-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNB1_alina.Rmd
887 lines (677 loc) · 32.4 KB
/
NB1_alina.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
---
title: "Alina Data Analysis Notebook"
output:
html_document:
toc: yes
fig_caption: yes
---
```{r}
library(tidyverse)
library(EnhancedVolcano)
library(data.table)
```
## Importing the Datasets
```{r}
t476 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_476_vs_C57BL6_ctl.csv")
t754 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_754_vs_C57BL6_ctl.csv")
t755 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_755_vs_C57BL6_ctl.csv")
t757 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_757_vs_C57BL6_ctl.csv")
t758 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_758_vs_C57BL6_ctl.csv")
t760 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_760_vs_C57BL6_ctl.csv")
t761 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_761_vs_C57BL6_ctl.csv")
t762 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_762_vs_C57BL6_ctl.csv")
t763 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_763_vs_C57BL6_ctl.csv")
t764 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_764_vs_C57BL6_ctl.csv")
t765 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_765_vs_C57BL6_ctl.csv")
t766 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_766_vs_C57BL6_ctl.csv")
t768 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_768_vs_C57BL6_ctl.csv")
t769 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/C57BL6_769_vs_C57BL6_ctl.csv")
```
```{r}
head(t766)
```
## Adding the table number and Number of replicates as addtional columns
```{r}
t476$Strain_name <- "S476"
t476$N_infected_Replicates <- "Double"
t754$Strain_name <- "S754"
t754$CPM_infected_R2 <- "0"
t754$N_infected_Replicates <- "Single"
t757$Strain_name <- "S757"
t757$N_infected_Replicates <- "Double"
t755$Strain_name <- "S755"
t755$CPM_infected_R2 <- "0"
t755$N_infected_Replicates <- "Single"
t758$Strain_name <- "S758"
t758$CPM_infected_R2 <- "0"
t758$N_infected_Replicates <- "Single"
t760$Strain_name <- "S760"
t760$CPM_infected_R2 <- "0"
t760$N_infected_Replicates <- "Single"
t761$Strain_name <- "S761"
t761$CPM_infected_R2 <- "0"
t761$N_infected_Replicates <- "Single"
t762$Strain_name <- "S762"
t762$CPM_infected_R2 <- "0"
t762$N_infected_Replicates <- "Single"
t763$Strain_name <- "S763"
t763$CPM_infected_R2 <- "0"
t763$N_infected_Replicates <- "Single"
t764$Strain_name <- "S764"
t764$CPM_infected_R2 <- "0"
t764$N_infected_Replicates <- "Single"
t765$Strain_name <- "S765"
t765$CPM_infected_R2 <- "0"
t765$N_infected_Replicates <- "Single"
t766$Strain_name <- "S766"
t766$N_infected_Replicates <- "Double"
t768$Strain_name <- "S768"
t768$N_infected_Replicates <- "Double"
t769$Strain_name <- "S769"
t769$CPM_infected_R2 <- "0"
t769$N_infected_Replicates <- "Single"
```
## Renaming Column names to more consistent ones
```{r}
t476 <- t476 %>% rename(CPM_infected_R1 = CPM_.C57BL6_476_R1.) %>% rename(CPM_infected_R2 = CPM_.C57BL6_476_R2.) %>% rename(CPM_ctl_R1 = CPM_.C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM_.C57BL6_ctl_R2.)
