-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathneat_pvd.c
589 lines (501 loc) · 18.1 KB
/
neat_pvd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#ifdef __linux__
#include <net/if.h>
#endif
#include "neat.h"
#include "neat_internal.h"
#include "neat_resolver.h"
#include "neat_core.h"
#include "neat_pvd.h"
#include "neat_addr.h"
static char *
compute_reverse_ip(struct neat_addr *src_addr)
{
struct in_addr src_addr4;
struct in6_addr src_addr6;
char reverse_ip[80]; // maximum length for a reverse /128 IPv6
int i;
char *out;
uint8_t family = src_addr->family;
memset(reverse_ip, 0, sizeof(reverse_ip));
if (family == AF_INET6) {
// From fd17:625c:f037:2:a00:27ff:fe37:86b6/69 => _.pvd.8.0.7.3.0.f.c.5.2.6.7.1.d.f.ip6.arpa.
int current_hex;
src_addr6 = (src_addr->u.v6.addr6).sin6_addr;
int addr_last_part = src_addr->prefix_length & 4;
int addr_total_hex = src_addr->prefix_length >> 2;
int string_offset = 6;
i = addr_total_hex-1;
sprintf(reverse_ip, "_.pvd.");
// if the prefix length is not multiple of 4
if (addr_last_part != 0) {
int last_index = addr_total_hex / 2;
bool divide = (addr_total_hex % 2) == 0;
if (divide)
current_hex = src_addr6.s6_addr[last_index] >> 4;
else
current_hex = src_addr6.s6_addr[last_index] & 0x0f;
current_hex = current_hex - (current_hex % (1 << (4 - addr_last_part)));
sprintf(reverse_ip+string_offset, "%01x.", current_hex);
string_offset = string_offset + 2;
}
while (i >= 0) {
if (i % 2 == 0)
current_hex = src_addr6.s6_addr[i/2] >> 4;
else
current_hex = src_addr6.s6_addr[i/2] & 0x0f;
sprintf(reverse_ip + string_offset + 2*(addr_total_hex - 1 - i), "%01x.", current_hex);
i--;
}
sprintf(reverse_ip + string_offset + 2*addr_total_hex, "ip6.arpa.");
} else if (family == AF_INET) {
// From 192.168.145.2/19 => _.pvd.128.168.192.in-addr.arpa.
src_addr4 = (src_addr->u.v4.addr4).sin_addr;
uint32_t src_addr4_prefix = src_addr4.s_addr & ((1 << src_addr->prefix_length) - 1);
sprintf(reverse_ip, "_.pvd.");
for (i = ((src_addr->prefix_length >> 3) << 3) - 8; i >= 0; i -= 8) {
sprintf(reverse_ip + strlen(reverse_ip), "%u.", ((src_addr4_prefix & (0xff << i)) >> i));
}
sprintf(reverse_ip + strlen(reverse_ip), "in-addr.arpa.");
}
if ((out = (char *) malloc(sizeof(char) * (strlen(reverse_ip)+1))) == NULL) {
return NULL;
}
strcpy(out, reverse_ip);
return out;
}
static void
add_pvd_result(struct pvds* pvds, ldns_rr_list *pvd_txt_list)
{
int nb_txt = ldns_rr_list_rr_count(pvd_txt_list);
if (nb_txt == 0) {
return;
}
struct pvd_infos pvd_infos;
struct pvd_info *pvd_info;
char *txt_record;
char *txt_record_original;
char *dns_record_str;
ldns_rr *rr;
struct pvd *pvd;
ldns_rdf *dns_record = NULL;
if ((pvd = (struct pvd *) malloc(sizeof(struct pvd))) == NULL) {
return;
}
LIST_INIT(&pvd_infos);
for (int i = 0; i < nb_txt; i++) {
rr = ldns_rr_list_rr(pvd_txt_list, i);
