forked from SuLab/fiSSEA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfiSSEA.py
609 lines (411 loc) · 20.7 KB
/
fiSSEA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <headingcell level=1>
# Libraries
# <codecell>
import pandas as pd
import mygene
import numpy as np
import os
import myvariant
import sys
import time
import gc
# <headingcell level=1>
# MyVariant Search
# <codecell>
reload(myvariant)
mv = myvariant.MyVariantInfo()
#%timeit a = mv.query_variant("chr2:179392080-179669337", size=2000)
# <headingcell level=1>
# Gene List - CDS START/END
# <codecell>
mg = mygene.MyGeneInfo()
# <codecell>
#mg.getgenes([7273],'name,symbol,refseq.rna', as_dataframe=True)
#mg.getgene(1017)
# <codecell>
#gene_ids = [mg.query(q='type_of_gene:protein-coding', fields='entrezgene', species='human', skip=i, size=i+1000, as_dataframe=True) for i in range(0,21000,1000)]
# gene_ids_df = pd.concat(gene_ids)
# gene_ids_df.index = range(0,len(gene_ids_df))
# gene_ids_df.drop_duplicates(inplace=True)
#gene_ids_df = pd.read_table('gene_ids.txt',sep='\t')
#print len(gene_ids_df)
# <headingcell level=1>
# Gene Specific Functional Impact Score Function
# <headingcell level=3>
# Get CDS exon range
# <codecell>
def get_cds_coords(exons, cds_start, cds_end):
'''
This function returns coding exon ranges when given a
exon coordinate list [[start1, end1], [start2, end2]],
the cds_start position and cds_end position
'''
def start_change(exon_start_end, cds_start):
exon_start = int(exon_start_end[0])
exon_end = int(exon_start_end[1])
if cds_start > exon_end: #discard 5' UTR exon
return 0
if cds_start >= exon_start and cds_start <= exon_end: #cds start within exon
return cds_start
return exon_start #keep exon start
def end_change(exon_start_end, cds_end):
exon_start = int(exon_start_end[0])
exon_end = int(exon_start_end[1])
if cds_end <= exon_start: #discard 3' UTR exon
return 0
if cds_end >= exon_start and cds_end <= exon_end: #cds end within exon
return cds_end
return exon_end #keep exon end
exon_coords = pd.DataFrame.from_records(exons)
exon_coords[0] = exon_coords.apply(start_change, args=[cds_start], axis=1)
exon_coords[1] = exon_coords.apply(end_change, args=[cds_end], axis=1)
exon_coords = exon_coords[(exon_coords[0]!=0) &(exon_coords[1]!=0)]
return exon_coords
# <headingcell level=3>
# Get VCF Exon df
# <codecell>
class Vcf_metadata(object):
def __init__(self, filename):
if filename.endswith('.gz'):
self.compression = 'gzip'
if filename+'.tbi' in os.listdir(os.path.split(filename)[0]):
header_lines = os.popen('tabix -H ' + filename).readlines()
self.header = [l.replace('#CHROM','CHROM') for l in header_lines if l.startswith('#')]
os.system('tabix -p vcf ' + filename)
header_lines = os.popen('tabix -H ' + filename).readlines()
self.header = [l.replace('#CHROM','CHROM') for l in header_lines if l.startswith('#')]
else:
self.compression = ''
header_lines = os.popen('head -5000 ' + filename).readlines()
self.header = [l.replace('#CHROM','CHROM') for l in header_lines if l.startswith('#')]
# <codecell>
class vcf_tabix(object):
'''
Loads in a vcf file, aware of gzipped files.
