-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
500 lines (412 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""Trainining script for WaveNet vocoder
usage: train.py [options]
options:
--run-name=<str> Name the process to log the info.
--device=<N> Select the device to run the model. -1: CPU, >0 GPU_id.
--phase=<str> Train or synthesis.
--data-root=<dir> Directory contains preprocessed features.
--checkpoint-name=<path> Select the chechpoint to load into the model.
--hparams=<parmas> Hyper parameters [default: ].
--preset=<json> Path of preset parameters (json).
--log-event-path=<name> Log event path.
--reset-optimizer Reset optimizer.
--speaker-id=<N> Use specific speaker of data in case for multi-speaker datasets.
--text-list-file=<path> Use specific file to synthesis the melspectrum.
-h, --help Show this help message and exit
"""
from docopt import docopt
import argparse
from utils import *
import os
import infolog
import shutil
import time
import warnings
import random
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import numpy as np
from model import builder
from model.loss import MaskedBCELoss, MaskedMSELoss
from hparams import hparams, hparams_debug_string
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from datasets.dataloader import AudiobookDataset, AudioCollate, _ch_symbol_to_id, text_to_seq, get_item_list
from datasets.dataloader import SimilarTimeLengthSampler, DynamicalSimilarTimeLengthSampler, DynamicalBatchSampler
from tensorboardX import SummaryWriter
from os.path import dirname, join, expanduser
from utils import ValueWindow, time_string, plot_alignment
import infolog
log = infolog.log
global best_loss
global global_epoch
global global_step
torch.backends.cudnn.enabled = False
def train(train_loader, model, device, mels_criterion, stop_criterion, optimizer, scheduler, writer, train_dir):
batch_time = ValueWindow()
data_time = ValueWindow()
losses = ValueWindow()
# switch to train mode
model.train()
end = time.time()
global global_epoch
global global_step
for i, (txts, mels, stop_tokens, txt_lengths, mels_lengths) in enumerate(train_loader):
scheduler.adjust_learning_rate(optimizer, global_step)
# measure data loading time
data_time.update(time.time() - end)
if device > -1:
txts = txts.cuda(device)
mels = mels.cuda(device)
stop_tokens = stop_tokens.cuda(device)
txt_lengths = txt_lengths.cuda(device)
mels_lengths = mels_lengths.cuda(device)
# compute output
frames, decoder_frames, stop_tokens_predict, alignment = model(txts, txt_lengths, mels)
decoder_frames_loss = mels_criterion(decoder_frames, mels, lengths=mels_lengths)
frames_loss = mels_criterion(frames, mels, lengths=mels_lengths)
stop_token_loss = stop_criterion(stop_tokens_predict, stop_tokens, lengths=mels_lengths)
loss = decoder_frames_loss + frames_loss + stop_token_loss
#print(frames_loss, decoder_frames_loss)
losses.update(loss.item())
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
if hparams.clip_thresh > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.get_trainable_parameters(), hparams.clip_thresh)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % hparams.print_freq == 0:
log('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(global_epoch, i, len(train_loader),
batch_time=batch_time, data_time=data_time, loss=losses)
)
# Logs
writer.add_scalar("loss", float(loss.item()), global_step)
writer.add_scalar("avg_loss in {} window".format(losses.get_dinwow_size), float(losses.avg), global_step)
writer.add_scalar("stop_token_loss", float(stop_token_loss.item()), global_step)
writer.add_scalar("decoder_frames_loss", float(decoder_frames_loss.item()), global_step)
writer.add_scalar("output_frames_loss", float(frames_loss.item()), global_step)
if hparams.clip_thresh > 0:
writer.add_scalar("gradient norm", grad_norm, global_step)
writer.add_scalar("learning rate", optimizer.param_groups[0]['lr'], global_step)
global_step += 1
dst_alignment_path = join(train_dir, "{}_alignment.png".format(global_step))
alignment = alignment.cpu().detach().numpy()
plot_alignment(alignment[0, :txt_lengths[0], :mels_lengths[0]], dst_alignment_path, info="{}, {}".format(hparams.builder, global_step))
def validate(val_loader, model, device, mels_criterion, stop_criterion, writer, val_dir):
batch_time = ValueWindow()
losses = ValueWindow()
# switch to evaluate mode
model.eval()
global global_epoch
global global_step
with torch.no_grad():
end = time.time()
for i, (txts, mels, stop_tokens, txt_lengths, mels_lengths) in enumerate(val_loader):
# measure data loading time
batch_time.update(time.time() - end)
if device > -1:
txts = txts.cuda(device)
mels = mels.cuda(device)
stop_tokens = stop_tokens.cuda(device)
txt_lengths = txt_lengths.cuda(device)
mels_lengths = mels_lengths.cuda(device)
# compute output
frames, decoder_frames, stop_tokens_predict, alignment = model(txts, txt_lengths, mels)
decoder_frames_loss = mels_criterion(decoder_frames, mels, lengths=mels_lengths)
frames_loss = mels_criterion(frames, mels, lengths=mels_lengths)
stop_token_loss = stop_criterion(stop_tokens_predict, stop_tokens, lengths=mels_lengths)
loss = decoder_frames_loss + frames_loss + stop_token_loss
losses.update(loss.item())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % hparams.print_freq == 0:
log('Epoch: [{0}]\t'
'Test: [{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(global_epoch, i, len(val_loader),
batch_time=batch_time, loss=losses)
)
# Logs
writer.add_scalar("loss", float(loss.item()), global_step)
