-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
309 lines (249 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os
import time
import argparse
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.tensorboard import SummaryWriter
import logging
logging.basicConfig(format='%(levelname)s - %(message)s', level=logging.INFO)
import models.resnet
from utils.YParams import YParams
from utils.cifar100_data_loader import get_data_loader
import apex
# PROF: define wrapped NVTX range routines with device syncs
def nvtx_range_push(name, enabled):
if enabled:
torch.cuda.synchronize()
torch.cuda.nvtx.range_push(name)
def nvtx_range_pop(enabled):
if enabled:
torch.cuda.synchronize()
torch.cuda.nvtx.range_pop()
class Trainer():
def __init__(self, params):
self.params = params
self.device = torch.cuda.current_device()
# AMP: Construct GradScaler for loss scaling
self.grad_scaler = torch.cuda.amp.GradScaler(enabled=self.params.enable_amp)
self.profiler_running = False
# first constrcut the dataloader on rank0 in case the data is not downloaded
if params.world_rank == 0:
logging.info('rank %d, begin data loader init'%params.world_rank)
self.train_data_loader, self.train_sampler = get_data_loader(params, params.data_path, dist.is_initialized(), is_train=True)
self.valid_data_loader, self.valid_sampler = get_data_loader(params, params.data_path, dist.is_initialized(), is_train=False)
logging.info('rank %d, data loader initialized'%params.world_rank)
# wait for rank0 to finish downloading the data
if dist.is_initialized():
dist.barrier()
# now construct the dataloaders on other ranks
if params.world_rank != 0:
logging.info('rank %d, begin data loader init'%params.world_rank)
self.train_data_loader, self.train_sampler = get_data_loader(params, params.data_path, dist.is_initialized(), is_train=True)
self.valid_data_loader, self.valid_sampler = get_data_loader(params, params.data_path, dist.is_initialized(), is_train=False)
logging.info('rank %d, data loader initialized'%params.world_rank)
self.model = models.resnet.resnet50(num_classes=params.num_classes).to(self.device)
if self.params.enable_nhwc:
# NHWC: Convert model to channels_last memory format
self.model = self.model.to(memory_format=torch.channels_last)
if self.params.enable_extra_opts:
# EXTRA: use Apex FusedSGD optimizer
self.optimizer = apex.optimizers.FusedSGD(self.model.parameters(), lr=params.lr,
momentum=params.momentum, weight_decay=params.weight_decay)
else:
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=params.lr,
momentum=params.momentum, weight_decay=params.weight_decay)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, factor=0.2, patience=10, mode='min')
self.criterion = torch.nn.CrossEntropyLoss().to(self.device)
if dist.is_initialized():
self.model = DistributedDataParallel(self.model,
device_ids=[params.local_rank],
output_device=[params.local_rank])
self.iters = 0
self.startEpoch = 0
if params.resuming:
logging.info("Loading checkpoint %s"%params.checkpoint_path)
self.restore_checkpoint(params.checkpoint_path)
self.epoch = self.startEpoch
if params.log_to_screen:
logging.info(self.model)
if params.log_to_tensorboard:
self.writer = SummaryWriter(os.path.join(params.experiment_dir, 'tb_logs'))
def train(self):
if self.params.log_to_screen:
logging.info("Starting Training Loop...")
for epoch in range(self.startEpoch, self.params.max_epochs):
if self.params.enable_profiling and epoch + 1 == self.params.profiling_epoch_start:
# PROF: create range to control profiler start and stop
self.profiler_running = True
nvtx_range_push('PROFILE', self.profiler_running)
if dist.is_initialized():
self.train_sampler.set_epoch(epoch)
self.valid_sampler.set_epoch(epoch)
# Apply learning rate warmup
if epoch < params.lr_warmup_epochs:
self.optimizer.param_groups[0]['lr'] = params.lr*float(epoch+1.)/float(params.lr_warmup_epochs)
start = time.time()
# PROF: Add custom NVTX ranges
nvtx_range_push('epoch {}'.format(self.epoch), self.profiler_running)
