-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathappendix.py
1143 lines (988 loc) · 83.7 KB
/
appendix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
## script for creating the data for the appendix
import pandas as pd
import numpy as np
import os
import joblib
import optuna
from os import listdir
from os.path import isfile, join
from collections import OrderedDict
from pathlib import Path
SEED_GLOBAL = 42
# setting working directory for local runs
"""
print(os.getcwd())
if os.getcwd() != "/Users/moritzlaurer/Dropbox/PhD/Papers/nli/snellius/NLI-experiments":
os.chdir("./NLI-experiments")
"""
# create the results/appendix directory if it does not already exist - for code ocean
Path("../results/appendix/").mkdir(parents=True, exist_ok=True)
##### 1. appendix
### Manifesto
## Manifesto-8 data distribution
df_cl_manifesto = pd.read_csv("./data_clean/df_manifesto_all.csv", index_col="idx")
df_train_manifesto = pd.read_csv("./data_clean/df_manifesto_train.csv", index_col="idx")
df_test_manifesto = pd.read_csv("./data_clean/df_manifesto_test.csv", index_col="idx")
df_train_test_distribution_manifesto = pd.DataFrame([df_train_manifesto.label_domain_text.value_counts().rename("train"), df_test_manifesto.label_domain_text.value_counts().rename("test"),
df_cl_manifesto.label_domain_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_manifesto.index.name = "labels"
df_train_test_distribution_manifesto.to_csv("../results/appendix/1-table-data-distribution-manifesto-8.csv")
## Manifesto-military data distribution
df_cl_military = pd.read_csv("./data_clean/df_manifesto_military_cl.csv", index_col="idx")
df_train_military = pd.read_csv("./data_clean/df_manifesto_military_train.csv", index_col="idx")
df_test_military = pd.read_csv("./data_clean/df_manifesto_military_test.csv", index_col="idx")
df_train_test_distribution_military = pd.DataFrame([df_train_military.label_text.value_counts().rename("train"), df_test_military.label_text.value_counts().rename("test"),
df_cl_military.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_military.index.name = "labels"
df_train_test_distribution_military.to_csv("../results/appendix/2-table-data-distribution-manifesto-military.csv")
## Manifesto-protectionism data distribution
df_cl_protectionism = pd.read_csv("./data_clean/df_manifesto_protectionism_cl.csv", index_col="idx")
df_train_protectionism = pd.read_csv("./data_clean/df_manifesto_protectionism_train.csv", index_col="idx")
df_test_protectionism = pd.read_csv("./data_clean/df_manifesto_protectionism_test.csv", index_col="idx")
df_train_test_distribution_protectionism = pd.DataFrame([df_train_protectionism.label_text.value_counts().rename("train"), df_test_protectionism.label_text.value_counts().rename("test"),
df_cl_protectionism.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_protectionism.index.name = "labels"
df_train_test_distribution_protectionism.to_csv("../results/appendix/3-table-data-distribution-manifesto-protectionism.csv")
## Manifesto-morality data distribution
df_cl_morality = pd.read_csv("./data_clean/df_manifesto_morality_cl.csv", index_col="idx")
df_train_morality = pd.read_csv("./data_clean/df_manifesto_morality_train.csv", index_col="idx")
df_test_morality = pd.read_csv("./data_clean/df_manifesto_morality_test.csv", index_col="idx")
df_train_test_distribution_morality = pd.DataFrame([df_train_morality.label_text.value_counts().rename("train"), df_test_morality.label_text.value_counts().rename("test"),
df_cl_morality.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_morality.index.name = "labels"
df_train_test_distribution_morality.to_csv("../results/appendix/4-table-data-distribution-manifesto-morality.csv")
### Sentiment Economy
df_cl_senti = pd.read_csv("./data_clean/df_sentiment_news_econ_all.csv", index_col="idx")
df_train_senti = pd.read_csv("./data_clean/df_sentiment_news_econ_train.csv", index_col="idx")
df_test_senti = pd.read_csv("./data_clean/df_sentiment_news_econ_test.csv", index_col="idx")
df_train_test_distribution_senti = pd.DataFrame([df_train_senti.label_text.value_counts().rename("train"), df_test_senti.label_text.value_counts().rename("test"),
df_cl_senti.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_senti.index.name = "labels"
df_train_test_distribution_senti.to_csv("../results/appendix/5-table-data-distribution-sentiment.csv")
### Comparative Agendas Project (CAP) - US State of the Union Speeches (SotU)
df_cl_cap_sotu = pd.read_csv("./data_clean/df_cap_sotu_all.csv", index_col="idx")
df_train_cap_sotu = pd.read_csv("./data_clean/df_cap_sotu_train.csv", index_col="idx")
df_test_cap_sotu = pd.read_csv("./data_clean/df_cap_sotu_test.csv", index_col="idx")
df_train_test_distribution_cap_sotu = pd.DataFrame([df_train_cap_sotu.label_text.value_counts().rename("train"), df_test_cap_sotu.label_text.value_counts().rename("test"),
df_cl_cap_sotu.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_cap_sotu.index.name = "labels"
df_train_test_distribution_cap_sotu.to_csv("../results/appendix/6-table-data-distribution-cap-sotu.csv")
### Comparative Agendas Project (CAP) - US Court Cases
df_cl_cap_uscourt = pd.read_csv("./data_clean/df_cap_us_court_all.csv", index_col="idx")
df_train_cap_uscourt = pd.read_csv("./data_clean/df_cap_us_court_train.csv", index_col="idx")
df_test_cap_uscourt = pd.read_csv("./data_clean/df_cap_us_court_test.csv", index_col="idx")
df_train_test_distribution_cap_uscourt = pd.DataFrame([df_train_cap_uscourt.label_text.value_counts().rename("train"), df_test_cap_uscourt.label_text.value_counts().rename("test"),
df_cl_cap_uscourt.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_cap_uscourt.index.name = "labels"
df_train_test_distribution_cap_uscourt.to_csv("../results/appendix/7-table-data-distribution-cap-us-court.csv")
### CoronaNet
df_cl_coronanet = pd.read_csv("./data_clean/df_coronanet_20220124_all.csv", index_col="idx")
df_train_coronanet = pd.read_csv("./data_clean/df_coronanet_20220124_train.csv", index_col="idx")
df_test_coronanet = pd.read_csv("./data_clean/df_coronanet_20220124_test.csv", index_col="idx")
df_train_test_distribution_coronanet = pd.DataFrame([df_train_coronanet.label_text.value_counts().rename("train"), df_test_coronanet.label_text.value_counts().rename("test"),
df_cl_coronanet.label_text.value_counts().rename("all")]).transpose()
df_train_test_distribution_coronanet.index.name = "labels"
df_train_test_distribution_coronanet.to_csv("../results/appendix/8-table-data-distribution-coronanet.csv")
##### appendix 2. Hyperparameters and Pre-processing
### Best Hyperparameters for DeBERTa-base & DeBERTa-nli
# get all optuna study file paths
path_files_lst = [os.path.join(path, name) for path, subdirs, files in os.walk("results-raw/") for name in files if any(string not in name for string in [".DS_Store", "experiment"])]
path_files_lst = [path_files for path_files in path_files_lst if ".DS_Store" not in path_files]
path_files_lst = [path_files for path_files in path_files_lst if "experiment" not in path_files]
# exclude/include specific algo
path_files_lst = [path_files for path_files in path_files_lst if "logistic" not in path_files]
path_files_lst = [path_files for path_files in path_files_lst if "SVM" not in path_files]
# exclude hyperparameter dictionaries which are just copies from smaller sample runs (some don't have hp-search to save compute)
hyperparams_copies = [# no search after 2500
'results-raw/sentiment-news-econ/optuna_study_deberta-v3-base_03000samp_20221006.pkl',
'results-raw/sentiment-news-econ/optuna_study_DeBERTa-v3-base-mnli-fever-docnli-ling-2c_03000samp_20221006.pkl',
'results-raw/cap-us-court/optuna_study_DeBERTa-v3-base-mnli-fever-docnli-ling-2c_05000samp_20221006.pkl',
'results-raw/cap-us-court/optuna_study_deberta-v3-base_05000samp_20221006.pkl',
'results-raw/cap-us-court/optuna_study_DeBERTa-v3-base-mnli-fever-docnli-ling-2c_10000samp_20221006.pkl',
'results-raw/cap-us-court/optuna_study_deberta-v3-base_10000samp_20221006.pkl',
# no search after 5000
'results-raw/cap-sotu/optuna_study_deberta-v3-base_10000samp_20221006.pkl',
'results-raw/manifesto-8/optuna_study_deberta-v3-base_10000samp_20221006.pkl',
'results-raw/coronanet/optuna_study_deberta-v3-base_10000samp_20221006.pkl',
'results-raw/cap-sotu/optuna_study_DeBERTa-v3-base-mnli-fever-docnli-ling-2c_10000samp_20221006.pkl',
'results-raw/manifesto-8/optuna_study_DeBERTa-v3-base-mnli-fever-docnli-ling-2c_10000samp_20221006.pkl',
'results-raw/coronanet/optuna_study_DeBERTa-v3-base-mnli-fever-docnli-ling-2c_10000samp_20221006.pkl'
]
path_files_lst = [path_files for path_files in path_files_lst if path_files not in hyperparams_copies]
# add path name as key again to distinguish between datasets
hp_study_dic = {}
for path_file in path_files_lst:
hp_study_dic.update({path_file.replace("results-raw/", ""): joblib.load(path_file)})
## extract relevant information from optuna study object and overall dictionary
col_dataset = []
col_algo = []
col_method = []