t754 <- t754 %>% rename(CPM_infected_R1 = CPM..C57BL6_754_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t755 <- t755 %>% rename(CPM_infected_R1 = CPM..C57BL6_755_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t757 <- t757 %>% rename(CPM_infected_R1 = CPM..C57BL6_757_R1.) %>% rename(CPM_infected_R2 = CPM..C57BL6_757_R2.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t758 <- t758 %>% rename(CPM_infected_R1 = CPM..C57BL6_758_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t760 <- t760 %>% rename(CPM_infected_R1 = CPM..C57BL6_760_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t761 <- t761 %>% rename(CPM_infected_R1 = CPM..C57BL6_761_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t762 <- t762 %>% rename(CPM_infected_R1 = CPM..C57BL6_762_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t763 <- t763 %>% rename(CPM_infected_R1 = CPM..C57BL6_763_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t764 <- t764 %>% rename(CPM_infected_R1 = CPM..C57BL6_764_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t765 <- t765 %>% rename(CPM_infected_R1 = CPM..C57BL6_765_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t766 <- t766 %>% rename(CPM_infected_R1 = CPM..C57BL6_766_R1.) %>% rename(CPM_infected_R2 = CPM..C57BL6_766_R2.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t768 <- t768 %>% rename(CPM_infected_R1 = CPM..C57BL6_768_R1.) %>% rename(CPM_infected_R2 = CPM..C57BL6_768_R2.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
t769 <- t769 %>% rename(CPM_infected_R1 = CPM..C57BL6_769_R1.) %>% rename(CPM_ctl_R1 = CPM..C57BL6_ctl_R1.) %>% rename(CPM_ctl_R2 = CPM..C57BL6_ctl_R2.)
```
```{r}
head(t769)
```
```{r}
head(t766)
```
## Reordering Columns to be or correct order
```{r}
#t769 <- t769[, c(1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 12, 13, 10, 11)]
#head(t769)
```
## Binding all tables into a single Master Table
```{r}
#rbind two data frames into one data frame
binded_frame <- rbind(t476,t754,t755,t757,t758,t760,t761,t762,t763,t764,t765,t766, t768, t769)
write.csv(binded_frame,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/Data_Alina_MasterTable_13strains.csv")
dim(binded_frame)
```
```{r echo=TRUE, message=TRUE, warning=TRUE}
str(binded_frame)
```
# 15th March, 2022:
### Meeting with Johannes on Friday:
1. With Regard to Colors: Cant do selective overlaying in ggplot. His plots were feature plots in Seurat. Can work with distinctive colors and opacity. More on this next week. Also, consider splitting the strains in 2 or 3 groups!
2. Parameter Values : pvalue = 0.05, lo2FC = -1 to +1
3. Working with enhanaced Volcano plots
### CPM infected and Control - Mean Values
```{r}
head(binded_frame)
```
```{r}
# Convert CPM_infected_R2 into numeric from chr
binded_frame[, c(9:10)] <- sapply(binded_frame[, c(9:10)], as.numeric)
str(binded_frame)
```
```{r}
binded_frame$CPM_ctl_Mean <- rowMeans(binded_frame[,11:12])
binded_frame$CPM_Infected_Mean <- rowMeans(binded_frame[,9:10])
```
### Tables for Aline:
```{r}
head(binded_frame)
```
```{r}
#s1 <- filter(binded_frame, Strain_name == "S476", CPM_infected_R2)
#nrow(s1)
```
```{r}
CPM_mean_table <- select(binded_frame, ensembl_gene_id, symbol, Strain_name, CPM_ctl_Mean, CPM_Infected_Mean)
head(CPM_mean_table)
```
```{r}
log2FC_table <- select(binded_frame, ensembl_gene_id, symbol, Strain_name, log2FoldChange)
head(log2FC_table)
```
# Tables with padj and log2FC thresholds imposed, to obtain a list of genes.
The Plan for doing so:
1. The parameters are : padj < 0.05, log2FC = +1 or -1. This needs to be imposed and two different tables be imposed.
2. The gender specific genes be removed.
3. Obtain the number of genes being contributed for respective strains.
4. Obtain upgenelist and downgenelist.
5. Determine core90 and Core50 for Up/Down regulation.
6. For these set of genes, in up/down regulation, create a separate table. Then, from this table, determine the zscore for the log2FC variable and create a heatmap.
