-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathargdata.hpp
432 lines (383 loc) · 13 KB
/
argdata.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// Copyright (c) 2017 Mara Bos <[email protected]>.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
#ifndef ARGDATA_HPP
#define ARGDATA_HPP
#include <time.h>
#include <chrono>
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <optional>
#include <string_view>
#include <type_traits>
#include <vector>
#include "argdata.h"
namespace argdata_range_detail {
template<typename T>
auto data(T & v) -> decltype(v.data()) { return v.data(); }
template<typename T>
T const * data(std::initializer_list<T> v) { return v.begin(); }
template<typename T, size_t N>
T * data(T (&x)[N]) { return x; }
template<typename T>
auto size(T & v) -> decltype(v.size()) { return v.size(); }
template<typename T, size_t N>
size_t size(T (&)[N]) { return N; }
}
struct argdata_t {
template <typename T>
struct range {
constexpr range(decltype(nullptr) = nullptr) : begin_(nullptr), size_(0) {}
constexpr range(T * b, std::size_t s) : begin_(b), size_(s) {}
constexpr range(T * b, T * e) : begin_(b), size_(e - b) {}
template<
typename X,
typename = std::enable_if_t<
std::is_convertible<decltype(argdata_range_detail::data(std::declval<X &>())), T *>::value &&
std::is_convertible<decltype(argdata_range_detail::size(std::declval<X &>())), std::size_t>::value
>
>
constexpr range(X && x) : begin_(argdata_range_detail::data(x)), size_(argdata_range_detail::size(x)) {}
constexpr T * begin() const { return begin_; }
constexpr T * end() const { return begin_ + size_; }
constexpr std::size_t size() const { return size_; }
constexpr T * data() const { return begin_; }
constexpr bool empty() const { return size_ == 0; }
private:
T * begin_;
std::size_t size_;
};
typedef std::chrono::time_point<std::chrono::system_clock, std::chrono::nanoseconds> timestamp;
argdata_t() = delete;
argdata_t(argdata_t const &) = delete;
argdata_t &operator=(argdata_t const &) = delete;
void operator delete (void *p) {
argdata_free(static_cast<argdata_t *>(p));
}
static std::unique_ptr<argdata_t> create_from_buffer(range<unsigned char const> r, int (*convert_fd)(void *, size_t) = nullptr, void *convert_fd_arg = nullptr) {
return std::unique_ptr<argdata_t>(argdata_from_buffer(r.data(), r.size(), convert_fd, convert_fd_arg));
}
static std::unique_ptr<argdata_t> create_binary(range<unsigned char const> r) {
return std::unique_ptr<argdata_t>(argdata_create_binary(r.data(), r.size()));
}
static std::unique_ptr<argdata_t> create_fd(int v) {
return std::unique_ptr<argdata_t>(argdata_create_fd(v));
}
static std::unique_ptr<argdata_t> create_float(double v) {
return std::unique_ptr<argdata_t>(argdata_create_float(v));
}
template<typename T>
static std::unique_ptr<argdata_t> create_int(T const &v) {
return std::unique_ptr<argdata_t>(argdata_create_int(v));
}
static std::unique_ptr<argdata_t> create_int(int v) {
return std::unique_ptr<argdata_t>(argdata_create_int_s(v));
}
static std::unique_ptr<argdata_t> create_str(std::string_view v) {
return std::unique_ptr<argdata_t>(argdata_create_str(v.data(), v.size()));
}
static std::unique_ptr<argdata_t> create_timestamp(timestamp const & v) {
std::chrono::nanoseconds d = v.time_since_epoch();
timespec ts;
ts.tv_sec = d.count() / 1000000000;
ts.tv_nsec = d.count() % 1000000000;
return std::unique_ptr<argdata_t>(argdata_create_timestamp(&ts));
}
static std::unique_ptr<argdata_t> create_map(range<argdata_t const *const> keys, range<argdata_t const *const> values) {
return std::unique_ptr<argdata_t>(argdata_create_map(
keys.data(),
values.data(),
keys.size() < values.size() ? keys.size() : values.size()
));
}
static std::unique_ptr<argdata_t> create_seq(range<argdata_t const *const> values) {
