-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDealing_with_arrays.f90
240 lines (219 loc) · 10.7 KB
/
Dealing_with_arrays.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! This module contains subroutines and interfaces to deal with arrays
MODULE Dealing_with_arrays
implicit none
! this interface finds by itself which of the two subroutine to use depending on the dimensions of the array passed:
interface Find_in_array ! search cheaking one by one
module procedure Find_in_1D_array
module procedure Find_in_2D_array
end interface Find_in_array
! this interface finds by itself which of the two subroutine to use depending on the dimensions of the array passed:
interface Find_in_array_monoton ! search with bisection method
module procedure Find_in_monotonous_1D_array
module procedure Find_in_monotonous_2D_array
end interface Find_in_array_monoton
! this interface finds by itself which of the two subroutine to use depending on the dimensions of the array passed:
interface Linear_approx
module procedure Linear_approx_1d
module procedure Linear_approx_2d
end interface Linear_approx
!private ! hides items not listed on public statement
public :: Find_in_array, Find_in_array_monoton, Linear_approx
contains
subroutine Linear_approx_1d(Array_x, Array_y, In_val, Value1, El1, El2)
REAL(8), dimension(:), INTENT(in) :: Array_x ! grid for the array
REAL(8), dimension(:), INTENT(in) :: Array_y ! in this array make an approximation
real(8), INTENT(in) :: In_val ! this is the value
!integer, intent(in) :: Number ! element of the array
real(8), intent(in), optional :: El1, El2 ! where to start approximation from, if needed
real(8), intent(out) :: Value1 ! output, approximated value
real(8) el_one
integer Number
call Find_in_array_monoton(Array_x, In_val, Number) ! find the closest value in the array to a given one
if (Number .EQ. 1) then
if (present(El1)) then ! the starting points are known, use them:
if (present(El2)) then ! the starting points are known, use them:
Value1 = El2+(Array_y(Number)-El2)/(Array_x(Number)-El1)*(In_val - El1)
else ! only the X-starting point is known, Y is not, use some assumptions:
if (size(Array_y) .GE. 2) then ! array is long enough to assume something:
if (Array_y(2) .GT. Array_y(1)) then ! it is locally decreasing array, assume starting point "infinity"
Value1 = 1d21
else ! it is locally increasing, assume starting point 'zero'
Value1 = Array_y(Number)/(Array_x(Number)-El1)*(In_val - El1)
endif
else ! array is too short, no assumption can be made, just make it equal to the first value:
Value1 = El1
endif
endif
else ! no starting points are present, nothing to assume, use first point as approximation:
Value1 = Array_y(1) ! [A] total mean free path
endif
else
if (Array_y(Number-1) .GT. 1d20) then ! if it starts from infinity, approximate as 'infinity'
Value1 = Array_y(Number-1)
else ! if it's normal array, just interpolate:
Value1 = Array_y(Number-1)+(Array_y(Number)-Array_y(Number-1))/(Array_x(Number)-Array_x(Number-1))*(In_val - Array_x(Number-1))
endif
endif
end subroutine Linear_approx_1d
subroutine Linear_approx_2d(Array, In_val, Value1, El1, El2)
REAL(8), dimension(:,:), INTENT(in) :: Array ! in this array make an approximation
real(8), INTENT(in) :: In_val ! this is the value
!integer, intent(in) :: Number ! element of the array
real(8), intent(in), optional :: El1, El2 ! where to start approximation from, if needed
real(8), intent(out) :: Value1 ! output, approximated value
real(8) el_one
integer Number
call Find_in_array_monoton(Array, In_val, 1, Number) ! find the closest value in the array to a given one
if (Number .EQ. 1) then
if (present(El1)) then ! the starting points are known, use them:
if (present(El2)) then ! the starting points are known, use them:
Value1 = El2+(Array(2,Number)-El2)/(Array(1,Number)-El1)*(In_val - El1)
else ! only the X-starting point is known, Y is not, use some assumptions:
if (size(Array,2) .GE. 2) then ! array is long enough to assume something:
if (Array(2,1) .GT. Array(2,2)) then ! it is locally decreasing array, assume starting point "infinity"
Value1 = 1d21
else ! it is locally increasing, assume starting point 'zero'
Value1 = Array(2,Number)/(Array(1,Number)-El1)*(In_val - El1)
endif
else ! array is too short, no assumption can be made, just make it equal to the first value:
Value1 = El1
endif
endif
else ! no starting points are present, nothing to assume, use first point as approximation:
Value1 = Array(2,1) ! [A] total mean free path
endif
else
if (Array(2,Number-1) .GT. 1d20) then ! if it starts from infinity, approximate as 'infinity'
Value1 = Array(2,Number-1)
else ! if it's normal array, just interpolate:
Value1 = Array(2,Number-1)+(Array(2,Number)-Array(2,Number-1))/(Array(1,Number)-Array(1,Number-1))*(In_val - Array(1,Number-1))
endif
endif
end subroutine Linear_approx_2d
subroutine Find_in_1D_array(Array, Value, Number)
REAL(8), dimension(:), INTENT(in) :: Array ! in which we are looking for the Value
REAL(8), INTENT(in) :: Value ! to be found in the array as near as possible
integer, INTENT(out) :: Number ! number of the element which we are looking for
integer i
i = 1
do while (Array(i) .LT. Value)
i = i + 1
enddo
Number = i
end subroutine Find_in_1D_array
subroutine Find_in_2D_array(Array, Value, Indx, Number)
REAL(8), dimension(:,:), INTENT(in) :: Array ! in which we are looking for the Value
REAL(8), INTENT(in) :: Value ! to be found in the array as near as possible
integer, INTENT(in) :: Indx ! index of the array, showing in which colonm we search
integer, INTENT(out) :: Number ! number of the element which we are looking for
integer i
i = 1
do while (Array(Indx,i) .LT. Value)
i = i + 1
enddo
Number = i
end subroutine Find_in_2D_array
subroutine Find_in_monotonous_1D_array(Array, Value0, Number)
REAL(8), dimension(:), INTENT(in) :: Array ! in which we are looking for the Value
REAL(8), INTENT(in) :: Value0 ! to be found in the array as near as possible
integer, INTENT(out) :: Number ! number of the element which we are looking for
integer i, N, i_cur, i_1, i_2, coun
real(8) temp_val, val_1, val_2
N = size(Array)
i_1 = 1
val_1 = Array(i_1)
i_2 = N
val_2 = Array(i_2)
i_cur = FLOOR((i_1+i_2)/2.0)
temp_val = Array(i_cur)
if (isnan(Value0)) then
print*, 'The subroutine Find_in_monotonous_1D_array'
print*, 'cannot proceed, the value of Value0 is', Value0
write(*, '(f,f,f,f)') Value0, Array(i_cur), Array(i_1), Array(i_2)
pause 'STOPPED WORKING...'
