-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
public2018_D2.ml
193 lines (130 loc) · 8.97 KB
/
public2018_D2.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
(*
This OCaml script was exported from a Jupyter notebook
using an open-source software (under the MIT License) written by @Naereen
from https://github.com/Naereen/Jupyter-Notebook-OCaml
This software is still in development, please notify me of a bug at
https://github.com/Naereen/Jupyter-Notebook-OCaml/issues/new if you find one
*)
(* # Table of Contents
<p><div class="lev1 toc-item"><a href="#Texte-d'oral-de-modélisation---Agrégation-Option-Informatique" data-toc-modified-id="Texte-d'oral-de-modélisation---Agrégation-Option-Informatique-1"><span class="toc-item-num">1 </span>Texte d'oral de modélisation - Agrégation Option Informatique</a></div><div class="lev2 toc-item"><a href="#Préparation-à-l'agrégation---ENS-de-Rennes,-2017-18" data-toc-modified-id="Préparation-à-l'agrégation---ENS-de-Rennes,-2017-18-11"><span class="toc-item-num">1.1 </span>Préparation à l'agrégation - ENS de Rennes, 2017-18</a></div><div class="lev2 toc-item"><a href="#À-propos-de-ce-document" data-toc-modified-id="À-propos-de-ce-document-12"><span class="toc-item-num">1.2 </span>À propos de ce document</a></div><div class="lev2 toc-item"><a href="#Question-de-programmation" data-toc-modified-id="Question-de-programmation-13"><span class="toc-item-num">1.3 </span>Question de programmation</a></div><div class="lev3 toc-item"><a href="#Modélisation" data-toc-modified-id="Modélisation-131"><span class="toc-item-num">1.3.1 </span>Modélisation</a></div><div class="lev2 toc-item"><a href="#Solution" data-toc-modified-id="Solution-14"><span class="toc-item-num">1.4 </span>Solution</a></div><div class="lev3 toc-item"><a href="#Types-et-représentations" data-toc-modified-id="Types-et-représentations-141"><span class="toc-item-num">1.4.1 </span>Types et représentations</a></div><div class="lev3 toc-item"><a href="#Algorithmes" data-toc-modified-id="Algorithmes-142"><span class="toc-item-num">1.4.2 </span>Algorithmes</a></div><div class="lev2 toc-item"><a href="#Complexités" data-toc-modified-id="Complexités-15"><span class="toc-item-num">1.5 </span>Complexités</a></div><div class="lev3 toc-item"><a href="#En-espace" data-toc-modified-id="En-espace-151"><span class="toc-item-num">1.5.1 </span>En espace</a></div><div class="lev3 toc-item"><a href="#En-temps" data-toc-modified-id="En-temps-152"><span class="toc-item-num">1.5.2 </span>En temps</a></div><div class="lev2 toc-item"><a href="#Conclusion" data-toc-modified-id="Conclusion-16"><span class="toc-item-num">1.6 </span>Conclusion</a></div><div class="lev3 toc-item"><a href="#Qualités" data-toc-modified-id="Qualités-161"><span class="toc-item-num">1.6.1 </span>Qualités</a></div><div class="lev3 toc-item"><a href="#Défauts" data-toc-modified-id="Défauts-162"><span class="toc-item-num">1.6.2 </span>Défauts</a></div> *)
(* # Texte d'oral de modélisation - Agrégation Option Informatique
## Préparation à l'agrégation - ENS de Rennes, 2017-18
- *Date* : 6 décembre 2017
- *Auteur* : [Lilian Besson](https://GitHub.com/Naereen/notebooks/)
- *Texte*: Annale 2018, ["Polynômes avec des nombres flottants" (public2018-D2)](http://agreg.org/Textes/public2018-D2.pdf) *)
(* ## À propos de ce document
- Ceci est une *proposition* de correction, partielle et probablement non-optimale, pour la partie implémentation d'un [texte d'annale de l'agrégation de mathématiques, option informatique](http://Agreg.org/Textes/).
- Ce document est un [notebook Jupyter](https://www.Jupyter.org/), et [est open-source sous Licence MIT sur GitHub](https://github.com/Naereen/notebooks/tree/master/agreg/), comme les autres solutions de textes de modélisation que [j](https://GitHub.com/Naereen)'ai écrite cette année.
- L'implémentation sera faite en OCaml, version 4+ : *)
(* In[1]: *)
Sys.command "ocaml -version";;
print_endline Sys.ocaml_version;;
(* In[7]: *)
let print f =
let r = Printf.printf f in
flush_all();
r
;;
(* ----
## Question de programmation
La question de programmation pour ce texte était donnée en page 6 :
Cet exercice consiste à observer le comportement des nombres en virgule flottante de la
machine.
Toutes les variables utilisées seront de type `double` ou `float` selon le langage choisi.
On écrit un programme qui évalue $$S = \sum_{i=0}^{\infty} \left(1 - \frac{1}{\rho}\right)^i$$
où $\rho$ est une puissance de $2$ suffisamment grande, par exemple $\rho = 2^{20}$.
Si on calcule naïvement $S_n = \sum_{i=0}^{n} (1 - \frac{1}{\rho})^i$, en ajoutant les termes un par un dans l'ordre des puissances croissantes, on remarque quand $n$ est suffisamment grand, $S_{n+1} = S_n \oplus (1 - \frac{1}{\rho})^{n+1}$
lorsqu’on calcule en `double` (ou `float`).