return std::unique_ptr<argdata_t>(argdata_create_seq(values.data(), values.size()));
}
static constexpr argdata_t const *false_() { return &argdata_false; }
static constexpr argdata_t const *true_ () { return &argdata_true ; }
static constexpr argdata_t const *null () { return &argdata_null ; }
static constexpr argdata_t const *bool_(bool v) { return v ? true_() : false_(); }
std::optional<range<unsigned char const>> get_binary() const {
void const *data;
size_t size;
if (argdata_get_binary(this, &data, &size)) return {};
return range<unsigned char const>{static_cast<unsigned char const *>(data), size};
}
std::optional<bool> get_bool() const {
bool r;
if (argdata_get_bool(this, &r)) return {};
return r;
}
std::optional<int> get_fd() const {
int r;
if (argdata_get_fd(this, &r)) return {};
return r;
}
std::optional<double> get_float() const {
double r;
if (argdata_get_float(this, &r)) return {};
return r;
}
template<typename T>
std::optional<T> get_int() const {
T r;
if (argdata_get_int(this, &r)) return {};
return r;
}
std::optional<std::string_view> get_str() const {
char const *data;
size_t size;
if (argdata_get_str(this, &data, &size)) return {};
return std::string_view(data, size);
}
std::optional<timestamp> get_timestamp() const {
timespec r;
if (argdata_get_timestamp(this, &r)) return {};
return timestamp(std::chrono::seconds(r.tv_sec) + std::chrono::nanoseconds(r.tv_nsec));
}
// Same as above, but return a default value (empty/zero/etc.) instead of nullopt.
range<unsigned char const> as_binary () const { return get_binary ().value_or( nullptr); }
bool as_bool () const { return get_bool ().value_or( false); }
int as_fd () const { return get_fd ().value_or( -1); }
double as_float () const { return get_float ().value_or( 0.0); }
template<typename T> T as_int () const { return get_int<T> ().value_or( 0); }
std::string_view as_str () const { return get_str ().value_or(std::string_view{}); }
timestamp as_timestamp() const { return get_timestamp().value_or( timestamp{}); }
class map;
class seq;
class map_iterator {
public:
using value_type = std::pair<argdata_t const *, argdata_t const *>;
using pointer = value_type const *;
using reference = value_type const &;
using iterator_category = std::forward_iterator_tag;
private:
value_type value_;
argdata_map_iterator_t it_;
friend map;
public:
map_iterator() { it_.index = ARGDATA_ITERATOR_END; }
reference operator*() {
argdata_map_get(&it_, &value_.first, &value_.second);
return value_;
}
pointer operator->() {
return &this->operator*();
}
map_iterator &operator++() {
argdata_map_next(&it_);
return *this;
}
map_iterator operator++(int) {
map_iterator copy = *this;
++*this;
return copy;
}
size_t index() const {
return it_.index;
}
bool error() const {
return it_.index == ARGDATA_ITERATOR_INVALID;
}
friend bool operator==(map_iterator const &a, map_iterator const &b) {
return a.it_.index == b.it_.index;
}
friend bool operator!=(map_iterator const &a, map_iterator const &b) {
return a.it_.index != b.it_.index;
}
friend bool operator<(map_iterator const &a, map_iterator const &b) {
return a.it_.index < b.it_.index;
}
friend bool operator>(map_iterator const &a, map_iterator const &b) {
return a.it_.index > b.it_.index;
}
friend bool operator<=(map_iterator const &a, map_iterator const &b) {
return a.it_.index <= b.it_.index;
}
friend bool operator>=(map_iterator const &a, map_iterator const &b) {
return a.it_.index >= b.it_.index;
}
};
class seq_iterator {
public:
using value_type = argdata_t const *;
using pointer = value_type const *;
using reference = value_type const &;
using iterator_category = std::forward_iterator_tag;
private:
value_type value_ = nullptr;
argdata_seq_iterator_t it_;
friend seq;
public:
seq_iterator() { it_.index = ARGDATA_ITERATOR_END; }