7. Read Matt's Thesis and move onto Go term and pathway analysis.
8. Mathias Plots for duplicates of all strains.
9. PCA plots and further more
## Gender Specific genes - Removed!
```{r}
gender_genes_list <- c("Xist","Jpx","Ftx","Tsx", "Cnbp2")
gender_genes <- filter(binded_frame, symbol %in% gender_genes_list)
nrow(gender_genes)
```
```{r}
head(gender_genes)
```
### Gender Genes Removed from Master Table
```{r}
binded_frame <- filter(binded_frame, symbol != "Xist", symbol !="Jpx", symbol !="Ftx", symbol !="Tsx", symbol != "Cnbp2" )
```
### Number of genes in play - from each strain!
```{r}
f1 <- binded_frame
f1$Strain_name <- as.factor(f1$Strain_name)
table(f1$Strain_name)
```
## A table with padj<0.05 imposed!
```{r}
f2 <- filter(f1, padj<0.05)
head(f2)
```
```{r}
write.csv(f2,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/Data_Alina_listofgenes_ with_padj_threshold.csv")
```
## A table with padj<0.05 and log2FC>1 imposed!
```{r}
f3 <- filter(f1, padj<0.05, log2FoldChange>1)
str(f3)
```
```{r}
write.csv(f3,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/Data_Alina_listofgenes_ with_padjANDlog2FCgreaterthan1_threshold.csv")
```
## A table with padj<0.05 and log2FC<-1 imposed!
```{r}
f5 <- filter(f1, padj<0.05, log2FoldChange< -1, log2FoldChange>1)
str(f5)
write.csv(f5 ,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/Data_Alina_listofgenes_ with_padjANDlog2FClesserthan1_threshold.csv")
```
```{r}
```
## Number of Genes from different strains that are contributing to Up/Down regulation.
### Down Regulation - Most Relevant strains
```{r}
f4$Strain_name <- as.factor(f4$Strain_name)
t1 <- data.frame(f4$Strain_name)
summary(t1)
```
```{r}
t1_table <- table(f4$Strain_name)
print(t1_table)
```
### Up Regulation - Most Relevant strains
```{r}
f3$Strain_name <- as.factor(f3$Strain_name)
t2 <- data.frame(f3$Strain_name)
summary(t2)
```
```{r}
t2_table <- table(f3$Strain_name)
#t2_table
Ngenes_fromStrains <- data.frame(rbind(t2_table)) # Converting the table into Data Frame
#row.names(Ngenes_fromStrains) <- 1:nrow(Ngenes_fromStrains) # change row names to list of numbers
Ngenes_fromStrains <- as.data.frame(t(Ngenes_fromStrains)) # flip the rows and columns into each other
Ngenes_fromStrains <- rownames_to_column(Ngenes_fromStrains)
names(Ngenes_fromStrains)[1] <- 'Strain_ID ' # Change names of columns
names(Ngenes_fromStrains)[2] <- ' Counts'
Ngenes_fromStrains
```
```{r}
#ggplot(data = Ngenes_fromStrains) + geom_bar(mapping = aes(x = Strain_ID, y = Counts, fill = Strain_ID))
#str(Ngenes_fromStrains)
#ggplot(data = Ngenes_fromStrains) + geom_histogram(mapping = aes(x = Counts))
```
## Genes List and Gene Counts
### List of Down regulating genes and respective counts
```{r}
f4$symbol <- as.factor(f4$symbol)
downgene_list <- data.frame(f4$symbol)
#downgene_list <- rownames_to_column(downgene_list)
names(downgene_list)[1] <- 'DOWN_Genes'
summary(downgene_list, maxsum = 20)
```
```{r}
head(downgene_list)
```
```{r}
count(downgene_list)
```
### List of Up-regulating genes and respective counts
```{r}
f3$symbol <- as.factor(f3$symbol)
upgene_list <- data.frame(f3$symbol)
setnames(upgene_list, "Gene_names")
summary(upgene_list, maxsum = 30)
```
### Number of Upregulating Genes
```{r}
count(upgene_list)
```
### Common genes between both tables - Interesting?
```{r}
#intersecting_genes<- fintersect(setDT(downgene_list), setDT(upgene_list), all = F)
#print(intersecting_genes)
```
# 29th March, 2022:
# Aline Tables:
Put this section into a separate script for later use!
