-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest1..py
81 lines (63 loc) · 2.32 KB
/
test1..py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
## Integrate our code OpenAI API
import os
from constants import openai_key
from langchain.llms import OpenAI
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.chains import SequentialChain
import streamlit as st
os.environ["OPENAI_API_KEY"]=openai_key
# streamlit framework
st.title('Celebrity Search Results')
input_text=st.text_input("Search the topic u want")
# Prompt Templates
first_input_prompt=PromptTemplate(
input_variables=['name'],
template="Tell me about celebrity {name}"
)
# Memory
person_memory = ConversationBufferMemory(input_key='name',
memory_key='chat_history')
dob_memory = ConversationBufferMemory(input_key='person',
memory_key='chat_history')
descr_memory = ConversationBufferMemory(input_key='dob',
memory_key='description_history')
## OPENAI LLMS
llm=OpenAI(temperature=0.8)
chain=LLMChain(
llm=llm,
prompt=first_input_prompt,
verbose=True,
output_key='person',
memory=person_memory)
# Prompt Templates
second_input_prompt=PromptTemplate(
input_variables=['person'],
template="when was {person} born"
)
chain2=LLMChain(
llm=llm,
prompt=second_input_prompt,
verbose=True,
output_key='dob',
memory=dob_memory)
# Prompt Templates
third_input_prompt=PromptTemplate(
input_variables=['dob'],
template="Mention 5 major events happened around {dob} in the world"
)
chain3=LLMChain(llm=llm,prompt=third_input_prompt,verbose=True,output_key='description',memory=descr_memory)
parent_chain=SequentialChain(
chains=[chain,chain2,chain3],
input_variables=['name'],
output_variables=['person',
'dob',
'description'],
verbose=True)
if input_text:
st.write(parent_chain({'name':input_text}))
with st.expander('Person Name'):
st.info(person_memory.buffer)
with st.expander('Major Events'):
st.info(descr_memory.buffer)