-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcifar100_data_loader.py
39 lines (32 loc) · 1.54 KB
/
cifar100_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
import torchvision.datasets as datasets
import torchvision.transforms as transforms
def get_data_loader(params, files_pattern, distributed, is_train):
if is_train:
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(params.rnd_rotation_angle),
transforms.ToTensor(),
transforms.Normalize(tuple(params.cifar100_mean),
tuple(params.cifar100_std))])
else:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(tuple(params.cifar100_mean),
tuple(params.cifar100_std))])
dataset = datasets.CIFAR100(root=params.data_path,
train=is_train,
download=True if (is_train and params.world_rank==0) else False,
transform=transform)
sampler = DistributedSampler(dataset, shuffle=True) if distributed else None
dataloader = DataLoader(dataset,
batch_size=int(params.batch_size) if is_train else int(params.valid_batch_size_per_gpu),
num_workers=params.num_data_workers,
shuffle=(sampler is None),
sampler=sampler,
drop_last=True,
pin_memory=torch.cuda.is_available())
return dataloader, sampler