dns_record = ldns_rr_set_rdf(rr, NULL, 0);
dns_record_str = ldns_rdf2str(dns_record);
txt_record_original = strdup(dns_record_str);
if (!txt_record_original) {
free(pvd);
return;
}
txt_record = txt_record_original;
// Removing quotes if any
if (txt_record[0] == '"' && txt_record[strlen(txt_record)-1] == '"') {
txt_record[strlen(txt_record)-1] = 0;
txt_record++;
}
free(dns_record_str);
if ((pvd_info = (struct pvd_info *) malloc(sizeof(struct pvd_info))) == NULL) {
free(txt_record_original);
free(pvd);
return;
}
pvd_info->key = strsep(&txt_record, "=");
pvd_info->value = txt_record;
LIST_INSERT_HEAD(&(pvd_infos), pvd_info, next_info);
}
pvd->infos = pvd_infos;
LIST_INSERT_HEAD(pvds, pvd, next_pvd);
}
static int
pvd_dns_async(uv_loop_t *loop,
struct pvd_async_query *async_query,
struct sockaddr_storage *dns_addr,
struct neat_addr *src_addr,
ldns_pkt *pkt,
uv_alloc_cb alloc_cb,
uv_udp_recv_cb recv_cb,
uv_udp_send_cb send_cb,
void *data)
{
struct sockaddr *dns_addr2 = (struct sockaddr *) dns_addr;
struct sockaddr_in *server_addr4;
struct sockaddr_in6 *server_addr6;
if ((async_query->dns_uv_snd_buf = calloc(sizeof(uv_buf_t), 1)) == NULL) {
return 1;
}
if ((async_query->dns_snd_handle = calloc(sizeof(uv_udp_send_t), 1)) == NULL) {
free(async_query->dns_uv_snd_buf);
return 1;
}
if ((async_query->resolve_handle = calloc(sizeof(uv_udp_t), 1)) == NULL) {
free(async_query->dns_uv_snd_buf);
free(async_query->dns_snd_handle);
return 1;
}
async_query->dst_addr4 = NULL;
async_query->dst_addr6 = NULL;
ldns_pkt_set_random_id(pkt);
ldns_pkt_set_rd(pkt, 1);
ldns_pkt_set_ad(pkt, 1);
if (uv_udp_init(loop, async_query->resolve_handle)) {
//Closed is normally set in close_cb, but since we will never get that
//far, set it here instead
//pair->closed = 1;
return 1;
}
async_query->data = data;
async_query->resolve_handle->data = async_query;
if (uv_udp_bind(async_query->resolve_handle,
(struct sockaddr*) &(src_addr->u.generic.addr),
0)) {
return 1;
}
if (uv_udp_recv_start(async_query->resolve_handle,
alloc_cb,
recv_cb)) {
return 1;
}
async_query->dns_snd_buf = ldns_buffer_new(LDNS_MIN_BUFLEN);
if (ldns_pkt2buffer_wire(async_query->dns_snd_buf, pkt) != LDNS_STATUS_OK) {
ldns_pkt_free(pkt);
return 1;
}
ldns_pkt_free(pkt);
async_query->dns_uv_snd_buf->base = (char *) ldns_buffer_begin(async_query->dns_snd_buf);
async_query->dns_uv_snd_buf->len = ldns_buffer_position(async_query->dns_snd_buf);
if (dns_addr2->sa_family == AF_INET) {
server_addr4 = (struct sockaddr_in *) dns_addr;
if ((async_query->dst_addr4 = calloc(sizeof(struct sockaddr_in), 1)) == NULL) {
free(async_query->resolve_handle);
free(async_query->dns_uv_snd_buf);
free(async_query->dns_snd_handle);
return 1;
}
async_query->dst_addr4->sin_family = AF_INET;
async_query->dst_addr4->sin_port = htons(LDNS_PORT);
async_query->dst_addr4->sin_addr = server_addr4->sin_addr;
