-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_tree_projections.py
234 lines (210 loc) · 7.71 KB
/
run_tree_projections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from data_utils import build_datasets, build_datasets_pcfg, build_datasets_semparse
from data_utils.pcfg_helpers import is_leaf_fn_pcfg, get_parsing_accuracy_pcfg
from transformer_helpers import create_model
import torch
import random
import argparse
import os
import numpy as np
import pickle
from tree_projection_src import TreeProjection
from tree_projection_src import (
left_branching_parse,
right_branching_parse,
random_parse,
get_parsing_accuracy,
read_inputs_and_parses,
)
def get_model(model_name, data, encoder_depth, **kwargs):
if data == "cogs":
_, in_vocab, out_vocab, _, _ = build_datasets()
elif data == "geoquery":
_, in_vocab, out_vocab, _, _ = build_datasets_semparse(
"semparse/{}.pickle".format(args.data)
)
elif data == "pcfg":
_, in_vocab, out_vocab, _, _ = build_datasets_pcfg(
base_folder=kwargs["base_folder"],
use_singleton=kwargs["singleton"],
use_no_commas=kwargs["no_commas"],
)
N_HEADS = 4
VEC_DIM = 512
ENCODER_LAYERS = encoder_depth
DECODER_LAYERS = 2
if "mlm" in model_name:
model = create_model(
len(in_vocab),
len(out_vocab),
VEC_DIM,
N_HEADS,
ENCODER_LAYERS,
DECODER_LAYERS,
mode="mlm",
)
else:
model = create_model(
len(in_vocab),
len(out_vocab),
VEC_DIM,
N_HEADS,
ENCODER_LAYERS,
DECODER_LAYERS,
)
if len(model_name) > 0:
model.load_state_dict(torch.load(model_name, map_location=torch.device("cpu")))
def tokenizer_fn(model):
def fn(s, add_special_tokens=True):
if add_special_tokens:
return [model.encoder_sos] + in_vocab(s) + [model.encoder_eos]
else:
return in_vocab(s)
return fn
tokenizer = tokenizer_fn(model)
return model, tokenizer
def get_scores(args, input_strs, gold_parses, get_data_for_lw_parser=False):
device = torch.device("cuda")
model, tokenizer = get_model(
args.model_name,
args.data,
args.encoder_depth,
base_folder=args.base_folder,
singleton=args.singleton,
no_commas=args.no_commas,
)
if get_data_for_lw_parser:
st_thresholds = [(args.encoder_depth) // 2]
else:
st_thresholds = [idx for idx in range((args.encoder_depth // 2) + 1)]
model.to(device)
model_name = args.model_name.split("/")[-1].split(".")[0]
print(model_name)
model_folder = args.model_name.split("/")[-2]
print(model_folder)
all_scores = [{}, {}, {}]
all_parses = {}
if args.data == "pcfg":
is_leaf_fn = is_leaf_fn_pcfg
else:
is_leaf_fn = None
tree_projector = TreeProjection(
model, tokenizer, sim_fn=args.sim_fn, normalize=True
)
for st in st_thresholds:
# input_str: The man is eating bananas
if st == args.layer_id:
break
parses_and_scores = [
tree_projector(
input_str,
st,
ret_dict=True,
layer_id=args.layer_id,
is_leaf_fn=is_leaf_fn,
is_invalid_fn=None,
)
for input_str in input_strs
]
parses = [x["pred_parse"] for x in parses_and_scores]
scores = [x["tscore"] for x in parses_and_scores]
if args.print_parses:
all_parses[st] = {sent: parse for sent, parse in zip(input_strs, parses)}
else:
if args.data == "pcfg":
parsing_acc = get_parsing_accuracy_pcfg(
parses, gold_parses, take_best=False
)
all_scores[1][(st, 0)] = parsing_acc["f1"]
else:
parsing_acc = get_parsing_accuracy(parses, gold_parses)
all_scores[1][(st, 0)] = parsing_acc["f1"]
all_scores[0][(st, 0)] = np.mean(scores)
print("tscore: ", all_scores[0][(st, 0)])
print("tparseval: ", all_scores[1][(st, 0)])
if get_data_for_lw_parser:
return all_parses[st_thresholds[0]]
if args.print_parses:
folder_name = "all_parses_m{}_{}".format(args.encoder_depth, args.data)
if not os.path.exists(folder_name):
os.makedirs(folder_name)
with open("{}/{}.pickle".format(folder_name, model_name), "wb") as writer:
pickle.dump(all_parses, writer)
else:
folder_name = "all_scores_m{}_{}_{}".format(
args.encoder_depth, args.data, model_folder
)
if args.layer_id != -1:
folder_name += "_{}".format(args.layer_id)
if args.singleton:
folder_name += "_singleton"
if args.no_commas:
folder_name += "_no_commas"
if args.base_folder != "m-pcfgset":
folder_name += "_{}".format(args.base_folder)
if not os.path.exists(folder_name):
os.makedirs(folder_name)
with open("{}/{}.pickle".format(folder_name, model_name), "wb") as writer:
pickle.dump(all_scores, writer)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str)
parser.add_argument("--print_parses", action="store_true")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--encoder_depth", type=int, default=2)
parser.add_argument(
"--sim_fn", type=str, default="cosine", choices=["cosine", "euclidean"]
)
parser.add_argument(
"--data",
type=str,
choices=["cogs", "pcfg", "geoquery"],
default="cogs",
)
parser.add_argument("--singleton", action="store_true")
parser.add_argument("--no_commas", action="store_true")
parser.add_argument("--base_folder", type=str, default="m-pcfgset")
parser.add_argument("--layer_id", type=int, default=-1)
parser.add_argument("--get_baselines", action="store_true")
args = parser.parse_args()
set_seed(args)
DATA_DIR = os.getcwd()
if args.data == "cogs":
dat_folder = "{}/data_utils/COGS_TREES".format(DATA_DIR)
data_file = "{}/train.pickle".format(dat_folder)
elif args.data == "geoquery":
dat_folder = "{}_trees".format(args.data)
data_file = "{}/train.pickle".format(dat_folder)
else:
data_file = "{}/pcfg_train_singleton_no_commas.pickle".format(args.base_folder)
model_name = args.model_name.split("/")[-1].split(".")[0]
print(model_name)
input_strs, gold_parses = read_inputs_and_parses(data_file)
if args.data in ["cogs", "pcfg"]:
sampled_idxs = random.sample(
range(len(input_strs)), k=min(len(input_strs), 5000)
)
input_strs = [input_strs[idx] for idx in sampled_idxs]
gold_parses = [gold_parses[idx] for idx in sampled_idxs]
if args.get_baselines:
lbranch = [left_branching_parse(s) for s in input_strs]
rbranch = [right_branching_parse(s) for s in input_strs]
random_tree = [random_parse(s) for s in input_strs]
baseline2trees = {
"left_branching": lbranch,
"right_branching": rbranch,
"random": random_tree,
}
for key in baseline2trees:
parses = baseline2trees[key]
if args.data == "pcfg":
parsing_acc = get_parsing_accuracy_pcfg(parses, gold_parses)
else:
parsing_acc = get_parsing_accuracy(parses, gold_parses)
print(key, parsing_acc)
else:
get_scores(args, input_strs, gold_parses)