'''
def __init__(self, filename, chrom, start, end):
#Header
header_parsed = Vcf_metadata(filename)
self.header = self.get_header_df(header_parsed.header) #header parsed into key/values dataframe
#Vcf df indexed on CHROM, POS, REF, ALT
#self.df = pd.read_table(filename, sep="\t", compression=header_parsed.compression, skiprows=(len(self.header)-1))
self.df = os.popen('tabix ' + vcf_path + ' '+str(chrom)+':' + str(start) + '-' + str(end)).readlines()
if len(self.df) == 0: return None
self.df = [i.rstrip('\n').split('\t') for i in self.df]
self.df = pd.DataFrame.from_records(self.df)
#print header_parsed.header[-1].rstrip('\n').split("\t")
self.df.columns = header_parsed.header[-1].rstrip('\n').split("\t")[:-1:]
self.df.set_index(['CHROM', 'POS', 'REF', 'ALT'], inplace=True, drop=False)
self.df_bytes = self.df.values.nbytes + self.df.index.nbytes + self.df.columns.nbytes
#Sample Ids
self.samples = self.df.columns[8:]
#Format values
self.FORMAT = self.df[self.df.columns[8]]
#Create Samples df indexed on CHROM, POS, REF, ALT
split_cols_dict = {}#{'AD':2}#, 'PL':3}
self.get_vcf_samples_df(split_cols_dict)
self.sample_df_bytes = self.sample_df.values.nbytes + self.sample_df.index.nbytes + self.sample_df.columns.nbytes
def get_header_df(self, header_txt):
'''
Parses header into pandas DataFrame
'''
key_value_header = [i.replace('##','').replace('\n','').split('=',1) for i in header_txt if '##' in i]
key_value_header.append(['SampleIDs',header_txt[-1].rstrip('\n').split('\t')[9:]])
header_df = pd.DataFrame.from_records(key_value_header)
header_df.set_index(0,inplace=True)
header_df.index.name = 'header_keys'
header_df.columns = ['header_values']
return header_df
def get_vcf_samples_df(self, split_cols):
'''
This function creates a samples_df containing sample
level information for all non-missing variant calls
indexed on CHROM, POS, REF, ALT
vcf_df
split_cols
'''
genotypes = self.df[self.samples].groupby(by=self.FORMAT) #genotypes grouped by FORMAT variant annotations
#Iterate through genotype groups, dropping missing calls
master_df = []
for name,group in genotypes:
temp_group = genotypes.get_group(name) #group of interest
del temp_group['FORMAT'] #remove the format column
temp_group.replace(to_replace='.', value=nan, inplace=True) #replace . with none, allows stack to remove null columns, space savings
temp_group = temp_group.stack() #stacking samples for each variant
#creating sample dataframe
temp_group_data = pd.DataFrame(temp_group.str.split(':').tolist())
temp_group_data.index = temp_group.index
temp_group_data.columns = name.split(':')
temp_group_data.replace(to_replace='.', value=nan, inplace=True)
master_df.append(temp_group_data)
#Concatenating all genotype groups
self.sample_df = pd.concat(master_df)
self.sample_df.index.names = ['CHROM', 'POS', 'REF', 'ALT', 'SAMPLE_ID']
#spliting user-defined columns
for col in split_cols:
for i in range(0, split_cols[col]):
self.sample_df[col + '_' + str(i)] = self.sample_df[col].str.split(',').str[i]
del self.sample_df[col]
return 0
# <codecell>
def _get_allele(self, line, gt_col):
'''
Returns allelic base, handles multi-allelic variants
'''
alleles = [line['REF']]
alleles.extend(line['ALT'].split(","))
a1 = "."
try:
a1 = alleles[int(line[gt_col])] #returns missing if gt_int_call is "."
except:
a1 = "."
return a1
def _get_GT_multisample_vcf(self, line, sample_col, gt_index):
'''
Slow parser for multisample vcf
'''
return int( line[sample_col].split(line['phase'])[int(gt_index)])
# <codecell>
def _get_allele_bases(df, sample_col, single_sample_vcf=True):
'''
Adds phase, GT1, GT2, a1, a2 to self._variants_df dataframe
phase : { /, | }, unphased or phased call
GT1: int, first allele call in the numeric sample genotype column
GT2: int, second allele call in the numeric sample genotype column
a1: {A, T, G, C, AA, etc}, nucleotide base representation for GT1
a2: {A, T, G, C, AA, etc}, nucleotide base representation for GT2
'''
if single_sample_vcf:
df['phase'] = df[sample_col].str[1]
df['GT1'] = df[sample_col].str[0]
df['GT1'] = df['GT1'].astype(int)
df['GT2'] = df[sample_col].str[2]
df['GT2'] = df['GT2'].astype(int)
if not single_sample_vcf:
df['phase'] = df.apply(get_phase, args=['GT'], axis=1) #get phase
df = df[df.phase != "-"] #likley occurs at sex chromosome sites
df['GT1'] = df.apply(_get_GT_multisample, args=[sample_col, 0], axis=1)
df['GT2'] = df.apply(_get_GT_multisample, args=[sample_col, 1], axis=1)
#SLOW PROCESS MULTIPLE ALLELE GENOTYPES
df_multi = df[(df.GT1.astype(int)>1) | (df.GT2.astype(int)>1)] #select all multi-alleleic variants
