-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patherp.py
255 lines (233 loc) · 9.49 KB
/
erp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from pylab import *
import numpy as np
import scipy.signal as sps
import os
import pandas as pd
def vtoint (vec): return [int(x) for x in vec]
def index2ms (idx, sampr): return 1e3*idx/sampr
def ms2index (ms, sampr): return int(sampr*ms/1e3)
def calPosThresh(dat, sigmathresh):
#return dat.mean() + sigmathresh * dat.std()
return 100
def calNegThresh(dat, sigmathresh):
#return dat.mean() - sigmathresh * dat.std()
return -100
# remove noise, where noise < negthres < dat < posthres < noise
def badEpoch (dat, sigmathresh):
badValues = len(np.where(dat <= calNegThresh(dat, sigmathresh))[0]) + \
len(np.where(dat >= calPosThresh(dat, sigmathresh))[0])
if badValues > 0:
return True
else:
return False
def removeBadEpochs (dat, sampr, trigtimes, swindowms, ewindowms, sigmathresh):
nrow = dat.shape[0]
swindowidx = ms2index(swindowms,sampr) # could be negative
ewindowidx = ms2index(ewindowms,sampr)
# trigByChannel could be returned for removing different epochs on each channel
trigByChannel = [x for x in range(nrow)]
badEpochs = []
for chan in range(nrow): # go through channels
trigByChannel[chan] = []
for trigidx in trigtimes: # go through stimuli
sidx = max(0,trigidx+swindowidx)
eidx = min(dat.shape[1],trigidx+ewindowidx)
if not badEpoch(dat[chan, sidx:eidx], sigmathresh):
trigByChannel[chan].append(trigidx)
else:
badEpochs.append(trigidx)
print('Found %d bad epochs in channel %d. Range: [%.2f, %.2f]'%
(len(trigtimes) - len(trigByChannel[chan]), chan,
calNegThresh(dat[chan, sidx:eidx], sigmathresh),
calPosThresh(dat[chan, sidx:eidx], sigmathresh)))
# combine bad epochs into a single sorted list (without duplicates)
badEpochs = sort(list(set(badEpochs)))
print('%d bad epochs:'%len(badEpochs),[x for x in badEpochs])
# remove the associated trigger times before returning
trigtimes = np.delete(trigtimes,[trigtimes.index(x) for x in badEpochs])
return trigtimes
# get the average ERP (dat should be either LFP or CSD)
def getERPOnChan (dat, sampr, chan, trigtimes, swindowms, ewindowms):
nrow = dat.shape[0]
tt = np.linspace(swindowms, ewindowms,ms2index(ewindowms - swindowms,sampr))
swindowidx = ms2index(swindowms,sampr) # could be negative
ewindowidx = ms2index(ewindowms,sampr)
lERP = np.zeros((len(trigtimes),len(tt)))
for i,trigidx in enumerate(trigtimes): # go through stimuli
sidx = max(0,trigidx+swindowidx)
eidx = min(dat.shape[1],trigidx+ewindowidx)
lERP[i,:] = dat[chan, sidx:eidx]
return tt,lERP
# get the average ERP (dat should be either LFP or CSD)
def getAvgERP (dat, sampr, trigtimes, swindowms, ewindowms):
nrow = dat.shape[0]
tt = np.linspace(swindowms, ewindowms,ms2index(ewindowms - swindowms,sampr))
swindowidx = ms2index(swindowms,sampr) # could be negative
ewindowidx = ms2index(ewindowms,sampr)
avgERP = np.zeros((nrow,len(tt)))
for chan in range(nrow): # go through channels
for trigidx in trigtimes: # go through stimuli