col_sample = []
col_lr = []
col_epochs = []
col_batch = []
col_hypo_template = []
col_lr_warmup = []
col_lr_importance = []
col_epochs_importance = []
col_batch_importance = []
col_hypo_template_importance = []
col_lr_warmup_importance = []
col_f1_macro_mean = []
col_f1_micro_mean = []
col_f1_macro_std = []
col_f1_micro_std = []
for study_key, study_value in hp_study_dic.items():
study_value = study_value[list(study_value.keys())[0]]
col_dataset.append(study_value["dataset"])
col_algo.append(study_value["algorithm"]) # .split("/")[-1]
col_method.append(study_value["method"])
col_sample.append(study_value["n_max_sample_class"])
col_lr.append(study_value["optuna_study"].best_params["learning_rate"])
col_epochs.append(study_value["optuna_study"].best_params["num_train_epochs"])
col_batch.append(study_value["optuna_study"].best_params["per_device_train_batch_size"])
col_lr_importance.append(optuna.importance.get_param_importances(study_value['optuna_study'])["learning_rate"])
col_epochs_importance.append(optuna.importance.get_param_importances(study_value['optuna_study'])["num_train_epochs"])
col_batch_importance.append(optuna.importance.get_param_importances(study_value['optuna_study'])["per_device_train_batch_size"])
col_f1_macro_mean.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_macro_mean"])
col_f1_micro_mean.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_micro_mean"])
col_f1_macro_std.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_macro_std"])
col_f1_micro_std.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_micro_std"])
if "hypothesis_template" in study_value["optuna_study"].best_params.keys():
col_hypo_template.append(study_value["optuna_study"].best_params["hypothesis_template"])
col_hypo_template_importance.append(optuna.importance.get_param_importances(study_value['optuna_study'])["hypothesis_template"])
else:
col_hypo_template.append(np.nan)
col_hypo_template_importance.append(np.nan)
if "warmup_ratio" in study_value["optuna_study"].best_params.keys():
col_lr_warmup.append(study_value["optuna_study"].best_params["warmup_ratio"])
col_lr_warmup_importance.append(optuna.importance.get_param_importances(study_value['optuna_study'])["warmup_ratio"])
else:
col_lr_warmup.append(np.nan)
col_lr_warmup_importance.append(np.nan)
df_hp = pd.DataFrame(data={"algorithm": col_algo, "dataset": col_dataset, "method": col_method, "sample": col_sample,
"learning_rate": col_lr, "epochs": col_epochs, "batch_size": col_batch, "hypothesis": col_hypo_template,
"lr_warmup_ratio": col_lr_warmup,
"learning_rate_importance": col_lr_importance, "epochs_importance": col_epochs_importance,
"batch_size_importance": col_batch_importance, "hypothesis_importance": col_hypo_template_importance,
"lr_warmup_ratio_importance": col_lr_warmup_importance,
"f1_macro_mean": col_f1_macro_mean, "f1_micro_mean": col_f1_micro_mean,
"f1_macro_std": col_f1_macro_std, "f1_micro_std": col_f1_micro_std,
})
df_hp = df_hp.sort_values(["algorithm", "sample"], ascending=False)
df_hp = df_hp.drop(columns=["method", "f1_macro_mean", "f1_micro_mean", "f1_macro_std", "f1_micro_std"])
df_hp = df_hp.rename(columns={"hypothesis": "hypothesis/context"})
simple_algo_names_dic = {"SVM": "SVM", "microsoft/deberta-v3-base": "DeBERTa-v3-base", "MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c": "DeBERTa-v3-nli", "logistic": "logistic regression"}
df_hp.algorithm = df_hp.algorithm.map(simple_algo_names_dic)
df_hp.learning_rate_importance = df_hp.learning_rate_importance.round(2)
df_hp.epochs_importance = df_hp.epochs_importance.round(2)
df_hp.batch_size_importance = df_hp.batch_size_importance.round(2)
df_hp.hypothesis_importance = df_hp.hypothesis_importance.round(2)
df_hp.lr_warmup_ratio_importance = df_hp.lr_warmup_ratio_importance.round(2)
df_hp_deberta_base = df_hp[df_hp.algorithm == "DeBERTa-v3-base"].drop(columns=["algorithm", "lr_warmup_ratio", "lr_warmup_ratio_importance"])
df_hp_deberta_nli = df_hp[df_hp.algorithm == "DeBERTa-v3-nli"].drop(columns=["algorithm"])
df_hp_deberta_base.to_csv("../results/appendix/36-table-hyperparams-deberta-base.csv")
df_hp_deberta_nli.to_csv("../results/appendix/37-table-hyperparams-deberta-nli.csv")
### Best Hyperparameters for SVM
# get all optuna study file paths
path_files_lst = [os.path.join(path, name) for path, subdirs, files in os.walk("results-raw/") for name in files if any(string not in name for string in [".DS_Store", "experiment"])]
path_files_lst = [path_files for path_files in path_files_lst if ".DS_Store" not in path_files]
path_files_lst = [path_files for path_files in path_files_lst if "experiment" not in path_files]
# exclude/only specific algo?
path_files_lst = [path_files for path_files in path_files_lst if "SVM_tfidf" in path_files] #("20220700" in path_files)
# add path name as key again to distinguish between datasets
hp_study_dic = {}
for path_file in path_files_lst:
hp_study_dic.update({path_file.replace("results-raw/", ""): joblib.load(path_file)})
## extract relevant information from optuna study object and overall dictionary
col_dataset = []
col_algo = []
col_method = []
col_sample = []
col_ngram = []
col_max_df = []
col_min_df = []
col_kernel = []
col_c = []
col_gamma = []
col_class_weight = []
col_coef0 = []
col_degree = []
col_epochs = []
col_hypo_template = []
col_f1_macro_mean = []
col_f1_micro_mean = []
col_f1_macro_std = []
col_f1_micro_std = []
for study_key, study_value in hp_study_dic.items():
study_value = study_value[list(study_value.keys())[0]]
col_dataset.append(study_value["dataset"])
col_algo.append(study_value["algorithm"]) # .split("/")[-1]
col_method.append(study_value["method"])
col_sample.append(study_value["n_max_sample_class"])
col_ngram.append(study_value["optuna_study"].best_params["ngram_range"])
col_max_df.append(study_value["optuna_study"].best_params["max_df"])
col_min_df.append(study_value["optuna_study"].best_params["min_df"])
col_kernel.append(study_value["optuna_study"].best_params["kernel"])
col_c.append(study_value["optuna_study"].best_params["C"])
col_gamma.append(study_value["optuna_study"].best_params["gamma"])
col_class_weight.append(study_value["optuna_study"].best_params["class_weight"])
col_coef0.append(study_value["optuna_study"].best_params["coef0"])
col_degree.append(study_value["optuna_study"].best_params["degree"])
col_epochs.append(study_value["optuna_study"].best_params["num_train_epochs"])
col_f1_macro_mean.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_macro_mean"])
col_f1_micro_mean.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_micro_mean"])
col_f1_macro_std.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_macro_std"])
col_f1_micro_std.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_micro_std"])
if "hypothesis_template" in study_value["optuna_study"].best_params.keys():
col_hypo_template.append(study_value["optuna_study"].best_params["hypothesis_template"])
else:
col_hypo_template.append(np.nan)
df_hp_svm = pd.DataFrame(data={"algorithm": col_algo, "dataset": col_dataset, "method": col_method, "sample": col_sample,
"ngram": col_ngram, "max_df": col_max_df, "min_df": col_min_df, "kernel": col_kernel, "C": col_c,
"gamma": col_gamma, "class_weight": col_class_weight, "coef0": col_coef0, "degree": col_degree, "epochs": col_epochs,
"context": col_hypo_template,
"f1_macro_mean": col_f1_macro_mean, "f1_micro_mean": col_f1_micro_mean,
"f1_macro_std": col_f1_macro_std, "f1_micro_std": col_f1_micro_std,
})
df_hp_svm = df_hp_svm.sort_values(["algorithm", "sample"], ascending=False)
#simple_algo_names_dic = {"SVM": "SVM", "microsoft/deberta-v3-base": "BERT-base", "MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c": "BERT-base-nli", "logistic": "logistic regression"}
simple_algo_names_dic = {"logistic_tfidf": "logistic_tfidf", "logistic_embeddings": "logistic_embeddings",
"SVM_tfidf": "SVM_tfidf", "SVM_embeddings": "SVM_embeddings",
"deberta-v3-base": "BERT-base", "DeBERTa-v3-base-mnli-fever-docnli-ling-2c": "BERT-base-nli",
}
df_hp_svm.algorithm = df_hp_svm.algorithm.map(simple_algo_names_dic)
df_hp_svm = df_hp_svm.drop(columns=["method", "f1_macro_mean", "f1_micro_mean", "f1_macro_std", "f1_micro_std", "algorithm"])
df_hp_svm = df_hp_svm.rename(columns={"hypothesis": "hypothesis/context"})
df_hp_svm.C = df_hp_svm.C.round(2)
df_hp_svm.coef0 = df_hp_svm.coef0.round(2)
df_hp_svm.context = ["yes" if "context" in str(string) else np.nan if pd.isna(string) else "no" for string in df_hp_svm.context]
df_hp_svm.to_csv("../results/appendix/38-table-hyperparams-svm-tfidf.csv")
### Best Hyperparameters for Logistic Regression
# get all optuna study file paths
path_files_lst = [os.path.join(path, name) for path, subdirs, files in os.walk("results-raw/") for name in files if any(string not in name for string in [".DS_Store", "experiment"])]
path_files_lst = [path_files for path_files in path_files_lst if ".DS_Store" not in path_files]
path_files_lst = [path_files for path_files in path_files_lst if "experiment" not in path_files]