else
if (Value0 .LT. Array(1)) then ! it's the first value, no need to search
i_cur = 0
else if (Value0 .GE. Array(N)) then ! it's the last value, no need to search
i_cur = N-1
else
coun = 0
do ! until the Value is in between Array(i_cur) and Array(i_cur+1) => we found i_cur
if ((Value0 .GE. Array(i_cur)) .AND. (Value0 .LE. Array(i_cur+1))) exit ! when the Value is in between Array(i_cur) and Array(i_cur+1) => we found i_cur
if (temp_val .LE. Value0) then
i_1 = i_cur
val_1 = Array(i_1)
i_cur = FLOOR((i_1+i_2)/2.0)
temp_val = Array(i_cur)
else
i_2 = i_cur
!val_2 = Array(i_2)
val_2 = temp_val
i_cur = FLOOR((i_1+i_2)/2.0)
temp_val = Array(i_cur)
endif
coun = coun + 1
if (coun .GT. 1e3) then
print*, 'PROBLEM WITH CONVERGANCE IN'
print*, 'Find_in_monotonous_1D_array', coun
write(*, '(f,f,f,f)') Value0, Array(i_cur), Array(i_1), Array(i_2)
pause 'STOPPED WORKING...'
endif
enddo
endif
endif ! isnan
Number = i_cur+1
end subroutine Find_in_monotonous_1D_array
subroutine Find_in_monotonous_2D_array(Array, Value0, Indx, Number)
REAL(8), dimension(:,:), INTENT(in) :: Array ! in which we are looking for the Value
REAL(8), INTENT(in) :: Value0 ! to be found in the array as near as possible
integer, INTENT(in) :: Indx ! index of the array, showing in which colonm we search
integer, INTENT(out) :: Number ! number of the element which we are looking for
integer i, N, i_cur, i_1, i_2, coun
real(8) temp_val, val_1, val_2
N = size(Array,2)
i_1 = 1
val_1 = Array(Indx,i_1)
i_2 = N
val_2 = Array(Indx,i_2)
i_cur = FLOOR((i_1+i_2)/2.0)
temp_val = Array(Indx,i_cur)
if (isnan(Value0)) then
print*, 'The subroutine Find_in_monotonous_2D_array'
print*, 'cannot proceed, the value of Value0 is', Value0
write(*, '(f,f,f,f)') Value0, Array(Indx,i_cur), Array(Indx,i_1), Array(Indx,i_2)
pause 'STOPPED WORKING...'
else
if (Value0 .LT. Array(Indx,1)) then ! it's the first value, no need to search
i_cur = 0
else if (Value0 .GE. Array(Indx,N)) then ! it's the last value, no need to search
i_cur = N-1
else
coun = 0
do ! until the Value is in between Array(i_cur) and Array(i_cur+1) => we found i_cur
if ((Value0 .GE. Array(Indx,i_cur)) .AND. (Value0 .LE. Array(Indx,i_cur+1))) exit ! when the Value is in between Array(i_cur) and Array(i_cur+1) => we found i_cur
if (temp_val .LE. Value0) then
i_1 = i_cur
val_1 = temp_val
i_cur = FLOOR((i_1+i_2)/2.0)
temp_val = Array(Indx,i_cur)
else
i_2 = i_cur
val_2 = temp_val
i_cur = FLOOR((i_1+i_2)/2.0)
temp_val = Array(Indx,i_cur)
endif
coun = coun + 1
if (coun .GT. 1e3) then
print*, 'PROBLEM WITH CONVERGANCE IN'
print*, 'Find_in_monotonous_2D_array', coun
write(*, '(f,f,f,f)') Value0, Array(Indx,i_cur), Array(Indx,i_1), Array(Indx,i_2)
pause 'STOPPED WORKING...'
endif
enddo
endif
endif ! isnan
Number = i_cur+1
end subroutine Find_in_monotonous_2D_array
END MODULE Dealing_with_arrays