-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathefficientdet.sh
executable file
·46 lines (36 loc) · 1.16 KB
/
efficientdet.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/encs/bin/tcsh
##
## This script was initially submitted by a member of Dr. Amer's Research Group
##
##
## Prerequisite:
## Efficientdet Virtual Environment (see commit comments)
##
##
## SLURM options
##
#SBATCH --job-name=efficientdet_pascal
#SBATCH --mail-type=ALL ## Receive all email type notifications
# Request GPU in Dr. Amer's partition pa
#SBATCH --partition=pa
#SBATCH --nodes=1
#SBATCH --cpus-per-task=8
#SBATCH --ntasks=1
#SBATCH --gpus-per-node=2
#SBATCH --mem=128G ## Assign memory per node
cd /speed-scratch/$USER
module load python/3.8.3
module load cuda/11.5
source envs/tf/bin/activate.csh
cd code/automl/efficientdet
srun python3 main.py --mode=train_and_eval \
--train_file_pattern=tfrecord/'pascal-*-of-00100.tfrecord' \
--val_file_pattern=tfrecord/'val-*-of-00032.tfrecord' \
--model_name='efficientdet-d0' \
--model_dir=model_path \
--backbone_ckpt='efficientnet-b0' \
--train_batch_size=4 \
--eval_batch_size=4 --eval_samples=4952 \
--num_examples_per_epoch=16551 --num_epochs=300 \
--hparams="num_classes=20,moving_average_decay=0,mixed_precision=true" \
--strategy='gpus'