sidx = max(0,trigidx+swindowidx)
eidx = min(dat.shape[1],trigidx+ewindowidx)
avgERP[chan,:] += dat[chan, sidx:eidx]
avgERP[chan,:] /= float(len(trigtimes))
return tt,avgERP
# draw the average ERP (dat should be either LFP or CSD)
def drawAvgERP (dat, sampr, trigtimes, swindowms, ewindowms, whichchan=None, yl=None, clr=None,lw=1):
ttavg,avgERP = getAvgERP(dat,sampr,trigtimes,swindowms,ewindowms)
nrow = avgERP.shape[0]
for chan in range(nrow): # go through channels
if whichchan is None:
subplot(nrow,1,chan+1)
plot(ttavg,avgERP[chan,:],color=clr,linewidth=lw)
elif chan==whichchan:
plot(ttavg,avgERP[chan,:],color=clr,linewidth=lw)
xlim((-swindowms,ewindowms))
if yl is not None: ylim(yl)
# draw the event related potential (or associated CSD signal), centered around stimulus start (aligned to t=0)
def drawERP (dat, sampr, trigtimes, windowms, whichchan=None, yl=None,clr=None,lw=1):
if clr is None: clr = 'gray'
nrow = dat.shape[0]
tt = np.linspace(-windowms,windowms,ms2index(windowms*2,sampr))
windowidx = ms2index(windowms,sampr)
for trigidx in trigtimes: # go through stimuli
for chan in range(nrow): # go through channels
sidx = max(0,trigidx-windowidx)
eidx = min(dat.shape[1],trigidx+windowidx)
if whichchan is None:
subplot(nrow,1,chan+1)
plot(tt,dat[chan, sidx:eidx],color=clr,linewidth=lw)
elif chan==whichchan:
plot(tt,dat[chan, sidx:eidx],color=clr,linewidth=lw)
xlim((-windowms,windowms))
if yl is not None: ylim(yl)
#xlabel('Time (ms)')
# normalized cross-correlation between x and y
def normcorr (x, y):
# Pad shorter array if signals are different lengths
if x.size > y.size:
pad_amount = x.size - y.size
y = np.append(y, np.repeat(0, pad_amount))
elif y.size > x.size:
pad_amount = y.size - x.size
x = np.append(x, np.repeat(0, pad_amount))
corr = np.correlate(x, y, mode='full') # scale = 'none'
lags = np.arange(-(x.size - 1), x.size)
corr /= np.sqrt(np.dot(x, x) * np.dot(y, y))
return lags, corr
# x is longer signal; y is short pattern; nsamp is moving window size (in samples) for finding pattern
def windowcorr (x, y, nsamp, verbose=False):
sz = len(x)
lsidx,leidx=[],[]
llag, lc = [],[]
for sidx in range(0,sz,nsamp):
lsidx.append(sidx)
eidx = min(sidx + nsamp, sz-1)
leidx.append(eidx)
if verbose: print(sidx,eidx)
sig = sps.detrend(x[sidx:eidx])
lags,c = normcorr(sig,y)
llag.append(lags[int(len(lags)/2):])
lc.append(c[int(len(lags)/2):])
return llag, lc, lsidx, leidx
#
def maxnormcorr (x, y):
lags, corr = normcorr(x,y)
return max(corr)
#
def maxnormcorrlag (x, y):
lags, corr = normcorr(x,y)
return lags[np.argmax(corr)]
#
def findpeakERPtimes (sig, erp, winsz, sampr, dfctr=2, thresh=0.05):
llag, lc, lsidx, leidx = windowcorr(sig, erp, int(winsz*sampr))
d = int(dfctr * len(erp)) # minimum distance between peaks and troughs (in samples)
lpkpos,lpkprop = [],[]
lT = []
for i,C in enumerate(lc):
pkpos, pkprop = sps.find_peaks(C, height = thresh, threshold = None, distance=d)
lpkpos.append(pkpos)
lpkprop.append(pkprop)
