-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCA.py
68 lines (58 loc) · 2.31 KB
/
PCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import load_img
import numpy as np
from sklearn.decomposition import PCA as my_pca
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import pickle as pk
# Split Data
def split_data(X, Y):
split_index = list(range(0,X.shape[0], 20))
X_test = X[split_index]
Y_test = Y[split_index]
# preprare training set by removing items in test set
X_train = X.copy()
Y_train = Y.copy()
for i in split_index[::-1]:
X_train = np.delete(X_train,i,axis = 0 )
Y_train = np.delete(Y_train,i,axis = 0 )
print('X_train: ', X_train.shape)
print('Y_train: ', Y_train.shape)
print('X_test: ', X_test.shape)
print('Y_test: ', Y_test.shape)
return X_train, Y_train, X_test, Y_test
def split_data_random(X, Y):
X_train, X_test, Y_train ,Y_test = train_test_split(X, Y, test_size=0.15)
print('X_train: ', X_train.shape)
print('Y_train: ', Y_train.shape)
print('X_test: ', X_test.shape)
print('Y_test: ', Y_test.shape)
return X_train, Y_train, X_test, Y_test
class PCA_Data():
def __init__(self, X, Y, X_train, X_test ,X_train_pca, Y_train, X_test_pca, Y_test):
self.X, self.Y = X, Y
self.X_train, self.X_test = X_train, X_test
self.X_train_pca, self.Y_train = X_train_pca, Y_train
self.X_test_pca, self.Y_test = X_test_pca, Y_test
def PCA():
# Load Image
loader = load_img.load_img()
X, Y, df = loader.load_im('PJ1\\Caltech_face\\')
le = LabelEncoder()
Y_label = le.fit_transform(Y)
X_train, Y_train, X_test, Y_test = split_data(X, Y_label)
print("Running PCA")
print('X.shape = ', X.shape)
print('Y.shape = ', Y.shape)
# PCA
pca = my_pca(svd_solver="randomized", n_components= 120, whiten=True)
X_train_pca = pca.fit_transform(X_train)
X_test_pca = pca.transform(X_test)
# Save data
data = PCA_Data(X, Y, X_train, X_test ,X_train_pca, Y_train, X_test_pca, Y_test)
pk.dump(data, open("PJ1\\model\\PCA_Data.pkl","wb"))
# Save model
pk.dump(pca, open("PJ1\\model\\PCA.pkl","wb")) # Save PCA model
print('X_train_pca: ', X_train_pca.shape)
print('X_test_pca: ', X_test_pca.shape)
print("DONE !!")
print('---------------------------------------')