## CPMR1 and CPMR2 value stable - per Gene :
Plan is to create individual tables per strain, grouped by each gene with two CPM values and then do this for each strain. then merge the different data frames into row-wise based on each gene.
### Sorting the genes as per strain_name and gene_name
```{r}
by_gene <- binded_frame %>%
group_by(symbol) %>%
summarise(Strain_name, CPM_infected_R1, CPM_infected_R2) %>% ungroup()
head(by_gene)
```
# Collecting the CPMr1 and CPMr23 values , gene by gene
### bygene_476
```{r}
bygene_476 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S476") %>%
summarise(cpm_476_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_476_r2 = paste0(CPM_infected_R2, collapse = ","))%>%
select(-Strain_name)
bygene_755 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S755") %>%
summarise(cpm_755_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_755_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_754 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S754") %>%
summarise(cpm_754_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_754_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_757 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S757") %>%
summarise(cpm_757_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_757_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_758 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S758") %>%
summarise(cpm_758_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_758_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_760 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S760") %>%
summarise(cpm_760_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_760_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_761 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S761") %>%
summarise(cpm_761_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_761_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_762 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S762") %>%
summarise(cpm_762_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_762_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_763 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S763") %>%
summarise(cpm_763_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_763_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_764 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S764") %>%
summarise(cpm_764_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_764_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_765 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S765") %>%
summarise(cpm_765_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_765_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_766 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S766") %>%
summarise(cpm_766_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_766_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_768 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S768") %>%
summarise(cpm_768_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_768_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
bygene_769 <- by_gene %>%
group_by(symbol, Strain_name) %>%
filter(Strain_name == "S769") %>%
summarise(cpm_769_r1 = paste0(CPM_infected_R1, collapse = ","),
cpm_769_r2 = paste0(CPM_infected_R2, collapse = ",")) %>%
select(-Strain_name)
```
Now lets try to merge the dataframe for respective genes, row-wise
```{r}
# Merging two df at a time.
merged_df1 <- merge(data.frame(bygene_476, row.names=NULL), data.frame(bygene_754, row.names=NULL), by = 1, all = TRUE)
