-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdata_utils.py
142 lines (128 loc) · 4.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import yaml
with open('config.yaml') as fh:
config = yaml.load(fh, Loader=yaml.FullLoader)
import torch
from torch.autograd import Variable
from torchvision import transforms
from PIL import Image, ImageOps
import numpy as np
torch.backends.cudnn.deterministic = True
transformer = transforms.Compose([
# this transfrom converts BHWC -> BCHW and
# also divides the image by 255 by default if values are in range 0..255.
transforms.ToTensor(),
])
stride = config['output_stride']
torch_resizer = transforms.Compose([transforms.Resize(size=(config['img_height']//stride, config['img_width']//stride),
interpolation=transforms.InterpolationMode.NEAREST)])
torch_imgresizer = transforms.Compose([transforms.Resize(size=(config['img_height']//stride, config['img_width']//stride),
interpolation=transforms.InterpolationMode.BILINEAR)])
def collate(batch):
'''
custom Collat funciton for collating individual fetched data samples into batches.
'''
img = [ b['img'] for b in batch ] # w, h
lbl = [ b['lbl'] for b in batch ]
return {'img': img, 'lbl': lbl}
normalize = lambda x, alpha, beta : (((beta-alpha) * (x-np.min(x))) / (np.max(x)-np.min(x))) + alpha
standardize = lambda x : (x - np.mean(x)) / np.std(x)
def std_norm(img, norm=True, alpha=0, beta=1):
'''
Standardize and Normalizae data sample wise
alpha -> -1 or 0 lower bound
beta -> 1 upper bound
'''
img = standardize(img)
if norm:
img = normalize(img, alpha, beta)
return img
def _mask_transform(mask):
target = np.array(mask).astype('int32')
return target
def masks_transform(masks, numpy=False):
'''
masks: list of PIL images
'''
targets = []
for m in masks:
targets.append(_mask_transform(m))
targets = np.array(targets)
if numpy:
return targets
else:
return torch.from_numpy(targets).long().to('cuda' if torch.cuda.is_available() else 'cpu')
def images_transform(images):
'''
images: list of PIL images
'''
inputs = []
for img in images:
inputs.append(transformer(img))
inputs = torch.stack(inputs, dim=0).float().to('cuda' if torch.cuda.is_available() else 'cpu')
return inputs
def encode_labels(mask):
label_mask = np.zeros_like(mask)
for k in mapping_20:
label_mask[mask == k] = mapping_20[k]
return label_mask
mapping_20 = {
0: 0,
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 1,
8: 2,
9: 0,
10: 0,
11: 3,
12: 4,
13: 5,
14: 0,
15: 0,
16: 0,
17: 6,
18: 0,
19: 7,
20: 8,
21: 9,
22: 10,
23: 11,
24: 12,
25: 13,
26: 14,
27: 15,
28: 16,
29: 0,
30: 0,
31: 17,
32: 18,
33: 19,
-1: 0
}
cityscape_class_names = ['background', 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole',
'traffic light', 'traffic sign',
'vegetation', 'terrain', 'sky', 'person', 'rider', 'car',
'truck', 'bus', 'train', 'motorcycle', 'bicycle']
pallet_cityscape = np.array([[[0,0,0],
[128, 64, 128],
[244, 35, 232],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[70, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32]]], np.uint8) / 255