-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmappings.py
243 lines (198 loc) · 8.48 KB
/
mappings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from utils import comm
from functools import partial
# torch utils
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
# helper functions
from distributed.helpers import (
_reduce,
_split,
_gather,
_reduce_scatter,
compute_split_shapes
)
class _CopyToParallelRegion(torch.autograd.Function):
"""Pass the input to the parallel region."""
@staticmethod
def symbolic(graph, input_, comm_name_):
"""symbolic method"""
return input_
@staticmethod
def forward(ctx, input_, comm_name_):
ctx.comm_name = comm_name_
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output, comm_name=ctx.comm_name), None
class _ReduceFromParallelRegion(torch.autograd.Function):
"""All-reduce the input from the parallel region."""
@staticmethod
def symbolic(graph, input_, comm_name_):
"""symbolic method"""
return _reduce(input_, comm_name=comm_name_)
@staticmethod
def forward(ctx, input_, comm_name_):
return _reduce(input_, comm_name=comm_name_)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _GatherFromParallelRegion(torch.autograd.Function):
"""Gather the input and keep it on the rank."""
@staticmethod
def symbolic(graph, input_, dim_, shapes_, comm_name_):
return _gather(input_, dim_, shapes_, comm_name_)
@staticmethod
def forward(ctx, input_, dim_, shapes_, comm_name_):
ctx.dim = dim_
ctx.comm_name = comm_name_
return _gather(input_, dim_, shapes_, comm_name_)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.dim, ctx.comm_name), None, None, None
class _ScatterToParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chunk to the rank."""
@staticmethod
def symbolic(graph, input_, dim_, comm_name_):
return _split(input_, dim_, comm_name_)
@staticmethod
def forward(ctx, input_, dim_, comm_name_):
ctx.dim = dim_
ctx.comm_name = comm_name_
ctx.split_shapes = compute_split_shapes(
input_.shape[dim_], comm.get_size(comm_name_)
)
return _split(input_, dim_, comm_name_)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output, ctx.dim, ctx.split_shapes, ctx.comm_name), None, None
class _ReduceScatterToParallelRegion(torch.autograd.Function):
"""Reduce the inputs and scatter to ranks."""
@staticmethod
def symbolic(graph, input_, dim_, shapes_, comm_name_):
return _reduce_scatter(input_, dim_, shapes_, comm_name_)
@staticmethod
def forward(ctx, input_, dim_, comm_name_):
ctx.dim = dim_
ctx.comm_name = comm_name_
ctx.split_shapes = compute_split_shapes(
input_.shape[dim_], comm.get_size(comm_name_)
)
return _reduce_scatter(input_, dim_, comm_name_)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output, ctx.dim, ctx.split_shapes, ctx.comm_name), None, None
class _AllGatherFromParallelRegion(torch.autograd.Function):
"""Reduce the inputs and scatter to ranks."""
@staticmethod
def symbolic(graph, input_, dim_, shapes_, comm_name_):
return _gather(input_, dim_, shapes_, comm_name_)
@staticmethod
def forward(ctx, input_, dim_, shapes_, comm_name_):
ctx.dim = dim_
ctx.comm_name = comm_name_
return _gather(input_, dim_, shapes_, comm_name_)
@staticmethod
def backward(ctx, grad_output):
return _reduce_scatter(grad_output, ctx.dim, ctx.comm_name), None, None, None
# matmul parallel
def copy_to_parallel_region(input_, comm_name):
"""Parallel copy helper"""
return _CopyToParallelRegion.apply(input_, comm_name)
def reduce_from_parallel_region(input_, comm_name):
"""Parallel reduction helper"""
return _ReduceFromParallelRegion.apply(input_, comm_name)
def gather_from_parallel_region(input_, dim, shapes, comm_name):
"""Parallel gather helper"""
return _GatherFromParallelRegion.apply(input_, dim, shapes, comm_name)
def all_gather_from_parallel_region(input_, dim, shapes, comm_name):
"""
Parallel allgather helper that combines reduce-scatter
in the bwd pass
"""
return _AllGatherFromParallelRegion.apply(input_, dim, shapes, comm_name)
def reduce_scatter_to_parallel_region(input_, dim, shapes, comm_name):
"""Parallel reduce scatter helper"""
return _ReduceScatterToParallelRegion.apply(input_, dim, shapes, comm_name)
def scatter_to_parallel_region(input_, dim, comm_name):
"""Parallel scatter helper"""
return _ScatterToParallelRegion.apply(input_, dim, comm_name)
def init_ddp_model_and_reduction_hooks(model,
device_ids,
output_device,
bucket_cap_mb = 25,
broadcast_buffers = True,
find_unused_parameters = False,
gradient_as_bucket_view = True,
static_graph = False):
# early exit if we are not in a distributed setting:
if not dist.is_initialized():
return model
need_hooks = False
if comm.get_size("tp-cp") == 1:
# no model parallel, just use DDP with
# the full world size
ddp_group = None
elif comm.get_size("cp") == 1:
# only cp requires additional allreduce
# if no cp, use DDP
ddp_group = comm.get_group("dp")
else:
broadcast_buffers = False
ddp_group = comm.get_group("dp")
need_hooks = True # need a grad hook for additional reduce
model = DistributedDataParallel(model,
device_ids = device_ids,
output_device = output_device,
bucket_cap_mb = bucket_cap_mb,
broadcast_buffers = broadcast_buffers,
find_unused_parameters = find_unused_parameters,
gradient_as_bucket_view = gradient_as_bucket_view,
static_graph = static_graph,
process_group = ddp_group)
if not need_hooks:
return model
# define comm hook because some params need additional allreduce
def reduction_comm_hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
# allreduce everything first
buff = bucket.buffer()
# get future for allreduce
# do the normal DDP all reduce
fut = dist.all_reduce(buff, op=dist.ReduceOp.AVG, group=comm.get_group("dp"), async_op=True).get_future()
# get grads for shared weights
params = bucket.parameters()
def grad_reduction(fut, grads, group):
# reduce remaining gradients
coalesced = _flatten_dense_tensors(grads)
# extra allreduce for param wgrads that need it
dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=comm.get_group(group), async_op=False)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
return bucket.buffer()
append_hooks = False
for group in comm.get_names():
if group == "dp":
continue
grads = []
for p in params:
# p needs an allreduce in group
if group in p.mark_for_reduction:
if p.grad is not None:
grads.append(p.grad.data)
if not grads:
continue
# append the new reduction functions
append_hooks = True
fut = fut.then(partial(grad_reduction, grads=grads, group=group))
if not append_hooks:
# this bucket's params only needed the DP allreduce
# return the bucket directly
return fut.then(lambda fut: fut.value()[0])
else:
# got some additional allreduce chained to fut
# the grad_reduction will return the bucket
return fut
# register model comm hook
model.register_comm_hook(state=None, hook=reduction_comm_hook)
return model