-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnids_random_updated.py
241 lines (228 loc) · 14.7 KB
/
nids_random_updated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import sys
from sklearn.metrics import accuracy_score, confusion_matrix
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
import sklearn
from sklearn.neighbors import KNeighborsClassifier
import os
from sklearn.preprocessing import LabelEncoder
import tensorflow as tf
from sklearn.preprocessing import Normalizer
import pickle
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
data_Validate=pd.read_csv('fs_new validation project.csv')
columns = (['protocol_type','service','flag','logged_in','count','srv_serror_rate','srv_rerror_rate','same_srv_rate','diff_srv_rate','dst_host_count','dst_host_srv_count','dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate','dst_host_serror_rate','dst_host_rerror_rate','attack'])
data_Validate.columns=columns
protocol_type_le = LabelEncoder()
service_le = LabelEncoder()
flag_le = LabelEncoder()
data_Validate['protocol_type'] = protocol_type_le.fit_transform(data_Validate['protocol_type'])
data_Validate['service'] = service_le.fit_transform(data_Validate['service'])
data_Validate['flag'] = flag_le.fit_transform(data_Validate['flag'])
df_validate=data_Validate.copy(deep=True)
x_validate=df_validate.drop(['attack'],axis=1)
y_validate=pd.DataFrame(df_validate['attack'])
label_encoder = LabelEncoder()
scaler=MinMaxScaler()
x1=x_validate.copy(deep=True)
scaler=MinMaxScaler()
scaler.fit(x1)
scaled_data=scaler.transform(x1)
scaled_data=pd.DataFrame(scaled_data)
scaled_data.columns= x1.columns
x_validate=scaled_data
with open('knn_binary_class.sav', 'rb') as f:
knn_bin = pickle.load(f)
with open('knn_multi_class.sav', 'rb') as f:
knn_multi = pickle.load(f)
with open('random_forest_binary_class.sav', 'rb') as f:
randfor_bin = pickle.load(f)
with open('random_forest_multi_class.sav', 'rb') as f:
randfor_multi = pickle.load(f)
#knn_bin = pickle.load(open('knn_binary_class.sav', 'rb'))
# knn_multi = pickle.load(open('knn_multi_class.sav', 'rb'))
# randfor_bin = pickle.load(open('random_forest_binary_class.sav', 'rb'))
# randfor_multi = pickle.load(open('random_forest_multi_class.sav', 'rb'))
cnn_bin= tf.keras.models.load_model('latest_cnn_bin.h5')
cnn_multi= tf.keras.models.load_model('latest_cnn_multiclass.h5')
lstm_bin= tf.keras.models.load_model('lstm_latest_bin.h5')
lstm_multi= tf.keras.models.load_model('lstm_latest_multiclass.h5')
def advance():
#print("KNN ALGORITHM:")
tp=x_validate.sample()
val_knn=knn_bin.predict(tp)
if(val_knn==1):
for i in val_knn:
val_knn=i
print('KNN Binary Class Type : ATTACK')
tp_knn=knn_multi.predict(tp)
print('KNN Multi Class Type : ',tp_knn)
if(tp_knn=='dos'):
print('KNN Description : A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash. In both instances, the DoS attack deprives legitimate users (i.e. employees, members, or account holders) of the service or resource they expected.')
elif(tp_knn=='probe'):
print('KNN Description : Probing is another type of attack in which the intruder scans network devices to determine weakness in topology design or some opened ports and then use them in the future for illegal access to personal information.')
elif(tp_knn=='r2l'):
print('KNN Description : Remote to user (R2L) is a type of computer network attacks, in which an intruder sends set of packets to another computer or server over a network where he/she does not have permission to access as a local user.')
elif(tp_knn=='u2r'):
print('KNN Description : User to root attacks (U2R) is an another type of attack where the intruder tries to access the network resources as a normal user, and after several attempts, the intruder becomes as a full access user.')
elif(val_knn==0):
print('KNN Binary Class Type : NORMAL')
tp_knn=knn_multi.predict(tp)
print('KNN Multi Class Type : ',tp_knn)
if(tp_knn=='normal'):
print('KNN Description : This Is Safe.')
