd`0Q?c>U{%}Upey<$jl^O*9+Y+1h{HZnCD=+ia>g=I3U2q*-N8H`Ewcu$+0 z&L8*Q=-C)4eF|RBkj;;$hpw)>i>VKxsudIzmw9ZvW9#iLB70ycKB0e#~)?{kj zHZA4O`%^_RKbgs@CkG0QPv)Y}ye{oEWXy)@`_X1%N<$?jEE(Vs3{XohQp0z2sVc9m z)AEB{^p0xior(Cd(z5p!*5;0NBaA*1%cLW{Ccv=^AJ2glGu|;#-3)j2ZnXYu9w#$a zkiMGc_(8r6QCRKI6xCv9XStznzLh1BP%#DBN)N_7z(K6Ze$0xC3o>uBe<+7IrW}3f zK%EE4nMHZ3mr}=xLee{S?6L^!O1aD1nS0YNcP94u$WN>Gz`IYZ)m#Y<{G%>#j1fUM z0pYzlHjI4y9CEjR%y}Aj1HAV5T++!COLo`vDjn}-RwZ0=A3+gcM5eXXFzV=cHJ*1V ziH;OeBbv6(AAmhteqF!a7fl^ss6KfFtixQri}|hcd@3c7om#Zte5gOl-Wj}9*T~5! zQHHlxn_TZLH;*~k=1SP2mE4WBT{D@BpgnLXdV&UUrTjp9NK|4nP`)w*i@L5lfZa%C zy=>5B46_(@TTSAr$7>v?y1OY(c|>**1aJSC^J)(KJ*QgC&)#V!SKL1C{SF6$<%jqo zN@l>7dtVmc-EdZ|hDT8PxHRHzSIm<)K!}8nPA150VvLN&Rwq$X5{$0*!Dpwg)6L4`tSnCvn@Yd-fPy2@t8`hs$j#Jrguw zh3k4L2=t`s9i6tZ8Lj$wH56LS`l6n~QwMOf)6eVnJkrO{fxbf5L%#HM^f@BgO0ckofs)pw?ELxAb z+5a07XCv4NcOs9LjC}|1lf35P#kfQSP}0 zRTLFM=qVOtUX)2^K;GyL?%AV}Yq(yLviY5Sy!SyYXsEIVBC6<8D$}4Zp2TK7Ew*Gi8$t>CT4{?RcXzkD?Z*GQIQ)sk!;>ClRaEY7Fc?q* zA~}fRdPf~hP26iY?pu^sWOQ&shHTc34}NaO(-0`*x+ehmPE2gMCco^|w2}0;f}B(H zvmt2!7kqLZP3Tt0jiS-?M+LiTwAy^!KU_}M34Fz$Or94xb?MT#4p$>EAxO_FZtM^) zBj1F7*S-r({&Q{RM_Hx#FOHBnDeHxSHLDtU>7&u@>3o9j*+!2+V2)xAWd3~sSu@0k z#6~||?J;A^Nn2p7iETOM*XJ%id+id=tj(APxYoDjfoa*ZL891YlZyJ!v#u`V-9l~E zmTJxH-#k$vTd_Y!-pLzn5m5ZU1srfGR_Z-!{aFn1v(&$F&$ajTYF+a=nBewBPMSWq zgN@!9+qEd-@>)CZvNhuL>$DN8es4*M25LtPhm3LALEyqyQtpyrU7{(-kGY+u@(?`P zJ~wwCKiR=SE29U@4m|t6J#jkggL$8eayln#YG(S6kwH?I55#w&|AC-PTq?+;YZbkI zJx1N4v!@$(VP_iu8VlMB&)b=T8eL1o?QX!p3A`tMSSzDW91HlC7@&^@2_f^7xW<7tr|0F3%gOcXBj zWLbJ0Vq2p{0M|$U0k6ia_6P6Ae+c#fujH9g`M-1f+S3I?=i$TwJZT^LoFf6W7E(tB zn)rXRAYhE_;aa(d_OA^m3nE#wvmp5aJ_zOg>lGK0N#$wTq_8w^+?D=7PISJ>wd}{Y zL2{FnTN1iP>f*uoKK++^)X~va%O?LA7}M8wC)wn~iFiABzx11!+)f&fePH!jEZ@#< z2nC$=)QubZqrXFXz5!ZeKlSeouT=60Ww#0#d!j&_E^~>HD_>1yDl6 z_Y7mIr&qoxf$ZHB-c$R&%_y_-EF{xE$*Mobpl^a^tn0yk{0T1a_18y$KbcVgI0bC^ z$J+&r~vZi#hIP1Q8RJGU1FZLrHm3~}8I{p@T9KHp1%3lFQwH|aYWhDHB=wMMo| zdq8B~9=8p{~7`*VW%9=tRL6!ivQXrtJ9oa}jfPOkiW-%;Xyha29ZcB@hEHqctn z78|nA&3p6Bd>Ek%sQJKxa(#YT!SiWP;b!;HwG|nccbw~vaIS9!-WpdCRB?