# exclude/only specific algo?
path_files_lst = [path_files for path_files in path_files_lst if "logistic_tfidf" in path_files] # and ("20220712" in path_files)
# add path name as key again to distinguish between datasets
hp_study_dic = {}
for path_file in path_files_lst:
hp_study_dic.update({path_file.replace("results-raw/", ""): joblib.load(path_file)})
#### extract relevant information from optuna study object and overall dictionary
col_dataset = []
col_algo = []
col_method = []
col_sample = []
col_ngram = []
col_max_df = []
col_min_df = []
col_solver = []
col_c = []
col_class_weight = []
col_max_iter = []
col_warm_start = []
col_hypo_template = []
col_f1_macro_mean = []
col_f1_micro_mean = []
col_f1_macro_std = []
col_f1_micro_std = []
for study_key, study_value in hp_study_dic.items():
study_value = study_value[list(study_value.keys())[0]]
col_dataset.append(study_value["dataset"])
col_algo.append(study_value["algorithm"]) # .split("/")[-1]
col_method.append(study_value["method"])
col_sample.append(study_value["n_max_sample_class"])
col_ngram.append(study_value["optuna_study"].best_params["ngram_range"])
col_max_df.append(study_value["optuna_study"].best_params["max_df"])
col_min_df.append(study_value["optuna_study"].best_params["min_df"])
col_solver.append(study_value["optuna_study"].best_params["solver"])
col_c.append(study_value["optuna_study"].best_params["C"])
col_class_weight.append(study_value["optuna_study"].best_params["class_weight"])
col_max_iter.append(study_value["optuna_study"].best_params["max_iter"])
col_warm_start.append(study_value["optuna_study"].best_params["warm_start"])
col_f1_macro_mean.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_macro_mean"])
col_f1_micro_mean.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_micro_mean"])
col_f1_macro_std.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_macro_std"])
col_f1_micro_std.append(study_value["optuna_study"].best_trial.user_attrs["metric_details"]["F1_micro_std"])
if "hypothesis_template" in study_value["optuna_study"].best_params.keys():
col_hypo_template.append(study_value["optuna_study"].best_params["hypothesis_template"])
else:
col_hypo_template.append(np.nan)
df_hp_lr = pd.DataFrame(data={"algorithm": col_algo, "dataset": col_dataset, "method": col_method, "sample": col_sample,
"ngram": col_ngram, "max_df": col_max_df, "min_df": col_min_df, "solver": col_solver,
"C": col_c, "class_weight": col_class_weight, "max_iter": col_max_iter, "warm_start": col_warm_start,
"context": col_hypo_template,
"f1_macro_mean": col_f1_macro_mean, "f1_micro_mean": col_f1_micro_mean,
"f1_macro_std": col_f1_macro_std, "f1_micro_std": col_f1_micro_std,
})
df_hp_lr = df_hp_lr.sort_values(["algorithm", "sample"], ascending=False)
#simple_algo_names_dic = {"SVM": "SVM", "microsoft/deberta-v3-base": "BERT-base", "MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c": "BERT-base-nli", "logistic": "logistic regression"}
simple_algo_names_dic = {"logistic_tfidf": "logistic_tfidf", "logistic_embeddings": "logistic_embeddings",
"SVM_tfidf": "SVM_tfidf", "SVM_embeddings": "SVM_embeddings",
"deberta-v3-base": "BERT-base", "DeBERTa-v3-base-mnli-fever-docnli-ling-2c": "BERT-base-nli",
}
df_hp_lr.algorithm = df_hp_lr.algorithm.map(simple_algo_names_dic)
df_hp_lr = df_hp_lr.drop(columns=["method", "f1_macro_mean", "f1_micro_mean", "f1_macro_std", "f1_micro_std", "algorithm"])
df_hp_lr.context = ["yes" if "context" in str(string) else np.nan if pd.isna(string) else "no" for string in df_hp_lr.context]
df_hp_lr.C = df_hp_lr.C.round(2)
df_hp_lr.to_csv("../results/appendix/39-table-hyperparams-logistic-tfidf.csv")
#### appendix 3 - Metrics per algorithm per sample size
### extract metrics
DATASET_NAME_LST = ["sentiment-news-econ", "coronanet", "cap-sotu", "cap-us-court", "manifesto-8",
"manifesto-military", "manifesto-protectionism", "manifesto-morality"]
def load_latest_experiment_dic(method_name="SVM_tfidf", dataset_name=None):
# get latest experiment for each method for the respective dataset - experiments take a long time and many were conducted
path_dataset = f"./results-raw/{dataset_name}"
file_names_lst = [f for f in listdir(path_dataset) if isfile(join(path_dataset, f))]
# print(dataset_name)
# print(method_name)
# print(file_names_lst)
## ! need to manually make sure that experiments for same dataset and method have same latest date
# experiment_dates = [int(file_name.split("_")[-1].replace(".pkl", "")) for file_name in file_names_lst if method_name in file_name]
experiment_dates = [int(file_name.split("_")[-1].replace(".pkl", "")) for file_name in file_names_lst if (method_name in file_name) and ("experiment" in file_name)]
#if method_name in ["SVM_tfidf", "logistic_tfidf"]:
# experiment_dates = [date for date in experiment_dates if date != 20220712] # testing potential issue with specific runs
if len(experiment_dates) > 0: # in case no experiment for method available yet
latest_experiment_date = np.max(experiment_dates)
# get only file names for latest experiment and respective method - ordered starting with smalles experiment
file_names = np.sort([file_name for file_name in file_names_lst if all(x in file_name for x in [str(latest_experiment_date), "experiment", method_name])])
# create compile sample experiments into single dic
experiment_dic = {}
[experiment_dic.update(joblib.load(f"./results-raw/{dataset_name}/{file_name}")) for file_name in file_names]
return experiment_dic
else:
return None
## load results
experiment_details_dic_all_methods_dataset = {}
for dataset_name in DATASET_NAME_LST:
# dataset_name = "cap-us-court"
experiment_details_dic_all_methods = {dataset_name: {}}
for method_name in ["logistic_tfidf", "SVM_tfidf", "logistic_embeddings", "SVM_embeddings",
"deberta-v3-base", "DeBERTa-v3-base-mnli-fever-docnli-ling-2c"
]:
experiment_dic = load_latest_experiment_dic(method_name=method_name, dataset_name=dataset_name)
if experiment_dic != None: # to catch cases where not experiment data for method available yet
experiment_details_dic_all_methods[dataset_name].update({method_name: experiment_dic})
experiment_details_dic_all_methods_dataset.update(experiment_details_dic_all_methods)
## print experiment dics to check results
"""for key_dataset in experiment_details_dic_all_methods_dataset:
print(key_dataset)
for key_method in experiment_details_dic_all_methods_dataset[key_dataset]:
print(" ", key_method)
print("")"""
# experiment_details_dic_all_methods_dataset["manifesto-military"]["xtremedistil-l6-h256-uncased"]
## Data preparation
dataset_n_class_dic = {"sentiment-news-econ": 2, "coronanet": 20, "cap-sotu": 22, "cap-us-court": 20, "manifesto-8": 8, "manifesto-44": 44,
"manifesto-military": 3, "manifesto-protectionism": 3, "manifesto-morality": 3}
### Adding several additional metrics for all datasets, algos, sample sizes to "metrics_mean" sub-dictionary
# based on reviewer feedback
# testing different metrics from sklearn https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
from sklearn.metrics import balanced_accuracy_score, precision_recall_fscore_support, accuracy_score, classification_report, cohen_kappa_score, matthews_corrcoef, roc_auc_score
top_xth = 4
def compute_metrics(label_pred, label_gold, label_text_alphabetical=None):
## metrics
precision_macro, recall_macro, f1_macro, _ = precision_recall_fscore_support(label_gold, label_pred, average='macro') # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
precision_micro, recall_micro, f1_micro, _ = precision_recall_fscore_support(label_gold, label_pred, average='micro') # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
acc_balanced = balanced_accuracy_score(label_gold, label_pred)
#acc_not_balanced = accuracy_score(label_gold, label_pred) # same as F1-micro
cohen_kappa = cohen_kappa_score(label_gold, label_pred)
matthews = matthews_corrcoef(label_gold, label_pred) # https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html#sklearn.metrics.matthews_corrcoef
#roc_auc_macro = roc_auc_score(label_gold, label_pred, average='macro', multi_class='ovo') # no possible because requires probabilites for predictions, but categorical ints, see https://stackoverflow.com/questions/61288972/axiserror-axis-1-is-out-of-bounds-for-array-of-dimension-1-when-calculating-auc; https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