merged_df2 <- merge(data.frame(bygene_755, row.names=NULL), data.frame(bygene_757, row.names=NULL), by = 1, all = TRUE)
```
```{r}
merged_df3 <- merge(data.frame(bygene_758, row.names=NULL), data.frame(bygene_760, row.names=NULL), by = 1, all = TRUE)
merged_df4 <- merge(data.frame(bygene_761, row.names=NULL), data.frame(bygene_762, row.names=NULL), by = 1, all = TRUE)
```
```{r}
merged_df5 <- merge(data.frame(bygene_763, row.names=NULL), data.frame(bygene_764, row.names=NULL), by = 1, all = TRUE)
merged_df6 <- merge(data.frame(bygene_765, row.names=NULL), data.frame(bygene_766, row.names=NULL), by = 1, all = TRUE)
```
```{r}
merged_df7 <- merge(data.frame(bygene_768, row.names=NULL), data.frame(bygene_769, row.names=NULL), by = 1, all = TRUE)
```
```{r}
CPM_Merged12 <- merge(
data.frame(merged_df1, row.names=NULL),
data.frame(merged_df2, row.names=NULL), all = TRUE)
```
```{r}
CPM_Merged34 <- merge(
data.frame(merged_df3, row.names=NULL),
data.frame(merged_df4, row.names=NULL), all = TRUE)
```
```{r}
CPM_Merged56 <- merge(
data.frame(merged_df5, row.names=NULL),
data.frame(merged_df6, row.names=NULL), all = TRUE)
```
```{r}
CPM_Merged567 <- merge(
data.frame(CPM_Merged56, row.names=NULL),
data.frame(merged_df7, row.names=NULL), all = TRUE)
```
```{r}
CPM_MergedTable_1234 <- merge(
data.frame(CPM_Merged12, row.names=NULL),
data.frame(CPM_Merged34, row.names=NULL), all = TRUE)
head(CPM_MergedTable_1234)
```
Finally open the complete merged table
```{r}
CPM_MergedTable_ByGene <- merge(
data.frame(CPM_MergedTable_1234, row.names=NULL),
data.frame(CPM_Merged567, row.names=NULL), all = TRUE)
head(CPM_MergedTable_ByGene)
```
```{r}
write.csv(CPM_MergedTable_ByGene,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/CPM_MergedTable_ByGene.csv")
```
# Creating UpGeneTable and DownGeneTable
```{r}
DownGene_DECore50 <- c("Calcoco1", "Gm22634", "Gm25939", "Gm24265", "Gm22513",
"Gm23804", "Gsta2", "Snca", "Afp", "Col1a2", "Gm22068",
"Gm24305", "Gm25813", "Nt5e", "Reg4", "Sgk2")
length(DownGene_DECore50)
```
```{r}
DownGeneFrame <- binded_frame %>% filter(symbol %in% DownGene_DECore50)
DownGeneFrame
write.csv(DownGeneFrame,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/DownGeneFrame_Core50.csv")
```
```{r}
UpGene_DECore50 <- c( "Reg3b", "Reg3g","Slc9a3", "Cd36", "Dmbt1", "Pigr", "Saa3",
"Ubd ", "Aldh1l1", "Apol10a", "AY76118", "Defa3", "Dnase1",
"Duox2", " Gsdmc", "Gsdmc2", "Igtp", "Iigp1", "Il18", "Lyz1",
"Mptx2", "Ncf2", "Prss30", "Ptk6", "Reg3a", "Saa1", "Slfn2")
length(UpGene_DECore50)
```
```{r}
UpGeneFrame <- binded_frame %>% filter(symbol %in% UpGene_DECore50)
UpGeneFrame
write.csv(UpGeneFrame,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/UpGeneFrame_Core50.csv")
```
```{r}
# Input the frame that needs to be worked on
UpGeneFrame_Core50 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/UpGeneFrame_Core50.csv")
#binded_frame <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/Data_Alina_MasterTable_13strains.csv")
by_gene_forlog2FC <- UpGeneFrame_Core50 %>% group_by(symbol) %>%
summarise(log2FoldChange, Strain_name) %>% ungroup()
head(by_gene_forlog2FC)
log2FC_476 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S476") %>%
summarise(log2FC_476 = paste0(log2FoldChange))
log2FC_754 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S754") %>%
summarise(log2FC_754 = paste0(log2FoldChange))
log2FC_755 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S755") %>%