#ifdef HAVE_SIN_LEN
async_query->dst_addr4->sin_len = sizeof(struct sockaddr_in);
#endif
if (uv_udp_send(async_query->dns_snd_handle,
async_query->resolve_handle,
async_query->dns_uv_snd_buf,
1,
(const struct sockaddr*) async_query->dst_addr4,
send_cb)) {
return 1;
}
} else {
server_addr6 = (struct sockaddr_in6 *) dns_addr;
if ((async_query->dst_addr6 = calloc(sizeof(struct sockaddr_in6), 1)) == NULL) {
free(async_query->resolve_handle);
free(async_query->dns_uv_snd_buf);
free(async_query->dns_snd_handle);
return 1;
}
async_query->dst_addr6->sin6_family = AF_INET6;
async_query->dst_addr6->sin6_port = htons(LDNS_PORT);
async_query->dst_addr6->sin6_addr = server_addr6->sin6_addr;
#ifdef HAVE_SIN6_LEN
async_query->dst_addr6->sin6_len = sizeof(struct sockaddr_in6);
#endif
if (uv_udp_send(async_query->dns_snd_handle,
async_query->resolve_handle,
async_query->dns_uv_snd_buf,
1,
(const struct sockaddr*) async_query->dst_addr6,
send_cb)) {
return 1;
}
}
return 0;
}
//Called when a DNS request has been (i.e., passed to socket). We will send the
//second query (used for checking poisoning) here. If that is needed
static void
pvd_dns_sent_cb(uv_udp_send_t *req, int status)
{
}
static void
pvd_free_async_query(struct pvd_async_query *async_query)
{
uv_udp_recv_stop(async_query->resolve_handle);
free(async_query->dns_uv_snd_buf);
free(async_query->dns_snd_handle);
ldns_buffer_free(async_query->dns_snd_buf);
if (async_query->dst_addr4 != NULL)
free(async_query->dst_addr4);
if (async_query->dst_addr6 != NULL)
free(async_query->dst_addr6);
free(async_query->resolve_handle);
LIST_REMOVE(async_query, next_query);
free(async_query);
}
//This callback is called when we close a UDP socket (handle) and allows us to
//free any allocated resource. In our case, this is only the dns_snd_buf
static void
pvd_dns_close_cb(uv_handle_t *handle)
{
struct pvd_async_query *async_query = handle->data;
pvd_free_async_query(async_query);
}
//libuv gives the user control of how memory is allocated. This callback is
//called when a UDP packet is ready to received, and we have to fill out the
//provided buf with the storage location (and available size)
static void
pvd_dns_alloc_cb(uv_handle_t *handle,
size_t suggested_size,
uv_buf_t *buf)
{
char *dns_rcv_buf = calloc(sizeof(char), DNS_BUF_SIZE);
buf->base = dns_rcv_buf;
buf->len = sizeof(char)*DNS_BUF_SIZE;
}
static void
pvd_dns_recv_cb(uv_udp_t *handle,
ssize_t nread,
const uv_buf_t *buf,
const struct sockaddr *addr,
unsigned flags)
{
ldns_pkt *dns_reply;
size_t retval;
struct pvd_async_query *async_query = handle->data;
struct pvd_result *pvd_result = async_query->data;
ldns_rr_list *pvd_txt_list = NULL;
uv_close((uv_handle_t *) async_query->resolve_handle, pvd_dns_close_cb);
if (nread == 0 && addr == NULL) {
free(buf->base);
return;
}