En évaluant $S$ sous la forme $$S = \sum_{j=0}^{\infty} \sum_{k=0}^{K-1} \left(1 - \frac{1}{\rho}\right)^{jK + k}$$
ce phénomène se produit pour des rangs plus grands que précedemment, l'approximation de $S$ calculée est donc meilleure. On pourra essayer plusieurs valeurs de $K$ ($1,10,100,1000,10000$) et comparer. $K = 1$ correspond au calcul naïf de $S$ ci-dessus.
Optionnellement, le programme pourra également calculer une borne sur l’erreur com-
mise sur $S$.
### Modélisation
On est libre de choisir l'approche, mais ici il n'y a pas tellement de choix, on va utiliser des `float` de OCaml. *)
(* ----
## Solution
On va essayer d'être rapide et de faire simple. *)
(* ### Types et représentations
Rien à faire ici, on va travailler avec des `float` de OCaml classiques. *)
(* ### Algorithmes *)
(* Première méthode de calcul. On remarque qu'on est déjà malin, on n'utilise aucune exponentiation mais simplement un accumulateur `terme` qui vaut $(1-1/\rho)^j$ pour les valeurs successives de $j$, et qu'on met à jour par une simple multiplication. *)
(* In[39]: *)
let premiercalcul (rho : float) (n : int) =
let somme = ref 0. in
let unmoinsunsurrho = 1. -. (1. /. rho) in
let terme = ref 1. in
for _ = 0 to n do (* terme = (1-1/rho)^j pour j = _ *)
somme := !somme +. !terme; (* somme = sum_k=0^j terme_k *)
terme := !terme *. unmoinsunsurrho; (* conserve l'invariant de boucle *)
done;
!somme
;;
(* Voyons un exemple : *)
(* In[10]: *)
let rho = 2. ** 20.;;
(* In[14]: *)
1. -. 1. /. rho;;
(* Cette valeur est proche de $1$, mais strictement plus petite que $1$, et donc $(1-1/\rho)^i \to 0$ géométriquement vite, ainsi $S_n$ converge bien vers $S$ pour $n \to \infty$. *)
(* In[40]: *)
for n = 0 to 10 do
print "\nS_%i \t= %g" n (premiercalcul rho n);
done;;;
(* In[42]: *)
for n = 1000 to 1010 do
print "\nS_%i \t= %g" n (premiercalcul rho n);
done;;;
(* Deuxième méthode de calcul : *)
(* In[21]: *)
let deuxiemecalcul (rho : float) (k : int) (n : int) =
let somme = ref 0. in
let unmoinsunsurrho = 1. -. (1. /. rho) in
let terme = ref 1. in
for _ = 0 to n do
for _ = 0 to k-1 do
somme := !somme +. !terme;
terme := !terme *. unmoinsunsurrho;
done;
terme := !terme *. unmoinsunsurrho;
done;
!somme
;;
(* Voyons le même exemple : *)
(* In[27]: *)
let valeurs_k = [|1; 10; 100; 1000; 10000|] in
for i = 0 to (Array.length valeurs_k) - 1 do
let k = valeurs_k.(i) in
print "\n\nFor K = %i ..." k;
for n = 0 to 10 do
print "\nS_%i \t= %g" n (deuxiemecalcul rho k n);
done;
done;;;
(* Avec de grandes valeurs de $n$, on semble converger vers la limite $S$, d'autant plus vite que $K$ est grand. *)
(* In[38]: *)
let valeurs_n = [|100; 1000; 10000; 100000|] in
let valeurs_k = [|1; 10; 100; 1000; 10000|] in
for i = 0 to (Array.length valeurs_k) - 1 do
let k = valeurs_k.(i) in
print "\n\nFor K = %i ..." k;
for j = 0 to (Array.length valeurs_n) - 1 do
let n = valeurs_n.(j) in
print "\nS_%i \t= %g" n (deuxiemecalcul rho k n);
done;
done;;;
(* ## Complexités *)
(* ### En espace
Ces calculs coûtent un espace constant en mémoire.
(ou $\log n$ si on considère que stocker des entiers bornés par $n$ coûtent un espace $\log n$) *)
(* ### En temps
Ces calculs coûtent un temps linéaire en $n$. *)
(* ----
## Conclusion
Voilà pour la question obligatoire de programmation.
### Qualités
- On a fait des exemples et *on les garde* dans ce qu'on présente au jury,
- On a testé la fonction exigée sur de petits exemples et sur un exemple de taille réelle (venant du texte).
### Défauts
- Par contre, on est un peu pauvre en visualisation et explication,
- Et on a implémenté aucun autre développement. A suivre, j'en ajouterai quand je peux.
> Bien-sûr, ce petit notebook ne se prétend pas être une solution optimale, ni exhaustive.
> Vous auriez pu choisir de modéliser le problème avec une autre approche, mais je ne vois pas ce qu'on aurait pu faire différement. *)
(* > C'est tout pour aujourd'hui les amis, allez voir [ici pour d'autres corrections](https://github.com/Naereen/notebooks/tree/master/agreg), et que la force soit avec vous ! *)