## manual calculation of per-class-average accuracy and per intervals (e.g. thirds)
if not isinstance(label_gold, pd.core.series.Series): # some label arrays are already series for some reason
eval_gold_df = pd.DataFrame(pd.Series(label_gold, name="labels"))
else:
eval_gold_df = pd.DataFrame(data={"labels": label_gold.reset_index(drop=True)})
if not isinstance(label_pred, pd.core.series.Series): # some label arrays are already series for some reason
eval_pred_df = pd.DataFrame(pd.Series(label_pred, name="labels"))
else:
eval_pred_df = pd.DataFrame(data={"labels": label_pred.reset_index(drop=True)})
# calculate balanced accuracy manually - same as recall-macro
accuracy_per_class_dic = {}
for group_name, group_df in eval_gold_df.groupby(by="labels"):
label_gold_class_n = group_df
label_pred_class_n = eval_pred_df[eval_pred_df.index.isin(group_df.index)]
accuracy_per_class_dic.update({str(group_name): accuracy_score(label_gold_class_n, label_pred_class_n)})
accuracy_balanced_manual = np.mean(list(accuracy_per_class_dic.values()))
# calculate non-balanced accuracy for top 3rd and bottom two 3rd
n_class_topshare = int(len(np.unique(eval_gold_df)) / top_xth)
if n_class_topshare == 0: n_class_topshare = 1 # if only two classes, then n_class_topshare is 0. then set it to 1
# top 3rd
labels_topshare = [weird_tuple[0] for weird_tuple in eval_gold_df.value_counts()[:n_class_topshare].index.values.tolist()]
eval_gold_df_topshare = eval_gold_df[eval_gold_df.labels.isin(labels_topshare)]
eval_pred_df_topshare = eval_pred_df[eval_pred_df.index.isin(eval_gold_df_topshare.index)]
accuracy_topshare = accuracy_score(eval_gold_df_topshare, eval_pred_df_topshare)
# bottom two thirds
labels_bottomrest = [weird_tuple[0] for weird_tuple in eval_gold_df.value_counts()[n_class_topshare:].index.values.tolist()]
eval_gold_df_bottomrest = eval_gold_df[eval_gold_df.labels.isin(labels_bottomrest)]
eval_pred_df_bottomrest = eval_pred_df[eval_pred_df.index.isin(eval_gold_df_bottomrest.index)]
accuracy_bottomrest = accuracy_score(eval_gold_df_bottomrest, eval_pred_df_bottomrest)
## calculate F1 for high N classes (top 3rd) and low N class (bottom two 3rds) separately to see impact of class size on metrics
class_report = classification_report(label_gold, label_pred, output_dict=True, digits=2)
class_report = {k: v for k, v in class_report.items() if k not in ["accuracy", "macro avg", "weighted avg"]} # remove overall aggregate metrics and only maintain per-class metrics
class_report = dict(sorted(class_report.items(), key=lambda item: item[1]["support"], reverse=True)) # order report from highest to lowest support (examples per class)
#class_report = {"0": {"precision": "test", "support": 1}, "1": {"precision": "test", "support": 9}, "2": {"precision": "test", "support": 5}, "3": {"precision": "test", "support": 99}}
#class_report = dict(sorted(class_report.items(), key=lambda item: item[1]["support"]))
# add per-class accuracy - is equivalent to per-class recall
#class_report = {key_class_name: {**value_class_metrics, "accuracy": accuracy_per_class_dic[key_class_name]} for key_class_name, value_class_metrics in class_report.items()}
n_class_topshare = int(len(class_report) / top_xth)
if n_class_topshare == 0: n_class_topshare = 1 # if only two classes, then n_class_topshare is 0. then set it to 1
class_report_topshare = {k: class_report[k] for k in list(class_report)[:n_class_topshare]}
class_report_bottomrest = {k: class_report[k] for k in list(class_report)[n_class_topshare:]}
f1_macro_topshare = np.mean([value_class_metrics["f1-score"] for key_class, value_class_metrics in class_report_topshare.items()])
f1_macro_bottomrest = np.mean([value_class_metrics["f1-score"] for key_class, value_class_metrics in class_report_bottomrest.items()])
recall_macro_topshare = np.mean([value_class_metrics["recall"] for key_class, value_class_metrics in class_report_topshare.items()])
recall_macro_bottomrest = np.mean([value_class_metrics["recall"] for key_class, value_class_metrics in class_report_bottomrest.items()])
precision_macro_topshare = np.mean([value_class_metrics["precision"] for key_class, value_class_metrics in class_report_topshare.items()])
precision_macro_bottomrest = np.mean([value_class_metrics["precision"] for key_class, value_class_metrics in class_report_bottomrest.items()])
## calculate standard deviation of per-class metrics
accuracy_crossclass_std = np.std(list(accuracy_per_class_dic.values()))
f1_crossclass_std = np.std([value_class_metrics["f1-score"] for key_class, value_class_metrics in class_report.items()])
recall_crossclass_std = np.std([value_class_metrics["recall"] for key_class, value_class_metrics in class_report.items()])
precision_crossclass_std = np.std([value_class_metrics["precision"] for key_class, value_class_metrics in class_report.items()])
metrics = {'f1_macro': f1_macro,
f'f1_macro_top{top_xth}th': f1_macro_topshare,
f'f1_macro_rest': f1_macro_bottomrest,
'accuracy/f1_micro': f1_micro,
#'accuracy': acc_not_balanced,
'accuracy_balanced': acc_balanced,
f"accuracy_top{top_xth}th": accuracy_topshare,
"accuracy_rest": accuracy_bottomrest,
#'accuracy_balanced_manual': accuracy_balanced_manual, # confirmed that same as sklearn
'recall_macro': recall_macro,
'recall_micro': recall_micro,
f'recall_macro_top{top_xth}th': recall_macro_topshare,
'recall_macro_rest': recall_macro_bottomrest,
'precision_macro': precision_macro,
'precision_micro': precision_micro,
f'precision_macro_top{top_xth}th': precision_macro_topshare,
'precision_macro_rest': precision_macro_bottomrest,
'cohen_kappa': cohen_kappa,
'matthews_corrcoef': matthews,
#'roc_auc_macro': roc_auc_macro
'accuracy_crossclass_std': accuracy_crossclass_std,
'f1_crossclass_std': f1_crossclass_std,
'recall_crossclass_std': recall_crossclass_std,
'precision_crossclass_std': precision_crossclass_std
}
return metrics
metrics_all_name = ['f1_macro', f"f1_macro_top{top_xth}th", "f1_macro_rest", 'accuracy/f1_micro', 'accuracy_balanced',
'recall_macro', 'recall_micro', f'recall_macro_top{top_xth}th', 'recall_macro_rest', # 'accuracy_balanced_manual',
'precision_macro', 'precision_micro', f'precision_macro_top{top_xth}th', 'precision_macro_rest',
f"accuracy_top{top_xth}th", "accuracy_rest",
'cohen_kappa', 'matthews_corrcoef',
'accuracy_crossclass_std', 'f1_crossclass_std', 'recall_crossclass_std', 'precision_crossclass_std']
for key_dataset_name, experiment_details_dic_all_methods in experiment_details_dic_all_methods_dataset.items():
for method in experiment_details_dic_all_methods.keys():
for sample_size in experiment_details_dic_all_methods[method].keys():
results_per_seed_dic = {key: value for key, value in experiment_details_dic_all_methods[method][sample_size].items() if "metrics_seed" in key}
## recalculate several additional metrics based on reviewer feedback
for metric in metrics_all_name: #['f1_macro', 'f1_micro', 'accuracy_balanced', 'accuracy_not_b', 'precision_macro', 'recall_macro', 'precision_micro', 'recall_micro', 'cohen_kappa']:
metric_per_seed = [compute_metrics(value_metrics["eval_label_predicted_raw"], value_metrics["eval_label_gold_raw"])[metric] if len(value_metrics.keys()) >= 8 else 0 for key_metrics_seed, value_metrics in results_per_seed_dic.items()] # if else to distinguish between 0-shot runs for non-NLI algos and actual runs for all algos
#metric_per_seed = [print(len(value_metrics.keys())) if len(value_metrics.keys()) >= 8 else print("pups") for key_metrics_seed, value_metrics in results_per_seed_dic.items()] # if else to distinguish between 0-shot runs for non-NLI algos and actual runs for all algos
metric_mean = np.mean(metric_per_seed)
metric_std = np.std(metric_per_seed)
experiment_details_dic_all_methods[method][sample_size]["metrics_mean"].update({f"{metric}_mean": metric_mean, f"{metric}_std": metric_std})
print("Dataset done: ", key_dataset_name)
## iterate over all dataset experiment dics to extract metrics for viz
visual_data_dic_datasets = {}
for key_dataset_name, experiment_details_dic_all_methods in experiment_details_dic_all_methods_dataset.items():
### for one dataset iterate over each approach
## overall data for all approaches
n_classes = dataset_n_class_dic[key_dataset_name]