summarise(log2FC_755 = paste0(log2FoldChange))
log2FC_757 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S757") %>%
summarise(log2FC_757 = paste0(log2FoldChange))
log2FC_758 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S758") %>%
summarise(log2FC_758 = paste0(log2FoldChange))
log2FC_760 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S760") %>%
summarise(log2FC_760 = paste0(log2FoldChange))
log2FC_761 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S761") %>%
summarise(log2FC_761 = paste0(log2FoldChange))
log2FC_762 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S762") %>%
summarise(log2FC_762 = paste0(log2FoldChange))
log2FC_763 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S763") %>%
summarise(log2FC_763 = paste0(log2FoldChange))
log2FC_764 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S764") %>%
summarise(log2FC_764 = paste0(log2FoldChange))
log2FC_765 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S765") %>%
summarise(log2FC_765 = paste0(log2FoldChange))
log2FC_766 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S766") %>%
summarise(log2FC_766 = paste0(log2FoldChange))
log2FC_768 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S768") %>%
summarise(log2FC_768 = paste0(log2FoldChange))
log2FC_769 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S769") %>%
summarise(log2FC_769 = paste0(log2FoldChange))
merged_L2fc1 <- merge(data.frame(log2FC_476, row.names=NULL), data.frame(log2FC_754, row.names=NULL), by = 1, all = TRUE)
merged_L2fc2 <- merge(data.frame(log2FC_755, row.names=NULL), data.frame(log2FC_757, row.names=NULL), by = 1, all = TRUE)
merged_L2fc3 <- merge(data.frame(log2FC_758, row.names=NULL), data.frame(log2FC_760, row.names=NULL), by = 1, all = TRUE)
merged_L2fc4 <- merge(data.frame(log2FC_761, row.names=NULL), data.frame(log2FC_762, row.names=NULL), by = 1, all = TRUE)
merged_L2fc5 <- merge(data.frame(log2FC_763, row.names=NULL), data.frame(log2FC_764, row.names=NULL), by = 1, all = TRUE)
merged_L2fc6 <- merge(data.frame(log2FC_765, row.names=NULL), data.frame(log2FC_766, row.names=NULL), by = 1, all = TRUE)
merged_L2fc7 <- merge(data.frame(log2FC_768, row.names=NULL), data.frame(log2FC_769, row.names=NULL), by = 1, all = TRUE)
merged_L2fc_A1_U <- merge(data.frame(merged_L2fc1, row.names=NULL),
data.frame(merged_L2fc2, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_A2_U <- merge(data.frame(merged_L2fc3, row.names=NULL),
data.frame(merged_L2fc4, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_A3_U <- merge(data.frame(merged_L2fc5, row.names=NULL),
data.frame(merged_L2fc6, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_B1_U <- merge(data.frame(merged_L2fc_A1_U, row.names=NULL),
data.frame(merged_L2fc_A2_U, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_B2_U <- merge(data.frame(merged_L2fc_A3_U, row.names=NULL),
data.frame(merged_L2fc7, row.names=NULL),
by = 1, all = TRUE)
merged_L2FC_UP <- merge(data.frame(merged_L2fc_B1_U, row.names=NULL),
data.frame(merged_L2fc_B2_U, row.names=NULL),
by = 1, all = TRUE)
# change the type of rest of columns except for symbol from chr to double
merged_L2FC_UP <- merged_L2FC_UP %>% mutate_at(c(2:15), as.double)
# ensure that there are no duplicate rows
merged_L2FC_UP <- merged_L2FC_UP %>% distinct(symbol,.keep_all=TRUE)
# Determining the Zscore tables for UP Genes
zs_476 = scale(merged_L2FC$log2FC_476, center = TRUE, scale = TRUE)
zs_754 = scale(merged_L2FC$log2FC_754, center = TRUE, scale = TRUE)