if len(df_multi) > 0:
df_multi['a1'] = df_multi.apply(_get_allele, args=['GT1'], axis=1) #
df_multi['a2'] = df_multi.apply(_get_allele, args=['GT2'], axis=1)
#FAST PROCESS SIMPLE ALLELE GENOTYPES
df_simple = df[~df.index.isin(df_multi.index)][['REF', 'ALT', 'GT1', 'GT2']] #dropping multiallele variants, minimize memory usage
df_gt1_ref = df_simple[df_simple.GT1==0][['REF']] #get a1 ref alleles
df_gt1_ref.columns = ['a1']
df_gt2_ref = df_simple[df_simple.GT2==0][['REF']] #get a2 ref alleles
df_gt2_ref.columns = ['a2']
df_gt1_alt = df_simple[df_simple.GT1==1][['ALT']] #get a1 alt alleles
df_gt1_alt.columns = ['a1']
df_gt2_alt = df_simple[df_simple.GT2==1][['ALT']] #get a2 alt alleles
df_gt2_alt.columns = ['a2']
gt1_alleles = pd.concat([df_gt1_ref,df_gt1_alt]) #merging GT1 allele bases into a single df
gt2_alleles = pd.concat([df_gt2_ref,df_gt2_alt]) #merging GT2 allele bases into a single df
gt1_2_allele_df = gt1_alleles.join(gt2_alleles, how='outer') #Joining the GT1 and GT2 simple allele bases
df = df.join(gt1_2_allele_df, how='inner') #Adding simle allele a1 and a2 columns to original df
df = df.append(df_multi) #Adding multi-alleleic bases to original df
return df
# <codecell>
#print chrom
#exon_coords.head()
# <codecell>
#exon_coords.tail()
# <codecell>
def get_fi_score(chrom, start, end, score_id1, score_id2):
'''
Input mv.query_variant['hits']['hits']
'''
assert 'chr' in chrom, 'chr not in chrom'
start = str(int(start))
end = str(int(end))
my_var = mv.query_variant( chrom + ":" + start + "-" + end , size=2000) # "chr1:100000-1000000")
hits = my_var['hits']['hits']
fi_scores = []
counter = 0
for i in hits:
try:
fi_scores.append([i['_source']['dbnsfp'][score_id1][score_id2], i['_source']['_id']])
except:
counter +=1
continue
#print counter
if len(fi_scores) == 0: return []
fi_scores = pd.DataFrame.from_records(fi_scores)
#fi_scores = pd.DataFrame.from_records( [[i['_source']['dbnsfp'][score_id1][score_id2], i['_source']['_id']] for i in hits] )
fi_scores.columns = ['score', 'id']
fi_scores['POS'] = fi_scores['id'].str.split('.').str[-1].str.split('>').str[0].str[:-1]
fi_scores['REF'] = fi_scores['id'].str.split('.').str[-1].str.split('>').str[0].str[-1]
fi_scores['ALT'] = fi_scores['id'].str.split('.').str[-1].str.split('>').str[-1]
fi_scores['POS_ALT'] = fi_scores['POS'] + '_' + fi_scores['ALT']
fi_scores.set_index('POS_ALT', inplace=True)
fi_scores.sort(columns=['POS'], inplace=True)
return fi_scores
# <codecell>
def get_gene_df(gene_id):
print gene_id
def arrayify(gene_df, gene_id):
gene_df = gene_df['a1_a2_score_sum'].unstack(level=4)
gene_df['gene_id'] = gene_id
return gene_df
vcf_path = '/Users/erickscott/datasets_raw/snyderome/TB0001907.all.ILLUMNIA.bwa.CEU.high_coverage.20101118.snp.raw.filtered.vcf.gz'
json_txt = mg.query(gene_id, fields='exons_hg19', as_dataframe=True)
try:
temp_gene = json_txt.exons_hg19
except AttributeError:
return 0 #no hg19 exon information
gene_df = []
gene_coords_tracker = set()
for tx in json_txt.exons_hg19.values[0].keys():
if type(json_txt.exons_hg19.values[0][tx]) == list:
gene_chrom = json_txt.exons_hg19.values[0][tx][0]['chr']
if 'chr' not in gene_chrom:
gene_chrom = 'chr' + gene_chrom
gene_start = json_txt.exons_hg19.values[0][tx][0]['cdsstart']
gene_end = json_txt.exons_hg19.values[0][tx][0]['cdsend']
gene_exons = json_txt.exons_hg19.values[0][tx][0]['exons']
else:
gene_chrom = json_txt.exons_hg19.values[0][tx]['chr']
if 'chr' not in gene_chrom:
gene_chrom = 'chr' + gene_chrom
gene_start = json_txt.exons_hg19.values[0][tx]['cdsstart']
gene_end = json_txt.exons_hg19.values[0][tx]['cdsend']
gene_exons = json_txt.exons_hg19.values[0][tx]['exons']
exon_coords = get_cds_coords(gene_exons, gene_start, gene_end)
for exon_idx in exon_coords.index: #iterate through gene exons
exon_start = exon_coords.ix[exon_idx][0]
exon_end = exon_coords.ix[exon_idx][1]
if (exon_start,exon_end) in gene_coords_tracker: continue
#print exon_start, exon_end
#try:
#vcf_path = '/Users/erickscott/git/fiSSEA/ipynb/SWGR_titin.vcf.gz'
vcf_df_tabix = vcf_tabix(vcf_path, gene_chrom, exon_start, exon_end)
if len(vcf_df_tabix.df) == 0:
gene_coords_tracker.add((exon_start,exon_end))
continue #occurs if the samples have no variants in that exon
#FORMAT VCF FOR TRANSLATION
vcf_df_tabix_sample_df = vcf_df_tabix.sample_df.copy()
#print len(vcf_df_tabix_sample_df)
del vcf_df_tabix
gc.collect()
vcf_df_tabix_sample_df.reset_index(inplace=True)
vcf_df_tabix_sample_df = vcf_df_tabix_sample_df[vcf_df_tabix_sample_df.GT != './.']