reference operator*() {
argdata_seq_get(&it_, &value_);
return value_;
}
pointer operator->() {
return &this->operator*();
}
seq_iterator &operator++() {
argdata_seq_next(&it_);
return *this;
}
seq_iterator operator++(int) {
seq_iterator copy = *this;
++*this;
return copy;
}
size_t index() const {
return it_.index;
}
bool error() const {
return it_.index == ARGDATA_ITERATOR_INVALID;
}
friend bool operator==(seq_iterator const &a, seq_iterator const &b) {
return a.it_.index == b.it_.index;
}
friend bool operator!=(seq_iterator const &a, seq_iterator const &b) {
return a.it_.index != b.it_.index;
}
friend bool operator<(seq_iterator const &a, seq_iterator const &b) {
return a.it_.index < b.it_.index;
}
friend bool operator>(seq_iterator const &a, seq_iterator const &b) {
return a.it_.index > b.it_.index;
}
friend bool operator<=(seq_iterator const &a, seq_iterator const &b) {
return a.it_.index <= b.it_.index;
}
friend bool operator>=(seq_iterator const &a, seq_iterator const &b) {
return a.it_.index >= b.it_.index;
}
};
class map {
private:
argdata_map_iterator_t start_it_;
friend argdata_t;
public:
map_iterator begin() const {
map_iterator i;
i.it_ = start_it_;
return i;
}
map_iterator end() const { return {}; }
};
class seq {
private:
argdata_seq_iterator_t start_it_;
friend argdata_t;
public:
seq_iterator begin() const {
seq_iterator i;
i.it_ = start_it_;
return i;
}
seq_iterator end() const { return {}; }
};
std::optional<map> get_map() const {
map r;
argdata_map_iterate(this, &r.start_it_);
if (r.start_it_.index == ARGDATA_ITERATOR_INVALID) return {};
return r;
}
std::optional<seq> get_seq() const {
seq r;
argdata_seq_iterate(this, &r.start_it_);
if (r.start_it_.index == ARGDATA_ITERATOR_INVALID) return {};
return r;
}
map as_map() const {
map r;
argdata_map_iterate(this, &r.start_it_);
return r;
}
seq as_seq() const {
seq r;
argdata_seq_iterate(this, &r.start_it_);
return r;
}
size_t serialized_length(size_t *n_fds = nullptr) const {
size_t r;
argdata_serialized_length(this, &r, n_fds);
return r;
}
void serialize(std::vector<unsigned char> &buffer) const {
buffer.resize(serialized_length());
argdata_serialize(this, buffer.data(), nullptr);
}
void serialize(std::vector<unsigned char> &buffer, std::vector<int> &fds) const {
size_t n_fds;
buffer.resize(serialized_length(&n_fds));
fds.resize(n_fds);
n_fds = argdata_serialize(this, buffer.data(), fds.data());
fds.resize(n_fds);
}
std::vector<unsigned char> serialize(std::vector<int> *fds = nullptr) const {
std::vector<unsigned char> buffer;
if (fds) serialize(buffer, *fds);
else serialize(buffer);
return buffer;
}
};
struct argdata_reader_t {
argdata_reader_t() = delete;
argdata_reader_t(argdata_reader_t const &) = delete;
argdata_reader_t &operator=(argdata_reader_t const &) = delete;
void operator delete (void *p) {
argdata_reader_free(static_cast<argdata_reader_t *>(p));
}
static std::unique_ptr<argdata_reader_t> create(size_t max_data_len, size_t max_fds_len) {
return std::unique_ptr<argdata_reader_t>(argdata_reader_create(max_data_len, max_fds_len));
}
const argdata_t *get() {
return argdata_reader_get(this);
}
int pull(int fd) {
return argdata_reader_pull(this, fd);
}
void release_fd(int fd) {
argdata_reader_release_fd(this, fd);
}
};
struct argdata_writer_t {
argdata_writer_t() = delete;
argdata_writer_t(argdata_writer_t const &) = delete;
argdata_writer_t &operator=(argdata_writer_t const &) = delete;
void operator delete (void *p) {
argdata_writer_free(static_cast<argdata_writer_t *>(p));
}
static std::unique_ptr<argdata_writer_t> create() {
return std::unique_ptr<argdata_writer_t>(argdata_writer_create());
}
int push(int fd) {
return argdata_writer_push(this, fd);
}
void set(const argdata_t *ad) {
argdata_writer_set(this, ad);
}
};
#endif