zs_755 = scale(merged_L2FC$log2FC_755, center = TRUE, scale = TRUE)
zs_757 = scale(merged_L2FC$log2FC_757, center = TRUE, scale = TRUE)
zs_758 = scale(merged_L2FC$log2FC_758, center = TRUE, scale = TRUE)
zs_760 = scale(merged_L2FC$log2FC_760, center = TRUE, scale = TRUE)
zs_761 = scale(merged_L2FC$log2FC_761, center = TRUE, scale = TRUE)
zs_762 = scale(merged_L2FC$log2FC_762, center = TRUE, scale = TRUE)
zs_763 = scale(merged_L2FC$log2FC_763, center = TRUE, scale = TRUE)
zs_764 = scale(merged_L2FC$log2FC_764, center = TRUE, scale = TRUE)
zs_765 = scale(merged_L2FC$log2FC_765, center = TRUE, scale = TRUE)
zs_766 = scale(merged_L2FC$log2FC_766, center = TRUE, scale = TRUE)
zs_768 = scale(merged_L2FC$log2FC_768, center = TRUE, scale = TRUE)
zs_769 = scale(merged_L2FC$log2FC_769, center = TRUE, scale = TRUE)
GeneName <- merged_L2FC$symbol #obtaining genenames from earlier df
ZS_UPGenes_table <- data.frame(GeneName, zs_476,zs_754,zs_755,zs_757,zs_758,
zs_760, zs_761,zs_762,zs_763,zs_764,zs_765,
zs_766,zs_768,zs_769)
ZS_UPGenes_table <- data.frame(ZS_UPGenes_table, row.names = 1)
#write.csv(ZS_UPGenes_table,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/ZS_UPGenes_table.csv","w")
# MEAN OF MINIMUM WAS 1.1796611
#ZS_UPGenes_table <- ZS_UPGenes_table %>% replace(is.na(.), -1.1796611)
geneExp_matrix_DE_UpGene <- as.matrix(ZS_UPGenes_table)
heatmap(geneExp_matrix_DE_UpGene)
```
### DownGeneTable - Core 50 and heatmaps
```{r}
# Input the frame that needs to be worked on
DownGeneFrame_Core50 <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/DownGeneFrame_Core50.csv")
#binded_frame <- read.csv("D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/Data_Alina_MasterTable_13strains.csv")
by_gene_forlog2FC <- DownGeneFrame_Core50 %>% group_by(symbol) %>%
summarise(log2FoldChange, Strain_name) %>% ungroup()
head(by_gene_forlog2FC)
log2FC_476 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S476") %>%
summarise(log2FC_476 = paste0(log2FoldChange))
log2FC_754 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S754") %>%
summarise(log2FC_754 = paste0(log2FoldChange))
log2FC_755 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S755") %>%
summarise(log2FC_755 = paste0(log2FoldChange))
log2FC_757 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S757") %>%
summarise(log2FC_757 = paste0(log2FoldChange))
log2FC_758 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S758") %>%
summarise(log2FC_758 = paste0(log2FoldChange))
log2FC_760 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S760") %>%
summarise(log2FC_760 = paste0(log2FoldChange))
log2FC_761 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S761") %>%
summarise(log2FC_761 = paste0(log2FoldChange))
log2FC_762 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S762") %>%
summarise(log2FC_762 = paste0(log2FoldChange))
log2FC_763 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S763") %>%
summarise(log2FC_763 = paste0(log2FoldChange))
log2FC_764 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S764") %>%
summarise(log2FC_764 = paste0(log2FoldChange))
log2FC_765 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S765") %>%
summarise(log2FC_765 = paste0(log2FoldChange))
log2FC_766 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S766") %>%
summarise(log2FC_766 = paste0(log2FoldChange))
log2FC_768 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S768") %>%
summarise(log2FC_768 = paste0(log2FoldChange))
log2FC_769 <- by_gene_forlog2FC %>%
group_by(symbol) %>%
filter(Strain_name == "S769") %>%