for t in pkpos: lT.append(index2ms(lsidx[i] + t, sampr))
return {'lT':lT, 'llag':llag, 'lc':lc, 'lsidx':lsidx,'leidx':leidx, 'lpkpos':lpkpos,'lpkprop':lpkprop}
# add ERP score to pdf; ddx must have average s2,g,i1 ERPs
def addERPscore (ddx, lschan, pdf):
lchan = list(set(pdf['chan']))
lchan.sort()
pdf['ERPscore'] = pd.Series([-2 for i in range(len(pdf))], index=pdf.index) # -2 is invalid value
lERPAvg = [ddx[s] for s in lschan]
for ERPAvg,chan in zip(lERPAvg,lchan):
s = pdf[pdf.chan==chan]
for idx in s.index:
sig0 = pdf.at[idx,'CSDwvf']
pdf.loc[idx,'ERPscore'] = maxnormcorr(sig0,ERPAvg)
#
def getAvgERPInDir (based, stimIntensity, needBBN, needCX, needThal,\
swindowms=0, ewindowms=150,
dbpath='data/nhpdat/spont/A1/19apr4_A1_spont_LayersForSam.csv',
useBIP=False):
from nhpdat import getflayers, getdownsampr, getorigsampr, getTriggerIDs, closestfile, hasBBNStim,IsCortex,IsThal
from nhpdat import getStimIntensity, getTriggerTimes
dd = {}
for fn in os.listdir(based):
if not fn.endswith('.mat'): continue
FN = os.path.join(based,fn)
if stimIntensity > 0 and getStimIntensity(FN) != stimIntensity: continue
if needBBN and not hasBBNStim(FN): continue
if needCX and not IsCortex(FN): continue
if needThal and not IsThal(FN): continue
s2,g,i1=-1,-1,-1; lchan = []
if IsCortex(FN):
s2,g,i1=getflayers(closestfile(fn,dbpath=dbpath)[0],abbrev=True)
if s2 < 0: continue # no layer/channel information
lchan = [s2,g,i1]
samprds = getdownsampr(FN)
divby = getorigsampr(FN) / samprds
trigtimes = [int(round(x)) for x in np.array(getTriggerTimes(FN)) / divby]
trigIDs = getTriggerIDs(FN)
if useBIP:
sampr,dat,dt,tt,CSD,MUA,BIP = loadfile(FN,samprds,getbipolar=True)
else:
sampr,dat,dt,tt,CSD,MUA = loadfile(FN,samprds)
ttrigtimes = [index2ms(t,sampr) for t in trigtimes]
if useBIP:
ttavg,avgBIP = getAvgERP(BIP, sampr, trigtimes, swindowms, ewindowms)
ddf = {'fn':fn,'ttavg':ttavg,'avgBIP':avgBIP,'sampr':sampr}
else:
ttavg,avgCSD = getAvgERP(CSD, sampr, trigtimes, swindowms, ewindowms)
ddf = {'fn':fn,'ttavg':ttavg,'avgCSD':avgCSD,'sampr':sampr}
print(fn,lchan)
if s2 >= 0:
if useBIP:
s2+=1; g+=1; i1+=1;
ddf['s2']=s2; ddf['g']=g; ddf['i1']=i1
else:
th=int(CSD.shape[0]/2)
lchan=[th]
if useBIP: th+=1
ddf['th']=th
if useBIP:
ddf['lchan'] = [x+1 for x in lchan]
else:
ddf['lchan'] = lchan
dd[fn] = ddf
return dd
#
def avgERPOverChan (dd, noiseth=0.75):
from nhpdat import getflayers, getdownsampr, getorigsampr, getTriggerIDs, closestfile, hasBBNStim,IsCortex,IsThal
from nhpdat import getStimIntensity, getTriggerTimes
ddx = {'s2':[],'g':[],'i1':[],'tt':None}
for k in dd:
if getorigsampr('data/nhpdat/bbn/'+k) != 44000.0: continue
ddf = dd[k]
lsc = ddf['lchan']
for idx,c in enumerate([ddf[lsc[0]],ddf[lsc[1]],ddf[lsc[2]]]):
if max(abs(ddf['avgCSD'][c,:])) > noiseth: continue
ddx[lsc[idx]].append(ddf['avgCSD'][c,:])
if ddx['tt'] is None: ddx['tt'] = ddf['ttavg']
for c in lsc:
ddx[c+'avg'] = mean(np.array(ddx[c]),axis=0)
s = std(np.array(ddx[c]),axis=0)
s /= sqrt(len(ddx[c]))
ddx[c+'stderr'] = s
return ddx