n_max_sample = []
n_total_samples = []
for key, value in experiment_details_dic_all_methods[list(experiment_details_dic_all_methods.keys())[0]].items(): # experiment_details_dic_all_methods["SVM"].items():
n_max_sample.append(value["n_max_sample"])
n_total_samples.append(value["n_train_total"])
if n_max_sample[-1] < 10000:
n_max_sample[-1] = f"{n_max_sample[-1]} (all)"
x_axis_values = [f"{n_sample}" for n_sample in n_max_sample]
# x_axis_values = ["0" if n_per_class == 0 else f"{str(n_total)} (all)" if n_per_class >= 1001 else f"{str(n_total)}" for n_per_class, n_total in zip(n_sample_per_class, n_total_samples)]
# if key_dataset_name == "cap-us-court": # CAP-us-court reaches max dataset with 320 samples per class
# x_axis_values = ["0" if n_per_class == 0 else f"{str(n_total)} (all)" if n_per_class >= 320 else f"{str(n_total)}" for n_per_class, n_total in zip(n_sample_per_class, n_total_samples)]
## unnest metric results in better format for visualisation
# generalised code for any metric
visual_data_dic = {}
for key_method in experiment_details_dic_all_methods:
name_second_step = list(experiment_details_dic_all_methods[key_method].items())[2][0]
# create empty list per metric to write/append to
metrics_dic = {key: [] for key in experiment_details_dic_all_methods[key_method][name_second_step]["metrics_mean"].keys()}
# metric_std_dic = {key: [] for key in experiment_details_dic_all_methods[key_method][name_second_step]["metrics_mean"].keys()}
for key_step in experiment_details_dic_all_methods[key_method]:
# metrics per step
for key_metric_name, value_metric in experiment_details_dic_all_methods[key_method][key_step]["metrics_mean"].items():
metrics_dic[key_metric_name].append(value_metric)
dic_method = {key_method: {"n_classes": n_classes, "x_axis_values": x_axis_values, **metrics_dic}}
# dic_method[key_method].update({key_metric_name: value_metric})
visual_data_dic.update(dic_method)
visual_data_dic_datasets.update({key_dataset_name: visual_data_dic})
### Disaggregated metrics per dataset
import copy
visual_data_dic_datasets_cl = copy.deepcopy(visual_data_dic_datasets)
metrics_all_dic = {}
for key_dataset, value_dataset in visual_data_dic_datasets_cl.items():
# delete unnecessary column
[visual_data_dic_datasets_cl[key_dataset][key_method].pop("n_classes", None) for key_method, value_method in visual_data_dic_datasets_cl[key_dataset].items()]
[visual_data_dic_datasets_cl[key_dataset][key_method].pop("f1_micro_mean", None) for key_method, value_method in visual_data_dic_datasets_cl[key_dataset].items()]
[visual_data_dic_datasets_cl[key_dataset][key_method].pop("f1_micro_std", None) for key_method, value_method in visual_data_dic_datasets_cl[key_dataset].items()]
# round numbers
for key_method, value_method in visual_data_dic_datasets_cl[key_dataset].items():
for key_metric, value_metric in visual_data_dic_datasets_cl[key_dataset][key_method].items():
if key_metric != "x_axis_values":
visual_data_dic_datasets_cl[key_dataset][key_method][key_metric] = [round(value, 3) for value in value_metric]
# build df
df_metrics_all_dataset = pd.DataFrame(data=visual_data_dic_datasets_cl[key_dataset]).round(3)
df_metrics_all_dataset = df_metrics_all_dataset.rename(index={'x_axis_values': 'n_sample'})
#metrics_ordered_lst = ["f1_macro_mean", "accuracy/f1_micro_mean", "accuracy_balanced_mean", "recall_macro_mean", "recall_micro_mean",
# "precision_macro_mean", "precision_micro_mean", "cohen_kappa_mean", "matthews_corrcoef_mean",
# "f1_macro_std", "accuracy/f1_micro_std", "accuracy_balanced_std", "recall_macro_std", "recall_micro_std",
# "precision_macro_std", "precision_micro_std", "cohen_kappa_std", "matthews_corrcoef_std"]
metrics_ordered_lst = [metric_name + "_mean" for metric_name in metrics_all_name] + [metric_name + "_std" for metric_name in metrics_all_name]
df_metrics_all_dataset = df_metrics_all_dataset.reindex(["n_sample"] + metrics_ordered_lst)
n_sample = df_metrics_all_dataset.loc["n_sample"][0]
df_metrics_all_dataset = df_metrics_all_dataset.drop("n_sample")
df_metrics_all_dataset = df_metrics_all_dataset.explode(list(df_metrics_all_dataset.columns))
df_metrics_all_dataset["n_sample"] = len(metrics_ordered_lst) * n_sample
df_metrics_all_dataset = df_metrics_all_dataset[['n_sample', 'logistic_tfidf', 'SVM_tfidf', 'logistic_embeddings', 'SVM_embeddings', 'deberta-v3-base', 'DeBERTa-v3-base-mnli-fever-docnli-ling-2c']]
df_metrics_all_dataset = df_metrics_all_dataset.rename(columns={'DeBERTa-v3-base-mnli-fever-docnli-ling-2c': 'deberta-v3-nli'})
metrics_all_dic.update({key_dataset: df_metrics_all_dataset})
# map table numbers from appendix PDF to dataset names to automatically create correct numbering
appendix_d4_table_map = {
"sentiment-news-econ": 31, "coronanet": 34, "cap-sotu": 32, "cap-us-court": 33, "manifesto-8": 27,
"manifesto-military": 28, "manifesto-protectionism": 29, "manifesto-morality": 30,
}
for dataset in metrics_all_dic:
metrics_all_dic[dataset][metrics_all_dic[dataset].index.isin(["f1_macro_mean", "accuracy/f1_micro_mean"])].to_excel(f"../results/appendix/{appendix_d4_table_map[dataset]}-table_D4_appendix_metrics_detailed_{dataset}.xlsx")
### Aggregate performance difference
simple_algo_names_dic = {"logistic_tfidf": "logistic_tfidf", "logistic_embeddings": "logistic_embeddings",
"SVM_tfidf": "SVM_tfidf", "SVM_embeddings": "SVM_embeddings",
"deberta-v3-base": "BERT-base", "DeBERTa-v3-base-mnli-fever-docnli-ling-2c": "BERT-base-nli",
}
## extract metrics to create df comparing performance per dataset per algo
# ! careful: not all datasets have 2500 data points, so if it says 2500, this includes 2116 for protectionism (and less full samples for higher intervals)
df_metrics_lst = []
df_std_lst = []
for metric in metrics_all_name: #["f1_macro", "f1_micro", "accuracy_balanced"]:
col_dataset = []
col_algo = []
col_f1_macro = []
cols_metrics_dic = {"0 (8 datasets)": [], "100 (8 datasets)": [], "500 (8 datasets)": [], "1000 (8 datasets)": [], "2500 (8 datasets)": [], "5000 (4 datasets)": [],
"10000 (3 datasets)": []}
cols_std_dic = {"0 (8 datasets)": [], "100 (8 datasets)": [], "500 (8 datasets)": [], "1000 (8 datasets)": [], "2500 (8 datasets)": [], "5000 (4 datasets)": [],
"10000 (3 datasets)": []}
for key_dataset in visual_data_dic_datasets:
#if key_dataset in datasets_selection:
for key_algo in visual_data_dic_datasets[key_dataset]:
col_dataset.append(key_dataset)
col_algo.append(simple_algo_names_dic[key_algo])
for i, k in enumerate(cols_metrics_dic.keys()):
if len(visual_data_dic_datasets[key_dataset][key_algo][f"{metric}_mean"]) > i:
cols_metrics_dic[k].append(visual_data_dic_datasets[key_dataset][key_algo][f"{metric}_mean"][i])
cols_std_dic[k].append(visual_data_dic_datasets[key_dataset][key_algo][f"{metric}_std"][i])
else:
cols_metrics_dic[k].append(np.nan)
cols_std_dic[k].append(np.nan)
## create aggregate metric dfs
df_metrics = pd.DataFrame(data={"dataset": col_dataset, "algorithm": col_algo, **cols_metrics_dic})
df_std = pd.DataFrame(data={"dataset": col_dataset, "algorithm": col_algo, **cols_std_dic})
df_metrics_lst.append(df_metrics)
df_std_lst.append(df_std)
## subset average metrics by dataset size
datasets_all = ["sentiment-news-econ", "cap-us-court", "manifesto-military", "manifesto-protectionism", "manifesto-morality", "coronanet", "cap-sotu", "manifesto-8"]
datasets_5000 = ["cap-us-court", "coronanet", "cap-sotu", "manifesto-8"]
datasets_10000 = ["coronanet", "cap-sotu", "manifesto-8"]
df_metrics_mean_dic = {}
for i, metric in enumerate(metrics_all_name):
df_metrics_mean_all = df_metrics_lst[i][df_metrics_lst[i].dataset.isin(datasets_all)].groupby(by="algorithm", as_index=True).apply(np.mean).round(4)[["0 (8 datasets)", "100 (8 datasets)", "500 (8 datasets)", "1000 (8 datasets)", "2500 (8 datasets)"]] #.iloc[:,:-1] # drop last column, is only us-court
df_metrics_mean_medium = df_metrics_lst[i][df_metrics_lst[i].dataset.isin(datasets_5000)].groupby(by="algorithm", as_index=True).apply(np.mean).round(4)[["5000 (4 datasets)"]] #.iloc[:,:-1] # drop last column, is only us-court
df_metrics_mean_large = df_metrics_lst[i][df_metrics_lst[i].dataset.isin(datasets_10000)].groupby(by="algorithm", as_index=True).apply(np.mean).round(4)[["10000 (3 datasets)"]]