vcf_df_tabix_sample_df = vcf_df_tabix_sample_df[ (vcf_df_tabix_sample_df.ALT.isin(['A', 'T', 'C', 'G'])) & (vcf_df_tabix_sample_df.REF.isin(['A', 'T', 'C', 'G']))]
vcf_df_tabix_sample_df.fillna(value='Null', inplace=True)
vcf_df_tabix_sample_df = vcf_df_tabix_sample_df[vcf_df_tabix_sample_df['GT']!= 'Null']
vcf_df_tabix_sample_df.set_index(['CHROM', 'POS', 'REF', 'ALT', 'SAMPLE_ID'],inplace=True, drop=False)
vcf_df_tabix_sample_df = _get_allele_bases(vcf_df_tabix_sample_df, 'GT')
vcf_df_tabix_sample_df['pos_a1'] = vcf_df_tabix_sample_df['POS'] + '_' + vcf_df_tabix_sample_df['a1']
vcf_df_tabix_sample_df['pos_a2'] = vcf_df_tabix_sample_df['POS'] + '_' + vcf_df_tabix_sample_df['a2']
try:
chrom = vcf_df_tabix_sample_df.index.get_level_values(0).unique()[0]
start = vcf_df_tabix_sample_df.head(1).index.get_level_values(1).unique()[0]
end = vcf_df_tabix_sample_df.tail(1).index.get_level_values(1).unique()[0]
cadd = get_fi_score('chr'+chrom, start, end, 'cadd', 'raw')
if type(cadd) == list:
gene_coords_tracker.add((exon_start,exon_end))
continue #No cadd scores for these variants
cadd['pos_a1'] = cadd['score']
cadd['pos_a2'] = cadd['score']
cadd_score_dict = cadd[['pos_a1', 'pos_a2']].to_dict()
#cadd_score_dict_a2 = cadd[['pos_a2']].to_dict()
vcf_df_tabix_sample_df = vcf_df_tabix_sample_df[['pos_a1','pos_a2']]
vcf_df_tabix_sample_df = vcf_df_tabix_sample_df[ (vcf_df_tabix_sample_df['pos_a1'].isin(cadd_score_dict['pos_a1'].keys())) \
| (vcf_df_tabix_sample_df['pos_a2'].isin(cadd_score_dict['pos_a2'].keys())) ]
vcf_df_tabix_sample_df = vcf_df_tabix_sample_df.replace(cadd_score_dict)
vcf_df_tabix_sample_df['pos_a1'] = vcf_df_tabix_sample_df['pos_a1'].map(lambda x: 0 if '_' in str(x) else x)
vcf_df_tabix_sample_df['pos_a2'] = vcf_df_tabix_sample_df['pos_a2'].map(lambda x: 0 if '_' in str(x) else x)
if len(vcf_df_tabix_sample_df) == 0:
gene_coords_tracker.add((exon_start,exon_end))
continue
gene_df.append(vcf_df_tabix_sample_df)
print 121
gene_coords_tracker.add((exon_start,exon_end))
except:
gene_coords_tracker.add((exon_start,exon_end))
#print 'except cadd'
continue
#return arrayify( pd.concat(gene_df) )
if len(gene_df) >0:
gene_df = pd.concat(gene_df)
gene_df = gene_df.drop_duplicates()
gene_df['a1_a2_score_sum'] = gene_df.pos_a1 + gene_df.pos_a2
array_gene_df = arrayify(gene_df , gene_id)
array_gene_df.to_csv('/Users/erickscott/datasets_raw/snyderome/fiSSEA.txt',sep="\t",mode='a', header=False)
return 1
return 0
# <codecell>
# vcf_path = '/Users/erickscott/datasets_raw/snyderome/TB0001907.all.ILLUMNIA.bwa.CEU.high_coverage.20101118.snp.raw.filtered.vcf.gz'
# g_df = get_gene_df(entrez_genes[903])
# <codecell>
# import multiprocessing as mp
# pool = mp.Pool(6)
# tasks = entrez_genes[:400]
# results =[]
# r = pool.map_async(get_gene_df, tasks)
# r.wait()
# pool.terminate()
# pool.join()
# <codecell>
entrez_genes = sys.argv[1] #list of gene_ids to run