retval = ldns_wire2pkt(&dns_reply, (const uint8_t *) buf->base, nread);
free(buf->base);
if (retval != LDNS_STATUS_OK)
return;
//Parse result
pvd_txt_list = ldns_pkt_rr_list_by_type(dns_reply,
LDNS_RR_TYPE_TXT,
LDNS_SECTION_ANSWER);
if (pvd_txt_list == NULL) {
ldns_pkt_free(dns_reply);
return;
}
add_pvd_result(&(pvd_result->pvds), pvd_txt_list);
ldns_rr_list_deep_free(pvd_txt_list);
ldns_pkt_free(dns_reply);
}
static void
pvd_dns_ptr_recv_cb(uv_udp_t *handle,
ssize_t nread,
const uv_buf_t *buf,
const struct sockaddr *addr,
unsigned flags)
{
ldns_pkt *dns_reply;
size_t retval;
int i;
ldns_rr *rr;
char *ptr_record;
char *dns_record_str;
struct pvd_async_query *async_query = handle->data;
struct pvd_dns_query *dns_query = async_query->data;
ldns_rr_list *pvd_ptr_list = NULL;
ldns_rdf *dns_record = NULL;
uv_close((uv_handle_t*) async_query->resolve_handle, pvd_dns_close_cb);
if (nread == 0 && addr == NULL) {
free(dns_query);
free(buf->base);
return;
}
retval = ldns_wire2pkt(&dns_reply, (const uint8_t *) buf->base, nread);
free(buf->base);
if (retval != LDNS_STATUS_OK) {
free(dns_query);
return;
}
//Parse result
pvd_ptr_list = ldns_pkt_rr_list_by_type(dns_reply,
LDNS_RR_TYPE_PTR,
LDNS_SECTION_ANSWER);
if (pvd_ptr_list == NULL) {
ldns_pkt_free(dns_reply);
free(dns_query);
return;
}
int nb_ptr = ldns_rr_list_rr_count(pvd_ptr_list);
// There can be multiple PvDs
for (i = 0; i < nb_ptr; i++) {
rr = ldns_rr_list_rr(pvd_ptr_list, i);
assert(ldns_rr_rd_count(rr) > 0);
dns_record = ldns_rr_rdf(rr, 0);
dns_record_str = ldns_rdf2str(dns_record);
ptr_record = strdup(dns_record_str);
if (!ptr_record)
return;
free(dns_record_str);
ldns_pkt *pkt;
if (ldns_pkt_query_new_frm_str(&pkt,
ptr_record,
LDNS_RR_TYPE_TXT,
LDNS_RR_CLASS_IN, LDNS_RD)
!= LDNS_STATUS_OK) {
free(ptr_record);
continue;
}
free(ptr_record);
struct pvd_async_query *async_query_new;
if ((async_query_new = malloc(sizeof(struct pvd_async_query))) == NULL) {
return;
}
LIST_INSERT_HEAD(&(async_query->pvd->queries), async_query_new, next_query);
async_query_new->pvd = async_query->pvd;
// ignores errors
(void)pvd_dns_async(dns_query->loop,
async_query_new,
dns_query->dns_addr,
dns_query->src_addr,
pkt,
pvd_dns_alloc_cb,
pvd_dns_recv_cb,
pvd_dns_sent_cb,
dns_query->pvd_result);
}
ldns_rr_list_deep_free(pvd_ptr_list);
ldns_pkt_free(dns_reply);
free(dns_query);
}
static int
pvd_handle_newaddr(struct neat_ctx *ctx,
void *p_ptr,
void *data)
{
if (LIST_EMPTY(&(ctx->resolver->server_list))) {
// No DNS servers
return RETVAL_FAILURE;
}
struct neat_resolver_server *dns_server;
struct pvd_result *pvd_result;
struct neat_addr *src_addr = (struct neat_addr *) data;
char *reverse_ip = compute_reverse_ip(src_addr);
if (!reverse_ip)
return RETVAL_FAILURE;
if (strlen(reverse_ip) == 0) {
free(reverse_ip);
return RETVAL_FAILURE;
}
