-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbricks.py
214 lines (167 loc) · 7.04 KB
/
bricks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import yaml
with open('config.yaml') as fh:
config = yaml.load(fh, Loader=yaml.FullLoader)
import torch
import torch.nn as nn
import torch.nn.functional as F
from sync_bn.nn.modules import SynchronizedBatchNorm2d
from functools import partial
#//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
norm_layer = partial(SynchronizedBatchNorm2d, momentum=float(config['SyncBN_MOM']))
class myLayerNorm(nn.Module):
def __init__(self, inChannels):
super().__init__()
self.norm == nn.LayerNorm(inChannels, eps=1e-5)
def forward(self, x):
# reshaping only to apply Layer Normalization layer
B, C, H, W = x.shape
x = x.flatten(2).transpose(1,2) # B*C*H*W -> B*C*HW -> B*HW*C
x = self.norm(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() # B*HW*C -> B*H*W*C -> B*C*H*W
return x
class NormLayer(nn.Module):
def __init__(self, inChannels, norm_type=config['norm_typ']):
super().__init__()
self.inChannels = inChannels
self.norm_type = norm_type
if norm_type == 'batch_norm':
# print('Adding Batch Norm layer') # for testing
self.norm = nn.BatchNorm2d(inChannels, eps=1e-5, momentum=float(config['BN_MOM']))
elif norm_type == 'sync_bn':
# print('Adding Sync-Batch Norm layer') # for testing
self.norm = norm_layer(inChannels)
elif norm_type == 'layer_norm':
# print('Adding Layer Norm layer') # for testing
self.norm == nn.myLayerNorm(inChannels)
else:
raise NotImplementedError
def forward(self, x):
x = self.norm(x)
return x
def __repr__(self):
return f'{self.__class__.__name__}(dim={self.inChannels}, norm_type={self.norm_type})'
#//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class LayerScale(nn.Module):
'''
Layer scale module.
References:
- https://arxiv.org/abs/2103.17239
'''
def __init__(self, inChannels, init_value=1e-2):
super().__init__()
self.inChannels = inChannels
self.init_value = init_value
self.layer_scale = nn.Parameter(init_value * torch.ones((inChannels)), requires_grad=True)
def forward(self, x):
if self.init_value == 0.0:
return x
else:
scale = self.layer_scale.unsqueeze(-1).unsqueeze(-1) # C, -> C,1,1
return scale * x
def __repr__(self):
return f'{self.__class__.__name__}(dim={self.inChannels}, init_value={self.init_value})'
#//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
def stochastic_depth(input: torch.Tensor, p: float,
mode: str, training: bool = True):
if not training or p == 0.0:
# print(f'not adding stochastic depth of: {p}')
return input
survival_rate = 1.0 - p
if mode == 'row':
shape = [input.shape[0]] + [1] * (input.ndim - 1) # just converts BXCXHXW -> [B,1,1,1] list
elif mode == 'batch':
shape = [1] * input.ndim
noise = torch.empty(shape, dtype=input.dtype, device=input.device)
noise = noise.bernoulli_(survival_rate)
if survival_rate > 0.0:
noise.div_(survival_rate)
# print(f'added sDepth of: {p}')
return input * noise
class StochasticDepth(nn.Module):
'''
Stochastic Depth module.
It performs ROW-wise dropping rather than sample-wise.
mode (str): ``"batch"`` or ``"row"``.
``"batch"`` randomly zeroes the entire input, ``"row"`` zeroes
randomly selected rows from the batch.
References:
- https://pytorch.org/vision/stable/_modules/torchvision/ops/stochastic_depth.html#stochastic_depth
'''
def __init__(self, p=0.5, mode='row'):
super().__init__()
self.p = p
self.mode = mode
def forward(self, input):
return stochastic_depth(input, self.p, self.mode, self.training)
def __repr__(self):
s = f"{self.__class__.__name__}(p={self.p})"
return s
#//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
def resize(input,
size=None,
scale_factor=None,
mode='bilinear',
align_corners=None,
warning=True):
return F.interpolate(input, size, scale_factor, mode, align_corners)
class DownSample(nn.Module):
def __init__(self, kernelSize=3, stride=2, in_channels=3, embed_dim=768):
super().__init__()
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=(kernelSize, kernelSize),
stride=stride, padding=(kernelSize//2, kernelSize//2))
# stride 4 => 4x down sample
# stride 2 => 2x down sample
def forward(self, x):
x = self.proj(x)
B, C, H, W = x.size()
# x = x.flatten(2).transpose(1,2)
return x, H, W
#//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class DWConv3x3(nn.Module):
'''Depth wise conv'''
def __init__(self, dim=768):
super(DWConv3x3, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x):
x = self.dwconv(x)
return x
class ConvBNRelu(nn.Module):
@classmethod
def _same_paddings(cls, kernel):
if kernel == 1:
return 0
elif kernel == 3:
return 1
def __init__(self, inChannels, outChannels, kernel=3, stride=1, padding='same',
dilation=1, groups=1):
super().__init__()
if padding == 'same':
padding = self._same_paddings(kernel)
self.conv = nn.Conv2d(inChannels, outChannels, kernel_size=kernel,
padding=padding, stride=stride, dilation=dilation,
groups=groups, bias=False)
self.norm = NormLayer(outChannels, norm_type=config['norm_typ'])
self.act = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
x = self.act(x)
return x
class SeprableConv2d(nn.Module):
def __init__(self, inChannels, outChannels, kernal_size=3, bias=False):
self.dwconv = nn.Conv2d(inChannels, inChannels, kernal_size=kernal_size,
groups=inChannels, bias=bias)
self.pwconv = nn.Conv2d(inChannels, inChannels, kernal_size=1, bias=bias)
def forward(self, x):
x = self.dwconv(x)
x = self.pwconv(x)
return x
class ConvRelu(nn.Module):
def __init__(self, inChannels, outChannels, kernel=1, bias=False):
super().__init__()
self.conv = nn.Conv2d(inChannels, outChannels, kernel_size=kernel, bias=False)
self.act = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.act(x)
return x