entrez_genes = map(int, entrez_genes.split('\t'))
gene_counter = 0
#for g in gene_ids_df['_id']:
for g in entrez_genes:
gene_counter += 1
print 'gene_counter', gene_counter
g_df = get_gene_df( g)
if g_df > 0:
print 'NS_found', g
#g_df.to_csv('/Users/erickscott/datasets_raw/snyderome/fiSSEA.txt',sep="\t",mode='a', header=False)
# <headingcell level=2>
# OLD CODE
# <codecell>
#vcf_df_tabix_sample_df.index.get_level_values(0).unique()[0]
# <codecell>
# chrom = vcf_df_tabix_sample_df.index.get_level_values(0).unique()[0]
# start = vcf_df_tabix_sample_df.head(1).index.get_level_values(1).unique()[0]
# end = vcf_df_tabix_sample_df.tail(1).index.get_level_values(1).unique()[0]
# print chrom, start, end
# <codecell>
#vcf_df_tabix_sample_df['hgvs_id'] = vcf_df_tabix_sample_df['CHROM'] + ":g." + vcf_df_tabix_sample_df['POS'] + vcf_df_tabix_sample_df['REF'] + '>' + vcf_df_tabix_sample_df['ALT']
# <codecell>
# json_txt = mg.query(7273, fields='exons_hg19', as_dataframe=True)
# temp_gene = pd.DataFrame.from_dict(json_txt.exons_hg19.values[0])
# #json_txt
# gene_chrom = json_txt.exons_hg19.values[0]['NM_133432']['chr']
# gene_start = json_txt.exons_hg19.values[0]['NM_133432']['cdsstart']
# gene_end = json_txt.exons_hg19.values[0]['NM_133432']['cdsend']
# gene_exons = json_txt.exons_hg19.values[0]['NM_133432']['exons']
# exon_coords = get_cds_coords(gene_exons, gene_start, gene_end)
# <codecell>
# chrom = vcf_df_tabix_sample_df.index.get_level_values(0).unique()[0]
# start = vcf_df_tabix_sample_df.head(1).index.get_level_values(1).unique()[0]
# end = vcf_df_tabix_sample_df.tail(1).index.get_level_values(1).unique()[0]
# cadd = get_fi_score('chr'+chrom, start, end, 'cadd', 'raw')
# cadd['pos_a1'] = cadd['score']
# cadd_score_dict = cadd[['pos_a1']].to_dict()
# vcf_df_tabix_sample_df1 = vcf_df_tabix_sample_df.copy()
# vcf_df_tabix_sample_df1[vcf_df_tabix_sample_df1['pos_a1'].isin(cadd_score_dict['pos_a1'].keys())]
# vcf_df_tabix_sample_df.replace(cadd_score_dict, inplace=True)
# <codecell>
# c = vcf_df_tabix_sample_df1[vcf_df_tabix_sample_df1['pos_a1'].isin(cadd_score_dict['pos_a1'].keys())]
# <codecell>
# d = c.replace(cadd_score_dict_a1)
# <codecell>
# def get_fi_score(gene, scaling=False, build=hg19, fi_model=cadd):
# gene_df = ??????
# for exon in gene_exons:
# vcf_df = tabix[chr, exon.cds_start, exon.cds_end]
# myvariant_df = my_variant( [chr, exon.cds_start, exon.cds_end], cadd )
# intersect(vcf_df, myvariant_df) #convert genotypes into cadd score
# #scale cadd score by allele frequency in 1000g (eur_af)
# if gene_df == ??????:
# gene_df = intersected_cadd_scores
# if gene_df != ??????:
# gene_df.append(intersected_cadd_scores)
# gene_series = get max cadd score for gene for each person
# return gene_series (index=gene, values=max cadd score)