^_Hx2i^ zNgtS=>&Aqoz|E#+On6xmb55p{*(ejJqAH#x1IY|`aO<0xcxfXYh-4q0hr~VPs_1VX zG%Gqw~qxq z^Gn><_XJRjqJ)heJozlf28nF?c&8`%5mu1Kgu-!HO=(6-R_UCV5rE8`q zg!c2r3eMonAH=W~;NwQk6rl0|(-<%H&_#dV<|PIDLa9T#+9@7 z>3+{H2RDU>K{sa-{(PMVNSq*-@Y?cP#rV|N3U^2xGZG--5}?F2`J4`};xMjk!{woh z%=zpvir0-~%<73)ovb$G_#62BQ*kozI%!}pvS$Hx&BtHoRRnmQ=!z#`%8(1GJ3ppw zahwgF(z-`Ot93uX7J5g|7Zu$dz?sq33Zw>?ohG`^i;1O_eY#LkZSQ=N$3g{;xPpC1 z+s0E$A_|o{5p1po{6)2M^Oj~?;N1b=btn4vQE9VktL7V$V)SQ&TO|*#T@y=?7`CXn z2m#PB=;E`F;maSw*4VHPcv&vHK#8c_8!%q+Lqw?a?l}NNZ9a>sKlra4LNo50p*z10 z9%JE>XjGz%xuQYnF4<9g91f6XeiLN`vpJDdEjzQ>$)YreP-$w(I=lg7V-vmmZxXwF zHiaHmR9Fl5<2)C0gT-jB6O$SPb;gxG4o9Ivzv1(Y6lKVzjn;k>4^(PcH!(XNU3+i` z?p=)zOUsPWnxHi)8#%VTz4@3~ltGQXEHX!$Q{QrIxtyC-`6nbZ7Wk9EPSl=&MEI~M z2!T6J>!dJ;|4|=_mt+vDcy~8Yor}qc($m1Cv>YGWuEpGIfvTGC+JuwLYEQ$&PY9{I zRj^Dc!EDFvYum|{Z=l^X+XMXLbvY8^bIHdcaio=^s6<0Ue`4ZPHK$7`u5b*m~L z5z3dAFg7!b1Xdh3df(ErhAawWM5U$zdWsL_rt79!JW`neSfXvb(?-cegCHXmi~=d% zAzJwlFNk{I@V{eyvly*&M+##?nmi5I zKbCda0d(*DCV*NsmH%FilXji`C0I~RTSOviRg_(Cc<++ULz-eowbA=GOJzD^GiX68;v|4KBuIZ zB_*9~Wb|-kXi)Ho=m{-0V@jX*=YqJ?>0EpE`iIT!Io+VVE;0&FR_=Lzjm`CUrCt@= zyhHVa8(pS%+K6tNOl78dTtAxyX@6=tkiT{cQ$YMtH6?&cAYJp!+b%sABxO|pSV&Za zG3|GwOzL5IMxNBUaj<>LvL`k4T(lB7R&0?;eZuyi`0?&BrA-6|X`w70Ut()uV6hp9 zLD29^8ZU4r(AmX1is3Ld>e%S9oEyD>K6aI>EQ}t|~e$&1cI; zeeYZR?)-kq+=oSkGdHnx8`g5*_~_`VP2{LKJh^@UDAoJdeH5`Th{d5mGUd6N&5Qv# zBZX4aCV9Z+<(S3X;vBs%F%Y&29{@*t2S-=iNtwfTu~D8Wtpe#r9=B=Y|BSCG3F)Ek}qqw73_!r%i`&esf)k#&c zmzA9=^kheDU61$X)0u?$pa9KVshGKGP1anhBa@C@VKFED0ZAry z661-|R}r~7>;d>#n#X&>h*r&jj_a!bIy?BtGPt;KQ~2IPbbsCi_o zeX@6#qu~IfQML;o5^?)&zPYd{8Rp@+I8@SJBLDJ3&m4By24=Fcgk43k$Slfy*OZu; z<2CGD^jQI`{I<^4q5E)=v0Hfxzrd3qJ)zuKQKu*u<2h}miLM0bz!Ctm z6et)P|M@W|T>mT(f%aTeRsk%np*q&1ar=#xjqbR4&B_zB@c3Y%8k7&;9vPje@2usG zt|k7!%q=gsugSjz96WVdkbVd;x4?g=-|)DMbh4nay9Ig?=VDYp%$|FkA=etWOEUX~ zHfDtv>|W$|X?AUxkEkApE)+XI>MI={;D||JLBji)mDQ(od6$m%)2Wqq4Uw&{@sw{r ze(+;!VCUlhEtZ46PRl%Q#6B+O8{f+D#(#l?i172ZRq;Om8jBQ3ukd{)Huy^SS->LZ%jLfrW6g0NWz8&S?cxC`lu z&(F1~%HJDsz`2P05OE^Xo;>ftEGcUk-s}wHtp{s(3gR=1L;!($y3E0NEwteB)+)~) zg+BcseXASEgs*5r=CmZQDrW2NNB|FKtOIpsQ>sU>wKk`#*_^en?M`W-*A?27^Qj{@ z$GQ0B*aO;FFsQLL^R(rg7}qS7Doi*)WYdrJ;qHQ43u0m(AO}t9IM~N(@)$rDS(Vu* ze)?4@0