#print("RANDOM FOREST ALGORITHM:")
val_randfor=randfor_bin.predict(tp)
if(val_randfor==1):
print('RANDOM FOREST Binary Class Type : ATTACK')
#print('KNN Binary Class Type : ATTACK')
tp_rnd_for=knn_multi.predict(tp)
for i in tp_rnd_for:
tp_rnd_for=i
print('RANDOM FOREST Multi Class Type : ',tp_rnd_for)
if(tp_rnd_for=='dos'):
print('RANDOM FOREST Description : A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash. In both instances, the DoS attack deprives legitimate users (i.e. employees, members, or account holders) of the service or resource they expected.')
elif(tp_rnd_for=='probe'):
print('RANDOM FOREST Description : Probing is another type of attack in which the intruder scans network devices to determine weakness in topology design or some opened ports and then use them in the future for illegal access to personal information.')
elif(tp_rnd_for=='r2l'):
print('RANDOM FOREST Description : Remote to user (R2L) is a type of computer network attacks, in which an intruder sends set of packets to another computer or server over a network where he/she does not have permission to access as a local user.')
elif(tp_rnd_for=='u2r'):
print('RANDOM FOREST Description : User to root attacks (U2R) is an another type of attack where the intruder tries to access the network resources as a normal user, and after several attempts, the intruder becomes as a full access user.')
elif(val_randfor==0):
print('RANDOM FOREST Binary Class Type: NORMAL')
tp_randfor=randfor_multi.predict(tp)
print('RANDOM FOREST Multi Class Type : ',tp_randfor)
if(tp_randfor=='normal'):
print('RANDOM FOREST Description : This Is Safe.')
tp1=tp
scaler = Normalizer().fit(tp1)
tp1 = scaler.transform(tp1)
np.set_printoptions(precision=3)
tp1 = np.reshape(tp1, (tp1.shape[0],1, tp1.shape[1]))
val_cnn=cnn_bin.predict(tp1,verbose=False)
for i in val_cnn:
for j in i:
val_cnn=round(j)
if(val_cnn==1):
print('CNN Binary Class Type: ATTACK')
tp1=tp
scaler = Normalizer().fit(tp1)
tp1 = scaler.transform(tp1)
np.set_printoptions(precision=3)
tp1 = np.reshape(tp1, (tp1.shape[0], tp1.shape[1],1))
tp_cnn=cnn_multi.predict(tp1,verbose=0)
l=[]
for i in tp_cnn:
for j in i:
l.append(round(j))
if(l[0]==1):
print('CNN Multi Class Type : DoS')
print('CNN Description : A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash. In both instances, the DoS attack deprives legitimate users (i.e. employees, members, or account holders) of the service or resource they expected.')
elif(l[2]==1):
print('CNN Multi Class Type : Probe')
print('CNN Description : Probing is another type of attack in which the intruder scans network devices to determine weakness in topology design or some opened ports and then use them in the future for illegal access to personal information.')
elif(l[3]==1):
print('CNN Multi Class Type : R2L')
print('CNN Description : Remote to user (R2L) is a type of computer network attacks, in which an intruder sends set of packets to another computer or server over a network where he/she does not have permission to access as a local user.')
elif(l[4]==1):
print('CNN Multi Class Type : U2R')
print('CNN Description : User to root attacks (U2R) is an another type of attack where the intruder tries to access the network resources as a normal user, and after several attempts, the intruder becomes as a full access user.')
elif(l[1]==1):
print('CNN Multi Class Type : NORMAL')
print('CNN Description : This Is Safe')
elif(val_cnn==0):
print('CNN Binary Class Type : NORMAL')
tp1=tp
scaler = Normalizer().fit(tp1)
tp1 = scaler.transform(tp1)
np.set_printoptions(precision=3)
tp1 = np.reshape(tp1, (tp1.shape[0], tp1.shape[1],1))
tp_cnn=cnn_multi.predict(tp1,verbose=0)
l=[]
for i in tp_cnn:
for j in i:
l.append(round(j))
if(l[0]==1):
print('CNN Multi Class Type : DoS')
print('CNN Description : A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash. In both instances, the DoS attack deprives legitimate users (i.e. employees, members, or account holders) of the service or resource they expected.')
elif(l[2]==1):
print('CNN Multi Class Type : Probe')
print('CNN Description : Probing is another type of attack in which the intruder scans network devices to determine weakness in topology design or some opened ports and then use them in the future for illegal access to personal information.')
