-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsequence.py
295 lines (251 loc) · 9.77 KB
/
sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import plot
from models.encoder_decoder import add_eos
from typing import Tuple, Dict, Any, Optional, Callable, List
import torch
import torch.nn.functional as F
class SequenceTestState:
def __init__(self, batch_dim: int = 1):
self.n_ok = 0
self.n_total = 0
self.batch_dim = batch_dim
self.time_dim = 1 - self.batch_dim
def is_index_tensor(self, net_out: torch.Tensor) -> bool:
return net_out.dtype in [torch.long, torch.int, torch.int8, torch.int16]
def convert_to_index(self, net_out: torch.Tensor):
return net_out if self.is_index_tensor(net_out) else net_out.argmax(-1)
def compare_direct(
self,
net_out: Tuple[torch.Tensor, Optional[torch.Tensor]],
ref: torch.Tensor,
ref_len: torch.Tensor,
):
scores, len = net_out
out = self.convert_to_index(scores)
if len is not None:
# Dynamic-length output
if out.shape[0] > ref.shape[0]:
out = out[: ref.shape[0]]
elif out.shape[0] < ref.shape[0]:
ref = ref[: out.shape[0]]
unused = torch.arange(
0, out.shape[0], dtype=torch.long, device=ref.device
).unsqueeze(self.batch_dim) >= ref_len.unsqueeze(self.time_dim)
ok_mask = ((out == ref) | unused).all(self.time_dim) & (len == ref_len)
else:
# Allow fixed lenght output
assert out.shape == ref.shape
ok_mask = (out == ref).all(self.time_dim)
return ok_mask
def compare_output(
self,
net_out: Tuple[torch.Tensor, Optional[torch.Tensor]],
data: Dict[str, torch.Tensor],
):
return self.compare_direct(net_out, data["out"], data["out_len"])
def step(
self,
net_out: Tuple[torch.Tensor, Optional[torch.Tensor]],
data: Dict[str, torch.Tensor],
):
ok_mask = self.compare_output(net_out, data)
self.n_total += ok_mask.nelement()
self.n_ok += ok_mask.long().sum().item()
@property
def accuracy(self):
return self.n_ok / self.n_total
def plot(self) -> Dict[str, Any]:
return {"accuracy/total": self.accuracy}
class TextSequenceTestState(SequenceTestState):
def __init__(
self,
input_to_text: Callable[[torch.Tensor], torch.Tensor],
output_to_text: Callable[[torch.Tensor], torch.Tensor],
batch_dim: int = 1,
max_bad_samples: int = 100,
min_prefix_match_len: int = 1,
eos_id: int = -1,
):
super().__init__(batch_dim)
self.bad_sequences = []
self.max_bad_samples = max_bad_samples
self.in_to_text = input_to_text
self.out_to_text = output_to_text
self.n_prefix_ok = 0
self.n_oracle_ok = 0
self.oracle_available = False
self.min_prefix_match_len = min_prefix_match_len
self.eos_id = eos_id
self.losses = []
self.oks = []
def set_eos_to_neginf(self, scores: torch.Tensor) -> torch.Tensor:
id = self.eos_id if self.eos_id >= 0 else (scores.shape[-1] + self.eos_id)
return scores.index_fill(
-1, torch.tensor([id], device=scores.device), float("-inf")
)
def loss(
self, net_out: torch.Tensor, data: Dict[str, torch.Tensor]
) -> torch.Tensor:
mask = torch.arange(
net_out.shape[1 - self.batch_dim], device=net_out.device
).unsqueeze(1) <= data["out_len"].unsqueeze(0)
try:
ref = add_eos(data["out"], data["out_len"], net_out.shape[-1] - 1)
# ref = data['out']
l = F.cross_entropy(
net_out.flatten(end_dim=-2), ref.long().flatten(), reduction="none"
)
except:
ref = data["out"]
l = F.cross_entropy(
net_out.flatten(end_dim=-2), ref.long().flatten(), reduction="none"
)
l = l.reshape_as(ref) * mask
nonbatchdims = tuple(i for i in range(l.ndim) if i != self.batch_dim)
l = l.sum(dim=nonbatchdims) / mask.sum(dim=nonbatchdims).float()
return l
def sample_to_text(
self,
net_out: Tuple[torch.Tensor, Optional[torch.Tensor]],
data: Dict[str, torch.Tensor],
i: int,
) -> Tuple[str, str, str]:
scores, out_len = net_out
out = self.convert_to_index(scores)
t_ref = self.out_to_text(
data["out"]
.select(self.batch_dim, i)[: int(data["out_len"][i].item())]