if ((pvd_result = (struct pvd_result *) malloc(sizeof(struct pvd_result))) == NULL) {
free(reverse_ip);
nt_log(ctx, NEAT_LOG_ERROR,
"%s: can't allocate buffer");
return RETVAL_FAILURE;
}
LIST_INIT(&(pvd_result->pvds));
pvd_result->src_addr = src_addr;
LIST_FOREACH(dns_server, &(ctx->resolver->server_list), next_server) {
// Avoid static servers
if (dns_server->mark != NEAT_RESOLVER_SERVER_ACTIVE) {
continue;
}
struct sockaddr_storage *dns_addr = &(dns_server->server_addr);
struct pvd_dns_query *dns_query;
if ((dns_query = malloc(sizeof(struct pvd_dns_query))) == NULL) {
nt_log(ctx, NEAT_LOG_ERROR,
"%s: can't allocate buffer");
free(reverse_ip);
free(pvd_result);
return RETVAL_FAILURE;
}
dns_query->loop = ctx->loop;
dns_query->src_addr = src_addr;
dns_query->dns_addr = dns_addr;
dns_query->pvd_result = pvd_result;
ldns_pkt *pkt;
if (ldns_pkt_query_new_frm_str(&pkt,
reverse_ip,
LDNS_RR_TYPE_PTR,
LDNS_RR_CLASS_IN, LDNS_RD)
!= LDNS_STATUS_OK) {
free(dns_query);
free(reverse_ip);
free(pvd_result);
nt_log(ctx, NEAT_LOG_ERROR, "%s - Could not create DNS packet", __func__);
return RETVAL_FAILURE;
}
struct pvd_async_query *async_query;
if ((async_query = malloc(sizeof(struct pvd_async_query))) == NULL) {
free(dns_query);
free(reverse_ip);
free(pvd_result);
nt_log(ctx, NEAT_LOG_ERROR,
"%s: can't allocate buffer");
return RETVAL_FAILURE;
}
async_query->pvd = ctx->pvd;
LIST_INSERT_HEAD(&(ctx->pvd->queries), async_query, next_query);
if (pvd_dns_async(ctx->loop,
async_query,
dns_addr,
src_addr,
pkt,
pvd_dns_alloc_cb,
pvd_dns_ptr_recv_cb,
pvd_dns_sent_cb,
dns_query) != 0) {
free(dns_query);
free(reverse_ip);
return RETVAL_FAILURE;
}
}
free(reverse_ip);
LIST_INSERT_HEAD(&(ctx->pvd->results), pvd_result, next_result);
return RETVAL_SUCCESS;
}
struct neat_pvd *
nt_pvd_init(struct neat_ctx *ctx)
{
struct neat_pvd *pvd = calloc(sizeof(struct neat_pvd), 1);
if (!pvd)
return NULL;
pvd->nc = ctx;
pvd->newaddr_cb.event_cb = pvd_handle_newaddr;
pvd->newaddr_cb.data = pvd;
LIST_INIT(&(pvd->results));
LIST_INIT(&(pvd->queries));
if (nt_add_event_cb(ctx, NEAT_NEWADDR, &(pvd->newaddr_cb))) {
nt_log(ctx, NEAT_LOG_ERROR, "%s - Could not add one pvd callbacks", __func__);
return NULL;
}
return pvd;
}
void
neat_pvd_release(struct neat_pvd *pvd)
{
struct pvd_async_query *async_query, *async_query_itr;
struct pvd_result *pvd_result, *pvd_result_itr;
pvd_result_itr = pvd->results.lh_first;
async_query_itr = pvd->queries.lh_first;
while (pvd_result_itr != NULL) {
pvd_result = pvd_result_itr;
pvd_result_itr = pvd_result_itr->next_result.le_next;
LIST_REMOVE(pvd_result, next_result);
free(pvd_result);
}
while (async_query_itr != NULL) {
async_query = async_query_itr;
async_query_itr = async_query_itr->next_query.le_next;
LIST_REMOVE(async_query, next_query);
free(async_query->data);
async_query->data = NULL;
pvd_free_async_query(async_query);
}
}