# PROF: Enable torch built-in NVTX ranges. Disabled for this example to reduce profiling overhead.
with torch.autograd.profiler.emit_nvtx(enabled=False):#enabled=self.profiler_running):
train_logs = self.train_one_epoch()
nvtx_range_pop(self.profiler_running)
valid_time, valid_logs = self.validate_one_epoch()
if epoch >= params.lr_warmup_epochs:
self.scheduler.step(valid_logs['loss'])
if self.params.world_rank == 0:
if self.params.save_checkpoint:
#checkpoint at the end of every epoch
self.save_checkpoint(self.params.checkpoint_path)
if self.params.log_to_tensorboard:
self.writer.add_scalar('loss/train', train_logs['loss'], self.epoch)
self.writer.add_scalar('loss/valid', valid_logs['loss'], self.epoch)
self.writer.add_scalar('acc1/train', train_logs['acc1'], self.epoch)
self.writer.add_scalar('acc1/valid', valid_logs['acc1'], self.epoch)
self.writer.add_scalar('learning_rate', self.optimizer.param_groups[0]['lr'], self.epoch)
if self.params.log_to_screen:
logging.info('Time taken for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
logging.info('train acc1={}, valid acc1={}'.format(train_logs['acc1'], valid_logs['acc1']))
if self.params.enable_profiling:
nvtx_range_pop(self.profiler_running)
self.profiler_running = False
def train_one_epoch(self):
self.epoch += 1
torch.cuda.synchronize()
report_time = time.time()
report_bs = 0
# Loop over training data batches
for i, data in enumerate(self.train_data_loader, 0):
# PROF: Add custom NVTX ranges
nvtx_range_push('iteration {}'.format(i), self.profiler_running)
self.iters += 1
# PROF: Add custom NVTX ranges
nvtx_range_push('data', self.profiler_running)
# Move our images and labels to GPU
images, labels = map(lambda x: x.to(self.device), data)
# NHWC: Convert input images to channels_last memory format
if self.params.enable_nhwc:
images = images.to(memory_format=torch.channels_last)
nvtx_range_pop(self.profiler_running)
# PROF: Add custom NVTX ranges
nvtx_range_push('zero_grad', self.profiler_running)
if self.params.enable_extra_opts:
# EXTRA: Use set_to_none option to avoid slow memsets to zero
self.model.zero_grad(set_to_none=True)
else:
self.model.zero_grad()
nvtx_range_pop(self.profiler_running)
self.model.train()
# PROF: Add custom NVTX ranges
nvtx_range_push('forward/loss/backward', self.profiler_running)
# AMP: Add autocast context manager
with torch.cuda.amp.autocast(enabled=self.params.enable_amp):
# Model forward pass and loss computation
outputs = self.model(images)
loss = self.criterion(outputs, labels)
# AMP: Use GradScaler to scale loss and run backward to produce scaled gradients
self.grad_scaler.scale(loss).backward()
nvtx_range_pop(self.profiler_running)
# PROF: Add custom NVTX ranges
nvtx_range_push('optimizer.step', self.profiler_running)
# AMP: Run optimizer step through GradScaler (unscales gradients and skips steps if required)
self.grad_scaler.step(self.optimizer)
nvtx_range_pop(self.profiler_running)
# AMP: Update GradScaler loss scale value
self.grad_scaler.update()
torch.cuda.synchronize()
nvtx_range_pop(self.profiler_running)
report_bs += len(images)
if i % self.params.log_freq == 0:
torch.cuda.synchronize()
logging.info('Epoch: {}, Iteration: {}, Avg img/sec: {}'.format(self.epoch, i, report_bs / (time.time() - report_time)))
report_time = time.time()
report_bs = 0
if self.params.enable_profiling and i >= self.params.profiling_iters_per_epoch:
break
# save metrics of last batch
_, preds = outputs.max(1)
acc1 = preds.eq(labels).sum().float()/labels.shape[0]
logs = {'loss': loss,
'acc1': acc1}
if dist.is_initialized():
for key in sorted(logs.keys()):
dist.all_reduce(logs[key].detach())
logs[key] = float(logs[key]/dist.get_world_size())
return logs
def validate_one_epoch(self):
self.model.eval()
valid_start = time.time()
loss = 0.0
correct = 0.0
with torch.no_grad():
for data in self.valid_data_loader:
images, labels = map(lambda x: x.to(self.device), data)
outputs = self.model(images)
loss += self.criterion(outputs, labels)
_, preds = outputs.max(1)
correct += preds.eq(labels).sum().float()/labels.shape[0]
logs = {'loss': loss/len(self.valid_data_loader),
'acc1': correct/len(self.valid_data_loader)}
valid_time = time.time() - valid_start
if dist.is_initialized():
for key in sorted(logs.keys()):
logs[key] = torch.as_tensor(logs[key]).to(self.device)
dist.all_reduce(logs[key].detach())
logs[key] = float(logs[key]/dist.get_world_size())
return valid_time, logs
def save_checkpoint(self, checkpoint_path, model=None):
""" We intentionally require a checkpoint_dir to be passed
in order to allow Ray Tune to use this function """
if not model:
model = self.model
torch.save({'iters': self.iters, 'epoch': self.epoch, 'model_state': model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()}, checkpoint_path)
def restore_checkpoint(self, checkpoint_path):
""" We intentionally require a checkpoint_dir to be passed
in order to allow Ray Tune to use this function """
checkpoint = torch.load(checkpoint_path, map_location='cuda:{}'.format(self.params.local_rank))
self.model.load_state_dict(checkpoint['model_state'])
self.iters = checkpoint['iters']
self.startEpoch = checkpoint['epoch'] + 1
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument("--yaml_config", default='./config/cifar100.yaml', type=str)
parser.add_argument("--config", default='default', type=str)
args = parser.parse_args()
params = YParams(os.path.abspath(args.yaml_config), args.config)
# setup distributed training variables and intialize cluster if using
params['world_size'] = 1
if 'WORLD_SIZE' in os.environ:
params['world_size'] = int(os.environ['WORLD_SIZE'])
params['local_rank'] = args.local_rank
params['world_rank'] = 0
if params['world_size'] > 1:
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend='nccl',
init_method='env://')
params['world_rank'] = dist.get_rank()
params['global_batch_size'] = params.batch_size
params['batch_size'] = int(params.batch_size//params['world_size'])
# EXTRA: enable cuDNN autotuning.
if params.enable_extra_opts:
torch.backends.cudnn.benchmark = True
# setup output directory
expDir = os.path.join('./expts', args.config)
if params.world_rank==0:
if not os.path.isdir(expDir):
os.makedirs(expDir)
os.makedirs(os.path.join(expDir, 'checkpoints/'))
params['experiment_dir'] = os.path.abspath(expDir)
params['checkpoint_path'] = os.path.join(expDir, 'checkpoints/ckpt.tar')
params['resuming'] = True if os.path.isfile(params.checkpoint_path) else False
if params.world_rank==0:
params.log()
params['log_to_screen'] = params.log_to_screen and params.world_rank==0
params['log_to_tensorboard'] = params.log_to_tensorboard and params.world_rank==0
trainer = Trainer(params)
trainer.train()