summarise(log2FC_769 = paste0(log2FoldChange))
merged_L2fc1 <- merge(data.frame(log2FC_476, row.names=NULL), data.frame(log2FC_754, row.names=NULL), by = 1, all = TRUE)
merged_L2fc2 <- merge(data.frame(log2FC_755, row.names=NULL), data.frame(log2FC_757, row.names=NULL), by = 1, all = TRUE)
merged_L2fc3 <- merge(data.frame(log2FC_758, row.names=NULL), data.frame(log2FC_760, row.names=NULL), by = 1, all = TRUE)
merged_L2fc4 <- merge(data.frame(log2FC_761, row.names=NULL), data.frame(log2FC_762, row.names=NULL), by = 1, all = TRUE)
merged_L2fc5 <- merge(data.frame(log2FC_763, row.names=NULL), data.frame(log2FC_764, row.names=NULL), by = 1, all = TRUE)
merged_L2fc6 <- merge(data.frame(log2FC_765, row.names=NULL), data.frame(log2FC_766, row.names=NULL), by = 1, all = TRUE)
merged_L2fc7 <- merge(data.frame(log2FC_768, row.names=NULL), data.frame(log2FC_769, row.names=NULL), by = 1, all = TRUE)
merged_L2fc_A1 <- merge(data.frame(merged_L2fc1, row.names=NULL),
data.frame(merged_L2fc2, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_A2 <- merge(data.frame(merged_L2fc3, row.names=NULL),
data.frame(merged_L2fc4, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_A3 <- merge(data.frame(merged_L2fc5, row.names=NULL),
data.frame(merged_L2fc6, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_B1 <- merge(data.frame(merged_L2fc_A1, row.names=NULL),
data.frame(merged_L2fc_A2, row.names=NULL),
by = 1, all = TRUE)
merged_L2fc_B2 <- merge(data.frame(merged_L2fc_A3, row.names=NULL),
data.frame(merged_L2fc7, row.names=NULL),
by = 1, all = TRUE)
merged_L2FC <- merge(data.frame(merged_L2fc_B1, row.names=NULL),
data.frame(merged_L2fc_B2, row.names=NULL),
by = 1, all = TRUE)
# change the type of rest of columns except for symbol from chr to double
merged_L2FC <- merged_L2FC %>% mutate_at(c(2:15), as.double)
# ensure that there are no duplicate rows
merged_L2FC <- merged_L2FC %>% distinct(symbol,.keep_all=TRUE)
# Determining the Zscore tables for UP Genes
zs_476 = scale(merged_L2FC$log2FC_476, center = TRUE, scale = TRUE)
zs_754 = scale(merged_L2FC$log2FC_754, center = TRUE, scale = TRUE)
zs_755 = scale(merged_L2FC$log2FC_755, center = TRUE, scale = TRUE)
zs_757 = scale(merged_L2FC$log2FC_757, center = TRUE, scale = TRUE)
zs_758 = scale(merged_L2FC$log2FC_758, center = TRUE, scale = TRUE)
zs_760 = scale(merged_L2FC$log2FC_760, center = TRUE, scale = TRUE)
zs_761 = scale(merged_L2FC$log2FC_761, center = TRUE, scale = TRUE)
zs_762 = scale(merged_L2FC$log2FC_762, center = TRUE, scale = TRUE)
zs_763 = scale(merged_L2FC$log2FC_763, center = TRUE, scale = TRUE)
zs_764 = scale(merged_L2FC$log2FC_764, center = TRUE, scale = TRUE)
zs_765 = scale(merged_L2FC$log2FC_765, center = TRUE, scale = TRUE)
zs_766 = scale(merged_L2FC$log2FC_766, center = TRUE, scale = TRUE)
zs_768 = scale(merged_L2FC$log2FC_768, center = TRUE, scale = TRUE)
zs_769 = scale(merged_L2FC$log2FC_769, center = TRUE, scale = TRUE)
GeneName <- merged_L2FC$symbol #obtaining genenames from earlier df
ZS_DownGenes_table <- data.frame(GeneName, zs_476,zs_754,zs_755,zs_757,zs_758,
zs_760, zs_761,zs_762,zs_763,zs_764,zs_765,
zs_766,zs_768,zs_769)
ZS_DownGenes_table <- data.frame(ZS_DownGenes_table, row.names = 1)
#write.csv(ZS_DownGenes_table,"D:/R/Rtuts/Data/WG__Discussion_Alina's_EPEC_project/csv/ZS_DownGenes_table.csv")
# MEAN OF MINIMUM WAS 1.1796611
#ZS_DownGenes_table <- ZS_DownGenes_table %>% replace(is.na(.), -1.1796611)
geneExp_matrix_DE_DownGene <- as.matrix(ZS_DownGenes_table)
heatmap(geneExp_matrix_DE_DownGene)
```