-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnids_csv_updated.py
177 lines (172 loc) · 5.27 KB
/
nids_csv_updated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import sys
from sklearn.metrics import accuracy_score, confusion_matrix
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
import sklearn
from sklearn.neighbors import KNeighborsClassifier
import os
#from google.colab import drive
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import Normalizer
import tensorflow as tf
import pickle
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
#Uploaded_files\fs_test.csv
path='Uploaded_files/'
val=sys.argv[1]
path+=sys.argv[2];
#path='/content/gdrive/My Drive/fs_test.csv'
f=open(path)
data_Validate=pd.read_csv(f)
columns = (['protocol_type','service','flag','logged_in','count','srv_serror_rate','srv_rerror_rate','same_srv_rate','diff_srv_rate','dst_host_count','dst_host_srv_count','dst_host_same_srv_rate','dst_host_diff_srv_rate','dst_host_same_src_port_rate','dst_host_serror_rate','dst_host_rerror_rate'])
data_Validate.columns=columns
protocol_type_le = LabelEncoder()
service_le = LabelEncoder()
flag_le = LabelEncoder()
data_Validate['protocol_type'] = protocol_type_le.fit_transform(data_Validate['protocol_type'])
data_Validate['service'] = service_le.fit_transform(data_Validate['service'])
data_Validate['flag'] = flag_le.fit_transform(data_Validate['flag'])
df_validate=data_Validate.copy(deep=True)
x_validate=df_validate.copy(deep=True)
label_encoder = LabelEncoder()
scaler=MinMaxScaler()
x1=x_validate.copy(deep=True)
scaler=MinMaxScaler()
scaler.fit(x1)
scaled_data=scaler.transform(x1)
scaled_data=pd.DataFrame(scaled_data)
scaled_data.columns= x1.columns
x_validate=pd.DataFrame(scaled_data)
print(x_validate.shape)
if(val=='knn'):
knn_bin = pickle.load(open('knn_binary_class.sav', 'rb'))
knn_multi = pickle.load(open('knn_multi_class.sav', 'rb'))
x_predict_bin=knn_bin.predict(x_validate)
x_predict_multi=knn_multi.predict(x_validate)
l=[]
for i in x_predict_bin:
if(i == 0):
l.append('Normal')
else:
l.append('Attack')
l=np.array(l)
df_validate['binary class']=l
df_validate['multi class']=x_predict_multi
df_validate.to_csv(path,index=False)
elif(val=='rf'):
rf_bin = pickle.load(open('random_forest_binary_class.sav', 'rb'))
rf_multi = pickle.load(open('random_forest_multi_class.sav', 'rb'))
x_predict_bin=rf_bin.predict(x_validate)
x_predict_multi=rf_multi.predict(x_validate)
l=[]
for i in x_predict_bin:
if(i == 0):
l.append('Normal')
else:
l.append('Attack')
l=np.array(l)
df_validate['binary class']=l
df_validate['multi class']=x_predict_multi
df_validate.to_csv(path,index=False)
elif(val=='cnn'):
x_validate=df_validate.iloc[:,0:16]
scaler = Normalizer().fit(x_validate)
x_validate = scaler.transform(x_validate)
np.set_printoptions(precision=3)
cnn_bin=tf.keras.models.load_model('latest_cnn_bin.h5')
cnn_multi=tf.keras.models.load_model('latest_cnn_multiclass.h5')
x_validate = np.reshape(x_validate, (x_validate.shape[0],1,x_validate.shape[1]))
x_predict_bin=cnn_bin.predict(x_validate,verbose=False)
x_validate=df_validate.iloc[:,0:16]
scaler = Normalizer().fit(x_validate)
x_validate = scaler.transform(x_validate)
np.set_printoptions(precision=3)
x_validate = np.reshape(x_validate, (x_validate.shape[0],x_validate.shape[1],1))
x_predict_multi=cnn_multi.predict(x_validate,verbose=False)
l=[]
l1=[]
for i in x_predict_multi:
te=[]
for j in i:
te.append(round(j))
l.append(te)
res=[]
for i in l:
if(i[0]==1):
res.append('Dos')
elif(i[1]==1):
res.append('Normal')
elif(i[2]==1):
res.append('Probe')
elif(i[3]==1):
res.append('R2L')
elif(i[4]==1):
res.append('U2R')
else:
res.append('Normal')
l=np.array(res)
l1=[]
for i in x_predict_bin:
for j in i:
l1.append(round(j))
res=[]
for i in l1:
if(i==0):
res.append('Normal')
else:
res.append('Attack')
l1=np.array(res)
df_validate['binary class']=l1
print(l)
df_validate['multi class']=l
df_validate.to_csv(path,index=False)
elif(val=='lstm'):
lstm_bin=tf.keras.models.load_model('lstm_latest_bin.h5')
lstm_multi=tf.keras.models.load_model('lstm_latest_multiclass.h5')
x_validate=df_validate.iloc[:,0:16]
scaler = Normalizer().fit(x_validate)
x_validate = scaler.transform(x_validate)
np.set_printoptions(precision=3)
x_validate = np.reshape(x_validate, (x_validate.shape[0],1, x_validate.shape[1]))
x_predict_bin=lstm_bin.predict(x_validate,verbose=False)
x_predict_multi=lstm_multi.predict(x_validate,verbose=False)
l=[]
l1=[]
for i in x_predict_multi:
te=[]
for j in i:
te.append(round(j))
l.append(te)
res=[]
for i in l:
if(i[0]==1):
res.append('Dos')
elif(i[1]==1):
res.append('Normal')
elif(i[2]==1):
res.append('Probe')
elif(i[3]==1):
res.append('R2L')
elif(i[4]==1):
res.append('U2R')
else:
res.append('Normal')
l=np.array(res)
l1=[]
for i in x_predict_bin:
for j in i:
l1.append(round(j))
res=[]
for i in l1:
if(i==0):
res.append('Normal')
else:
res.append('Attack')
l1=np.array(res)
df_validate['binary class']=l1
df_validate['multi class']=l
df_validate.to_csv(path,index=False)
print('completed')