#df_metrics_mean_all = df_metrics.groupby(by="algorithm", as_index=True).apply(np.mean).round(4)
df_metrics_mean = pd.concat([df_metrics_mean_all, df_metrics_mean_medium, df_metrics_mean_large], axis=1)
# add row with best classical algo value
#df_metrics_mean.loc["classical-best-tfidf"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean.loc["SVM_tfidf"], df_metrics_mean.loc["logistic_tfidf"])]
#df_metrics_mean.loc["classical-best-embed"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean.loc["SVM_embeddings"], df_metrics_mean.loc["logistic_embeddings"])]
if metric not in ['accuracy_crossclass_std', 'f1_crossclass_std', 'recall_crossclass_std', 'precision_crossclass_std']:
df_metrics_mean.loc["classical-best-tfidf"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean.loc["SVM_tfidf"], df_metrics_mean.loc["logistic_tfidf"])]
df_metrics_mean.loc["classical-best-embed"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean.loc["SVM_embeddings"], df_metrics_mean.loc["logistic_embeddings"])]
else: # minimum value for cross-class standard deviation
df_metrics_mean.loc["classical-best-tfidf"] = [min(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean.loc["SVM_tfidf"], df_metrics_mean.loc["logistic_tfidf"])]
df_metrics_mean.loc["classical-best-embed"] = [min(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean.loc["SVM_embeddings"], df_metrics_mean.loc["logistic_embeddings"])]
# order rows
order_algos = ["SVM_tfidf", "logistic_tfidf", "SVM_embeddings", "logistic_embeddings", "classical-best-tfidf", "classical-best-embed", "BERT-base", "BERT-base-nli"]
df_metrics_mean = df_metrics_mean.reindex(order_algos)
df_metrics_mean.index.name = "Sample size / Algorithm"
df_metrics_mean_dic.update({metric: df_metrics_mean.round(3)})
## comparing performance for 4 datasets that go up to 5000, for statement "similar performance 500 vs. 5000"
df_metrics_mean_4ds_dic = {}
for i, metric in enumerate(metrics_all_name):
df_metrics_mean_4ds = df_metrics_lst[i][df_metrics_lst[i].dataset.isin(datasets_5000)].groupby(by="algorithm", as_index=True).apply(np.mean).round(4)
# add row with best classical algo value
#df_metrics_mean_4ds.loc["classical-best-tfidf"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean_4ds.loc["SVM_tfidf"], df_metrics_mean_4ds.loc["logistic_tfidf"])]
#df_metrics_mean_4ds.loc["classical-best-embed"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean_4ds.loc["SVM_embeddings"], df_metrics_mean_4ds.loc["logistic_embeddings"])]
if metric not in ['accuracy_crossclass_std', 'f1_crossclass_std', 'recall_crossclass_std', 'precision_crossclass_std']:
df_metrics_mean_4ds.loc["classical-best-tfidf"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean_4ds.loc["SVM_tfidf"], df_metrics_mean_4ds.loc["logistic_tfidf"])]
df_metrics_mean_4ds.loc["classical-best-embed"] = [max(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean_4ds.loc["SVM_embeddings"], df_metrics_mean_4ds.loc["logistic_embeddings"])]
else: # minimum value for cross-class standard deviation
df_metrics_mean_4ds.loc["classical-best-tfidf"] = [min(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean_4ds.loc["SVM_tfidf"], df_metrics_mean_4ds.loc["logistic_tfidf"])]
df_metrics_mean_4ds.loc["classical-best-embed"] = [min(svm_metric, lr_metric) for svm_metric, lr_metric in zip(df_metrics_mean_4ds.loc["SVM_embeddings"], df_metrics_mean_4ds.loc["logistic_embeddings"])]
# order rows
order_algos = ["SVM_tfidf", "logistic_tfidf", "SVM_embeddings", "logistic_embeddings", "classical-best-tfidf", "classical-best-embed", "BERT-base", "BERT-base-nli"]
df_metrics_mean_4ds = df_metrics_mean_4ds.reindex(order_algos)
df_metrics_mean_4ds.index.name = "Sample size / Algorithm"
df_metrics_mean_4ds_dic.update({metric: df_metrics_mean_4ds.round(3)})
## difference in performance
df_metrics_difference_dic = {}
for i, metric in enumerate(metrics_all_name):
df_metrics_difference = pd.DataFrame(data={
"classical-best-embed vs. classical-best-tfidf": df_metrics_mean_dic[metric].loc["classical-best-embed"] - df_metrics_mean_dic[metric].loc["classical-best-tfidf"],
"BERT-base vs. classical-best-tfidf": df_metrics_mean_dic[metric].loc["BERT-base"] - df_metrics_mean_dic[metric].loc["classical-best-tfidf"],
"BERT-base vs. classical-best-embed": df_metrics_mean_dic[metric].loc["BERT-base"] - df_metrics_mean_dic[metric].loc["classical-best-embed"],
"BERT-base-nli vs. classical-best-tfidf": df_metrics_mean_dic[metric].loc["BERT-base-nli"] - df_metrics_mean_dic[metric].loc["classical-best-tfidf"],
"BERT-base-nli vs. classical-best-embed": df_metrics_mean_dic[metric].loc["BERT-base-nli"] - df_metrics_mean_dic[metric].loc["classical-best-embed"],
"BERT-base-nli vs. BERT-base": df_metrics_mean_dic[metric].loc["BERT-base-nli"] - df_metrics_mean_dic[metric].loc["BERT-base"],
}).transpose()
#df_metrics_difference = df_metrics_difference.applymap(lambda x: f"+{round(x, 2)}" if x > 0 else round(x, 2))
#df_metrics_difference = df_metrics_difference.applymap(lambda x: round(x, 2))
df_metrics_difference["mean (100 to 2500)"] = df_metrics_difference.apply(lambda rows: np.mean([rows['100 (8 datasets)'], rows['500 (8 datasets)'], rows['1000 (8 datasets)'], rows['2500 (8 datasets)']]), axis=1)
df_metrics_difference["mean all"] = df_metrics_difference.apply(lambda rows: np.mean([rows['100 (8 datasets)'], rows['500 (8 datasets)'], rows['1000 (8 datasets)'], rows['2500 (8 datasets)'], rows['5000 (4 datasets)'], rows['10000 (3 datasets)']]), axis=1)
df_metrics_difference.index.name = "Sample size"
df_metrics_difference_dic.update({metric: df_metrics_difference.round(3)})
## write to disk
map_d3_appendix_metrics_mean = {
'f1_macro': "18-table-D3", f"f1_macro_top{top_xth}th": "D3_supplement", "f1_macro_rest": "D3_supplement", 'accuracy/f1_micro': "19-table-D3",
'accuracy_balanced': "20-table-D3",
'recall_macro': "D3_supplement", 'recall_micro': "D3_supplement", f'recall_macro_top{top_xth}th': "D3_supplement", 'recall_macro_rest': "D3_supplement", # 'accuracy_balanced_manual',
'precision_macro': "D3_supplement", 'precision_micro': "D3_supplement", f'precision_macro_top{top_xth}th': "D3_supplement", 'precision_macro_rest': "D3_supplement",
f"accuracy_top{top_xth}th": "D3_supplement", "accuracy_rest": "D3_supplement",
'cohen_kappa': "D3_supplement", 'matthews_corrcoef': "D3_supplement",
'accuracy_crossclass_std': "D3_supplement", 'f1_crossclass_std': "D3_supplement", 'recall_crossclass_std': "D3_supplement", 'precision_crossclass_std': "D3_supplement"
}
map_d3_appendix_metrics_difference = {
'f1_macro': "21-table-D3", f"f1_macro_top{top_xth}th": "D3_supplement", "f1_macro_rest": "D3_supplement", 'accuracy/f1_micro': "22-table-D3",
'accuracy_balanced': "23-table-D3",
'recall_macro': "D3_supplement", 'recall_micro': "D3_supplement", f'recall_macro_top{top_xth}th': "D3_supplement", 'recall_macro_rest': "D3_supplement", # 'accuracy_balanced_manual',
'precision_macro': "D3_supplement", 'precision_micro': "D3_supplement", f'precision_macro_top{top_xth}th': "D3_supplement", 'precision_macro_rest': "D3_supplement",
f"accuracy_top{top_xth}th": "D3_supplement", "accuracy_rest": "D3_supplement",
'cohen_kappa': "D3_supplement", 'matthews_corrcoef': "D3_supplement",
'accuracy_crossclass_std': "D3_supplement", 'f1_crossclass_std': "D3_supplement", 'recall_crossclass_std': "D3_supplement", 'precision_crossclass_std': "D3_supplement"
}
map_d3_appendix_metrics_4_datasets = {
'f1_macro': "24-table-D3", f"f1_macro_top{top_xth}th": "D3_supplement", "f1_macro_rest": "D3_supplement", 'accuracy/f1_micro': "25-table-D3",
'accuracy_balanced': "26-table-D3",
'recall_macro': "D3_supplement", 'recall_micro': "D3_supplement", f'recall_macro_top{top_xth}th': "D3_supplement", 'recall_macro_rest': "D3_supplement", # 'accuracy_balanced_manual',
'precision_macro': "D3_supplement", 'precision_micro': "D3_supplement", f'precision_macro_top{top_xth}th': "D3_supplement", 'precision_macro_rest': "D3_supplement",
f"accuracy_top{top_xth}th": "D3_supplement", "accuracy_rest": "D3_supplement",
'cohen_kappa': "D3_supplement", 'matthews_corrcoef': "D3_supplement",
'accuracy_crossclass_std': "D3_supplement", 'f1_crossclass_std': "D3_supplement", 'recall_crossclass_std': "D3_supplement", 'precision_crossclass_std': "D3_supplement"
