This repository has been archived by the owner on Nov 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathfilter_words.py
63 lines (52 loc) · 2.21 KB
/
filter_words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from transformers import TextClassificationPipeline, BertForSequenceClassification, AutoTokenizer
import tqdm
import unicodedata
def get_predicated_label(output_labels, min_score):
for label in output_labels:
if label['score'] > min_score:
return label
return {
'label': 'unknown',
'score': 0,
}
if __name__ == '__main__':
model_name = 'smilegate-ai/kor_unsmile'
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = TextClassificationPipeline(
model=model,
tokenizer=tokenizer,
device=-1,
return_all_scores=True,
function_to_apply='sigmoid'
)
# frequent_words
with open('data/frequent_words.txt', 'r', encoding='UTF-8') as f:
words = list(unicodedata.normalize('NFC', line.strip()) for line in tqdm.tqdm(f))
filtered_words = []
for index, out in enumerate(tqdm.tqdm(pipe(x for x in words), total=len(words))):
label = get_predicated_label(out, 0.5)
try:
if label['label'] == 'clean':
filtered_words.append(words[index])
else:
print(f'filtered: {words[index]} - {label["label"]}/{label["score"]}')
except:
print(f'unknown: {words[index]}')
with open('data/filtered_frequent_words.txt', 'w', encoding='UTF-8') as f:
f.write('\n'.join(tqdm.tqdm(filtered_words)))
# dictionary
with open('data/ko-aff-dic-0.7.92/ko.dic', 'r', encoding='UTF-8') as f:
words = list(unicodedata.normalize('NFC', line.strip().split('/')[0]) for line in tqdm.tqdm(f))
filtered_words = []
for index, out in enumerate(tqdm.tqdm(pipe(x for x in words), total=len(words))):
label = get_predicated_label(out, 0.5)
try:
if label['label'] == 'clean':
filtered_words.append(words[index])
else:
print(f'filtered: {words[index]} - {label["label"]}/{label["score"]}')
except:
print(f'unknown: {words[index]}')
with open('data/ko-aff-dic-0.7.92/ko_filtered.txt', 'w', encoding='UTF-8') as f:
f.write('\n'.join(tqdm.tqdm(filtered_words)))