.cpu()
.numpy()
.tolist()
)
out_end = None if out_len is None else out_len[i].item()
import pdb
pdb.set_trace()
t_out = self.out_to_text(
out.select(self.batch_dim, i)[:out_end].cpu().numpy().tolist()
)
t_in = self.in_to_text(
data["in"]
.select(self.batch_dim, i)[: int(data["in_len"][i].item())]
.cpu()
.numpy()
.tolist()
)
return t_in, t_ref, t_out
def step(
self,
net_out: Tuple[torch.Tensor, Optional[torch.Tensor]],
data: Dict[str, torch.Tensor],
):
ok_mask = self.compare_output(net_out, data)
scores, _ = net_out
if not self.is_index_tensor(scores):
self.oracle_available = True
oracle_ok = self.compare_direct(
(scores, data["out_len"].clamp_(max=scores.shape[1 - self.batch_dim])),
data["out"],
data["out_len"],
)
self.n_oracle_ok += oracle_ok.long().sum().item()
self.losses.append(self.loss(net_out[0], data).cpu())
prefix_len = (
data["out_len"]
if net_out[1] is None
else torch.minimum(data["out_len"], net_out[1])
)
prefix_len = torch.minimum(
prefix_len.clamp(min=self.min_prefix_match_len), data["out_len"]
)
prefix_ok_mask = self.compare_direct(
(net_out[0], prefix_len), data["out"], prefix_len
)
self.oks.append(ok_mask.cpu())
self.n_total += ok_mask.nelement()
self.n_ok += ok_mask.long().sum().item()
self.n_prefix_ok += prefix_ok_mask.long().sum().item()
def get_sample_info(self) -> Tuple[List[float], List[bool]]:
return (
torch.cat(self.losses, 0).numpy().tolist(),
torch.cat(self.oks, 0).numpy().tolist(),
)
def plot(self) -> Dict[str, Any]:
res = super().plot()
res["mistake_examples"] = plot.TextTable(
["Input", "Reference", "Output", "Prefix match"]
+ (["Oracle match"] if self.oracle_available else []),
self.bad_sequences,
)
res["accuracy/prefix"] = self.n_prefix_ok / self.n_total
if self.oracle_available:
res["accuracy/oracle"] = self.n_oracle_ok / self.n_total
if self.losses:
res["loss_histogram"] = plot.Histogram(torch.cat(self.losses, 0))
return res
class TypedTextSequenceTestState(TextSequenceTestState):
def __init__(
self,
input_to_text: Callable[[torch.Tensor], torch.Tensor],
output_to_text: Callable[[torch.Tensor], torch.Tensor],
type_names: List[str],
batch_dim: int = 1,
max_bad_samples: int = 100,
):
super().__init__(input_to_text, output_to_text, batch_dim, max_bad_samples)
self.type_names = type_names
self.count_per_type = {}
def step(
self,
net_out: Tuple[torch.Tensor, Optional[torch.Tensor]],
data: Dict[str, torch.Tensor],
):
ok_mask = self.compare_output(net_out, data)
scores, out_len = net_out
out = self.convert_to_index(scores)
if len(self.bad_sequences) < self.max_bad_samples:
t = torch.nonzero(~ok_mask).squeeze(-1)[
: self.max_bad_samples - len(self.bad_sequences)
]
for i in t:
out_end = None if out_len is None else int(out_len[i].item())
self.bad_sequences.append(
(
self.in_to_text(
data["in"]
.select(self.batch_dim, i)[: int(data["in_len"][i].item())]
.cpu()
.numpy()
.tolist()
),
self.out_to_text(
data["out"]
.select(self.batch_dim, i)[: int(data["out_len"][i].item())]
.cpu()
.numpy()
.tolist()
),
self.type_names[int(data["type"][i].item())],
self.out_to_text(
out.select(self.batch_dim, i)[:out_end]
.cpu()
.numpy()
.tolist()
),
)
)
for t in torch.unique(data["type"]).int().cpu().numpy().tolist():
mask = data["type"] == t
c = self.count_per_type.get(t)
if c is None:
self.count_per_type[t] = c = {"n_ok": 0, "n_total": 0}
c["n_total"] += mask.float().sum().item()
c["n_ok"] += ok_mask[mask].float().sum().item()
self.n_total += ok_mask.nelement()
self.n_ok += ok_mask.long().sum().item()
def plot(self) -> Dict[str, Any]:
res = super().plot()
res["mistake_examples"] = plot.TextTable(
["Input", "Reference", "Type", "Output"], self.bad_sequences
)
for t, data in self.count_per_type.items():
res[f"accuracy/{self.type_names[t]}"] = data["n_ok"] / data["n_total"]
return res