}
for metric in metrics_all_name:
if metric == "accuracy/f1_micro":
metric_path = "f1_micro"
else:
metric_path = metric
df_metrics_mean_dic[metric].to_excel(f"../results/appendix/{map_d3_appendix_metrics_mean[metric]}_appendix_mean_{metric_path}.xlsx")
df_metrics_difference_dic[metric].to_excel(f"../results/appendix/{map_d3_appendix_metrics_difference[metric]}_appendix_mean_difference_{metric_path}.xlsx")
df_metrics_mean_4ds_dic[metric].to_excel(f"../results/appendix/{map_d3_appendix_metrics_4_datasets[metric]}_appendix_mean_4ds_{metric_path}.xlsx")
##### Training time
### comparison in run-tune speeds
col_train_time = []
col_time_sample_size = []
col_time_algo_name = []
col_time_dataset_name = []
col_eval_per_sec = []
for key_name_dataset, value_dataset in experiment_details_dic_all_methods_dataset.items():
for key_name_algo, value_algo in experiment_details_dic_all_methods_dataset[key_name_dataset].items():
for key_name_sample_run, value_sample_run in experiment_details_dic_all_methods_dataset[key_name_dataset][key_name_algo].items():
if experiment_details_dic_all_methods_dataset[key_name_dataset][key_name_algo][key_name_sample_run]["n_max_sample"] in [100, 500, 1000, 2500, 5000, 10000]:
col_time_dataset_name.append(key_name_dataset)
col_time_algo_name.append(key_name_algo)
col_time_sample_size.append(experiment_details_dic_all_methods_dataset[key_name_dataset][key_name_algo][key_name_sample_run]["n_max_sample"])
col_train_time.append(round(experiment_details_dic_all_methods_dataset[key_name_dataset][key_name_algo][key_name_sample_run]["train_eval_time_per_model"] / 60, 0))
#col_eval_per_sec.append(experiment_details_dic_all_methods_dataset[key_name_dataset][key_name_algo][key_name_sample_run]["eval_samples_per_second"])
col_hardware = ["CPU (AMD Rome 7H12)" if any(algo in algo_name for algo in ["SVM_tfidf", "logistic_tfidf", "SVM_embeddings", "logistic_embeddings"]) else "GPU (A100)" for algo_name in col_time_algo_name]
df_speed = pd.DataFrame(data={"dataset": col_time_dataset_name, "algorithm": col_time_algo_name,
"sample size": col_time_sample_size, "minutes training": col_train_time,
"hardware": col_hardware})
df_speed.algorithm = df_speed.algorithm.map(simple_algo_names_dic) # simplify algorithm names
df_speed_mean = df_speed.groupby(by=["algorithm", "sample size"], as_index=False).apply(np.mean).round(2)
df_speed_mean["hardware"] = ["CPU (AMD Rome 7H12)" if algo in ["SVM_tfidf", "logistic_tfidf", "SVM_embeddings", "logistic_embeddings"] else "GPU (A100)" for algo in df_speed_mean.algorithm]
# sort values via categorical
df_speed_mean.algorithm = pd.Categorical(df_speed_mean.algorithm, categories=["SVM_tfidf", "logistic_tfidf", "SVM_embeddings", "logistic_embeddings", "BERT-base-nli", "BERT-base"])
df_speed_mean = df_speed_mean.sort_values(["algorithm", "sample size"])
df_speed_mean.to_csv("../results/appendix/40-table-training-time.csv")
##### appendix 5 - Details on text formatting for NLI
hypothesis_template = "The quote is about {}."
### manifesto-8
# short explicit labels
explicit_labels_dic_short = OrderedDict({
"Economy": "economy, or technology, or infrastructure, or free market",
"External Relations": "international relations, or foreign policy, or military",
"Fabric of Society": "law and order, or multiculturalism, or national way of life, or traditional morality",
"Freedom and Democracy": "democracy, or freedom, or human rights, or constitutionalism",
"Political System": "governmental efficiency, or political authority, or decentralisation, or corruption",
"Social Groups": "agriculture, or social groups, or labour groups, or minorities",
"Welfare and Quality of Life": "welfare, or education, or environment, or equality, or culture",
"No other category applies": "something other than the topics economy, international relations, society, freedom and democracy, political system, social groups, welfare. It is about non of these topics"
})
# long explicit labels
explicit_labels_dic_long = OrderedDict({
"Economy": "economy, free market economy, incentives, market regulation, economic planning, cooperation of government, employers and unions, protectionism, economic growth, technology and infrastructure, nationalisation, neoliberalism, marxism, sustainability",
"External Relations": "international relations, foreign policy, anti-imperialism, military, peace, internationalism, European Union",
"Fabric of Society": "society, national way of life, immigration, traditional morality, law and order, civic mindedness, solidarity, multiculturalism, diversity",
"Freedom and Democracy": "democracy, freedom, human rights, constitutionalism, representative or direct democracy",
"Political System": "political system, centralisation, governmental and administrative efficiency, political corruption, political authority",
"Social Groups": "social groups, labour groups, agriculture and farmers, middle class and professional groups, minority groups, women, students, old people",
"Welfare and Quality of Life": "welfare and quality of life, environmental protection, culture, equality, welfare state, education",
"No other category applies": "something other than the topics economy, international relations, society, freedom and democracy, political system, social groups, welfare. It is about non of these topics"
})
hypo_short_dic = OrderedDict()
for key_label, value_label in explicit_labels_dic_short.items():
hypo_short_dic.update({key_label: hypothesis_template.format(value_label)})
hypo_long_dic = OrderedDict()
for key_label, value_label in explicit_labels_dic_long.items():
hypo_long_dic.update({key_label: hypothesis_template.format(value_label)})
df_hypo_short_manifesto_8 = pd.DataFrame(data={"label": hypo_short_dic.keys(), "hypotheses_short": hypo_short_dic.values()})
df_hypo_long_manifesto_8 = pd.DataFrame(data={"label": hypo_long_dic.keys(), "hypotheses_long": hypo_long_dic.values()})
df_hypo_manifesto_8 = pd.merge(df_hypo_short_manifesto_8, df_hypo_long_manifesto_8, on="label")
df_hypo_manifesto_8.to_csv("../results/appendix/10-table-B6-appendix-hypotheses-manifesto-8.csv")
### manifest-military
hypothesis_hyperparams_dic = OrderedDict({
"template_quote":
{"Military: Positive": "The quote is positive towards the military",
"Military: Negative": "The quote is negative towards the military",
"Other": "The quote is not about military or defense"
},
"template_quote_2": # ! performed best for most train sizes
{"Military: Positive": "The quote is positive towards the military, for example for military spending, defense, military treaty obligations.",
"Military: Negative": "The quote is negative towards the military, for example against military spending, for disarmament, against conscription.",
"Other": "The quote is not about military or defense"
}})
df_hypo_short_manifesto_military = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote"].keys(), "hypotheses_short": hypothesis_hyperparams_dic["template_quote"].values()})
df_hypo_long_manifesto_military = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote_2"].keys(), "hypotheses_long": hypothesis_hyperparams_dic["template_quote_2"].values()})
df_hypo_manifesto_military = pd.merge(df_hypo_short_manifesto_military, df_hypo_long_manifesto_military, on="label")
df_hypo_manifesto_military.to_csv("../results/appendix/11-table-B6-appendix-hypotheses-manifesto-military.csv")
### manifesto-protectionism
hypothesis_hyperparams_dic = OrderedDict({
"template_quote":
{"Protectionism: Positive": "The quote is positive towards protectionism, for example protection of internal markets through tariffs or subsidies",
"Protectionism: Negative": "The quote is negative towards protectionism, for example in favour of free trade or open markets",
"Other": "The quote is not about protectionism or free trade" # , free trade, tariffs
},
"template_quote_2":
{"Protectionism: Positive": "The quote is positive towards protectionism, for example in favour of protection of internal markets through tariffs or export subsidies or quotas",
"Protectionism: Negative": "The quote is negative towards protectionism, for example in favour of free trade or open international markets",
"Other": "The quote is not about protectionism or free trade" # , free trade, tariffs