elif(l[3]==1):
print('CNN Multi Class Type : R2L')
print('CNN Description : Remote to user (R2L) is a type of computer network attacks, in which an intruder sends set of packets to another computer or server over a network where he/she does not have permission to access as a local user.')
elif(l[4]==1):
print('CNN Multi Class Type : U2R')
print('CNN Description : User to root attacks (U2R) is an another type of attack where the intruder tries to access the network resources as a normal user, and after several attempts, the intruder becomes as a full access user.')
elif(l[1]==1):
print('CNN Multi Class Type : Normal')
print('CNN Description : This Is Safe')
#print("LSTM ALGORITHM:")
tp1=tp
scaler = Normalizer().fit(tp1)
tp1 = scaler.transform(tp1)
np.set_printoptions(precision=3)
tp1 = np.reshape(tp1, (tp1.shape[0],1, tp1.shape[1]))
val_lstm=lstm_bin.predict(tp1,verbose=False)
for i in val_lstm:
for j in i:
val_lstm=round(j)
if(val_lstm==1):
print('LSTM Binary Class Type : ATTACK')
tp1=tp
scaler = Normalizer().fit(tp1)
tp1 = scaler.transform(tp1)
np.set_printoptions(precision=3)
tp1 = np.reshape(tp1, (tp1.shape[0], 1,tp1.shape[1]))
tp_lstm=lstm_multi.predict(tp1,verbose=0)
#tp_lstm=lstm_multi.predict(tp,verbose=0)
l=[]
for i in tp_lstm:
for j in i:
l.append(round(j))
if(l[0]==1):
print('LSTM Multi Class Type : DoS')
print('LSTM Description : A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash. In both instances, the DoS attack deprives legitimate users (i.e. employees, members, or account holders) of the service or resource they expected.')
elif(l[2]==1):
print('LSTM Multi Class Type : Probe')
print('LSTM Description : Probing is another type of attack in which the intruder scans network devices to determine weakness in topology design or some opened ports and then use them in the future for illegal access to personal information.')
elif(l[3]==1):
print('LSTM Multi Class Type : R2L')
print('LSTM Description : Remote to user (R2L) is a type of computer network attacks, in which an intruder sends set of packets to another computer or server over a network where he/she does not have permission to access as a local user.')
elif(l[4]==1):
print('LSTM Multi Class Type:U2R')
print('LSTM Description : User to root attacks (U2R) is an another type of attack where the intruder tries to access the network resources as a normal user, and after several attempts, the intruder becomes as a full access user.')
elif(l[1]==1):
print('LSTM Multi class Type : Normal')
print('LSTM Description : This Is Safe')
elif(round(val_lstm)==0):
print('LSTM-Binary Class Type : NORMAL')
tp1=tp
scaler = Normalizer().fit(tp1)
tp1 = scaler.transform(tp1)
np.set_printoptions(precision=3)
tp1 = np.reshape(tp1, (tp1.shape[0], 1,tp1.shape[1]))
tp_lstm=lstm_multi.predict(tp1,verbose=0)
#tp_lstm=lstm_multi.predict(tp,verbose=0)
l=[]
for i in tp_lstm:
for j in i:
l.append(round(j))
if(l[0]==1):
print('LSTM Multi Class Type : DoS')
print('LSTM Description : A Denial-of-Service (DoS) attack is an attack meant to shut down a machine or network, making it inaccessible to its intended users. DoS attacks accomplish this by flooding the target with traffic, or sending it information that triggers a crash. In both instances, the DoS attack deprives legitimate users (i.e. employees, members, or account holders) of the service or resource they expected.')
elif(l[2]==1):
print('LSTM Multi Class Type : Probe')
print('LSTM Description : Probing is another type of attack in which the intruder scans network devices to determine weakness in topology design or some opened ports and then use them in the future for illegal access to personal information.')
elif(l[3]==1):
print('LSTM Multi Class Type : R2L')
print('LSTM Description : Remote to user (R2L) is a type of computer network attacks, in which an intruder sends set of packets to another computer or server over a network where he/she does not have permission to access as a local user.')
elif(l[4]==1):
print('LSTM Multi Class Type : U2R')
print('LSTM Description : User to root attacks (U2R) is an another type of attack where the intruder tries to access the network resources as a normal user, and after several attempts, the intruder becomes as a full access user.')
elif(l[1]==1):
print('LSTM Multi Class Type : Normal')
print('LSTM Description : This Is Safe')
advance()