}})
df_hypo_short_manifesto_protectionism = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote"].keys(), "hypotheses_short": hypothesis_hyperparams_dic["template_quote"].values()})
df_hypo_long_manifesto_protectionism = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote_2"].keys(), "hypotheses_long": hypothesis_hyperparams_dic["template_quote_2"].values()})
df_hypo_manifesto_protectionism = pd.merge(df_hypo_short_manifesto_protectionism, df_hypo_long_manifesto_protectionism, on="label")
df_hypo_manifesto_protectionism.to_csv("../results/appendix/12-table-B6-appendix-hypotheses-manifesto-protectionism.csv")
### manifesto-morality
hypothesis_hyperparams_dic = OrderedDict({
"template_quote":
{"Traditional Morality: Positive": "The quote is positive towards traditional morality",
"Traditional Morality: Negative": "The quote is negative towards traditional morality",
"Other": "The quote is not about traditional morality"
},
"template_quote_2":
{
"Traditional Morality: Positive": "The quote is positive towards traditional morality, for example in favour of traditional family values, religious institutions, or against unseemly behaviour",
"Traditional Morality: Negative": "The quote is negative towards traditional morality, for example in favour of divorce or abortion, modern families, separation of church and state, modern values",
"Other": "The quote is not about traditional morality, for example not about family values, abortion or religion"
}
})
df_hypo_short_manifesto_morality = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote"].keys(), "hypotheses_short": hypothesis_hyperparams_dic["template_quote"].values()})
df_hypo_long_manifesto_morality = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote_2"].keys(), "hypotheses_long": hypothesis_hyperparams_dic["template_quote_2"].values()})
df_hypo_manifesto_morality = pd.merge(df_hypo_short_manifesto_morality, df_hypo_long_manifesto_morality, on="label")
df_hypo_manifesto_morality.to_csv("../results/appendix/13-table-B6-appendix-hypotheses-manifesto-morality.csv")
#### Sentiment Economy
hypothesis_hyperparams_dic = OrderedDict({
"template_quote":
{"positive": "The quote is overall positive",
"negative": "The quote is overall negative",
},
"template_complex":
{"positive": "The economy is performing well overall",
"negative": "The economy is performing badly overall",
}
})
df_hypo_quote_senti = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_quote"].keys(), "hypotheses_quote": hypothesis_hyperparams_dic["template_quote"].values()})
df_hypo_complex_senti = pd.DataFrame(data={"label": hypothesis_hyperparams_dic["template_complex"].keys(), "hypotheses_complex": hypothesis_hyperparams_dic["template_complex"].values()})
df_hypo_senti = pd.merge(df_hypo_quote_senti, df_hypo_complex_senti, on="label")
df_hypo_senti.to_csv("../results/appendix/14-table-B6-appendix-hypotheses-sentiment.csv")
#### CAP-SotU
explicit_labels_dic_short = OrderedDict({
'Agriculture': "agriculture",
'Culture': "cultural policy",
'Civil Rights': "civil rights, or minorities, or civil liberties",
'Defense': "defense, or military",
'Domestic Commerce': "banking, or finance, or commerce",
'Education': "education",
'Energy': "energy, or electricity, or fossil fuels",
'Environment': "the environment, or water, or waste, or pollution",
'Foreign Trade': "foreign trade",
'Government Operations': "government operations, or administration",
'Health': "health",
'Housing': "community development, or housing issues",
'Immigration': "migration",
'International Affairs': "international affairs, or foreign aid",
'Labor': "employment, or labour",
'Law and Crime': "law, crime, or family issues",
'Macroeconomics': "macroeconomics",
'Other': "other, miscellaneous",
'Public Lands': "public lands, or water management",
'Social Welfare': "social welfare",
'Technology': "space, or science, or technology, or communications",
'Transportation': "transportation",
})
explicit_labels_dic_long = OrderedDict({
'Agriculture': "agriculture, for example: agricultural foreign trade, or subsidies to farmers, or food inspection and safety, or agricultural marketing, or animal and crop disease, or fisheries, or R&D",
'Culture': "cultural policy",
'Civil Rights': "civil rights, for example: minority/gender/age/handicap discrimination, or voting rights, or freedom of speech, or privacy",
'Defense': "defense, for example: defense alliances, or military intelligence, or military readiness, or nuclear arms, or military aid, or military personnel issues, or military procurement, or reserve forces, or hazardous waste, or civil defense and terrorism, or contractors, or foreign operations, or R&D",
'Domestic Commerce': "domestic commerce, for example: banking, or securities and commodities, or consumer finance, or insurance regulation, or bankruptcy, or corporate management, or small businesses, or copyrights and patents, or disaster relief, or tourism, or consumer safety, or sports regulation, or R&D",
'Education': "education, for example: higher education, or education finance, or schools, or education of underprivileged, or vocational education, or education for handicapped, or excellence, or R&D",
'Energy': "energy, for example: nuclear energy and safety, or electricity, or natural gas & oil, or coal, or alternative and renewable energy, or conservation, or R&D",
'Environment': "the environment, for example: drinking water, or waste disposal, or hazardous waste, or air pollution, or recycling, or species and forest protection, or conservation, or R&D",
'Foreign Trade': "foreign trade, for example: trade agreements, or exports, or private investments, or competitiveness, or tariff and imports, or exchange rates",
'Government Operations': "government operations, for example: intergovernmental relations, or agencies, or bureaucracy, or postal service, or civil employees, or appointments, or national currency, or government procurement, or government property management, or tax administration, or public scandals, or government branch relations, or political campaigns, or census, or capital city, or national holidays",
'Health': "health, for example: health care reform, or health insurance, or drug industry, or medical facilities, or disease prevention, or infants and children, or mental health, or drug/alcohol/tobacco abuse, or R&D",
'Housing': "housing, for example: community development, or urban development, or rural housing, low-income assistance for housing, housing for veterans/elderly/homeless, or R&D",
'Immigration': "migration, for example: immigration, or refugees, or citizenship",
'International Affairs': "international affairs, for example: foreign aid, or international resources exploitation, or developing countries, or international finance, or western Europe, or specific countries, or human rights, or international organisations, or international terrorism, or diplomats",
'Labor': "labour, for example: worker safety, or employment training, or employee benefits, or labor unions, or fair labor standards, or youth employment, or migrant and seasonal workers",
'Law and Crime': "law and crime, for example: law enforcement agencies, or white collar crime, or illegal drugs, or court administration, or prisons, or juvenile crime, or child abuse, or family issues, or criminal and civil code, or police",
'Macroeconomics': "macroeconomics, for example: interest rates, or unemployment, or monetary policy, or national budget, or taxes, or industrial policy",
'Other': "other things, miscellaneous",
'Public Lands': "public lands, for example: national parks, or indigenous affairs, or public lands, or water resources, or dependencies and territories",
'Social Welfare': "social welfare, for example: low-income assistance, or elderly assistance, or disabled assistance, or volunteer associations, or child care, or social welfare",
'Technology': "technology, for example: government space programs, or commercial use of space, or science transfer, or telecommunications, or regulation of media, or weather science, or computers, or internet, or R&D",
'Transportation': "transportation, for example: mass transportation, or highways, or air travel, or railroads, or maritime, or infrastructure, or R&D",
})