writer.add_scalar("avg_loss in {} window".format(losses.get_dinwow_size), float(losses.avg),
global_step)
writer.add_scalar("stop_token_loss", float(stop_token_loss.item()), global_step)
writer.add_scalar("decoder_frames_loss", float(decoder_frames_loss.item()), global_step)
writer.add_scalar("output_frames_loss", float(frames_loss.item()), global_step)
dst_alignment_path = join(val_dir, "{}_alignment.png".format(global_step))
alignment = alignment.cpu().detach().numpy()
plot_alignment(alignment[0, :txt_lengths[0], :mels_lengths[0]], dst_alignment_path, info="{}, {}".format(hparams.builder, global_step))
return losses.avg
def synthesis(test_lines, model, device, log_dir):
global global_epoch
global global_step
synthesis_dir = os.path.join(log_dir, "synthesis_mels")
os.makedirs(synthesis_dir, exist_ok=True)
model.eval()
with torch.no_grad():
for idx, line in enumerate(test_lines):
txt = text_to_seq(line)
if device > -1:
txt = txt.cuda(device)
frames, _, _, alignment = model(txt)
dst_alignment_path = join(synthesis_dir, "{}_alignment_{}.png".format(global_step, idx))
dst_mels_path = join(synthesis_dir, "{}_mels_{}.npy".format(global_step, idx))
plot_alignment(alignment.T, dst_alignment_path, info="{}, {}".format(hparams.builder, global_step))
np.save(dst_mels_path, frames)
class ExpLRDecay(object):
def __init__(self, init_learning_rate, decay_rate, start_step, decay_steps):
self.init_learning_rate = init_learning_rate
self.decay_rate = decay_rate
self.start_step = start_step
self.decay_steps = decay_steps
def adjust_learning_rate(self, optimizer, step):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = self.init_learning_rate * (1-self.decay_rate) ** ((step - self.start_step) / self.decay_steps)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(model, optimizer, checkpoint_dir):
global global_epoch
global global_step
checkpoint_path = join(checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": global_step,
"global_epoch": global_epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path, device):
if device > -1:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, device, optimizer, reset_optimizer):
global global_epoch
global global_step
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path, device)
model.load_state_dict(checkpoint["state_dict"])
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model
def build_model():
num_chars = len(_ch_symbol_to_id) + 1
model = getattr(builder, hparams.builder)(
num_chars=num_chars,
max_decoder_steps=hparams.max_decoder_steps,
frames_per_step=hparams.frames_per_step,
dim_embedding=hparams.dim_embedding,
dim_encoder=hparams.dim_encoder,
enc_kernel_size=hparams.enc_kernel_size,
num_mels=hparams.num_mels,
dim_attention=hparams.dim_attention,
dim_decoder=hparams.dim_decoder,
dim_prenet=hparams.dim_prenet,
num_layers=hparams.num_layers,
num_location_features=hparams.num_location_features,
gate_threshold=hparams.gate_threshold,
dec_num_filters=hparams.dec_num_filters,
dec_kernel_size=hparams.dec_kernel_size,
batch_size=hparams.batch_size
)
return model
def prepare_run(run_name):
log_dir = os.path.join(dirname(__file__), 'logs-{}'.format(run_name))
os.makedirs(log_dir, exist_ok=True)
infolog.init(os.path.join(log_dir, 'Terminal_train_log'), run_name)
return log_dir
def main():
args = docopt(__doc__)
print("Command line args:\n", args)
run_name = args["--run-name"] # dataset root
device = args["--device"]
phase = args["--phase"] # train or synthesis
data_root = args["--data-root"] # dataset root
checkpoint_name = args["--checkpoint-name"]
speaker_id = args["--speaker-id"]
log_event_path = args["--log-event-path"]
reset_optimizer = args["--reset-optimizer"]
text_list_file_path = args["--text-list-file"]
preset = args["--preset"]
speaker_id = int(speaker_id) if speaker_id is not None else None
if run_name is None:
run_name = "Tacotron2" + time_string()
log_dir = prepare_run(run_name)
if data_root is None:
data_root = os.path.join(dirname(__file__), "data", "mandarin")
# Load preset if specified
if preset is not None:
with open(preset) as f:
hparams.parse_json(f.read())
# Override hyper parameters
hparams.parse(args["--hparams"])
assert hparams.builder == "Tacotron2"
if device is not None:
hparams.device = device
print(hparams_debug_string())
train_path = os.path.join(log_dir, "train")
val_path = os.path.join(log_dir, "val")
checkpoint_path = os.path.join(log_dir, "pretrained")
os.makedirs(train_path, exist_ok=True)
os.makedirs(val_path, exist_ok=True)
os.makedirs(checkpoint_path, exist_ok=True)
best_loss = 0
global global_epoch
global_epoch = 0
global global_step
global_step = 0
if hparams.seed is not None:
random.seed(hparams.seed)
torch.manual_seed(hparams.seed)
cudnn.deterministic = hparams.cudnn_deterministic
cudnn.benchmark = hparams.cudnn_benchmark
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
log("The system set the random number to:{}".format(hparams.seed))
if hparams.device > -1:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
distributed = hparams.world_size > 1
if distributed:
dist.init_process_group(backend=hparams.dist_backend, init_method=hparams.dist_url,
world_size=hparams.world_size)
model = build_model()
print(model)
if hparams.device > -1:
model = model.cuda(hparams.device)
elif distributed:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
mels_criterion = MaskedMSELoss()
stop_criterion = MaskedBCELoss()
optimizer = torch.optim.Adam(model.get_trainable_parameters(), lr=hparams.init_learning_rate,
betas=(hparams.adam_beta1, hparams.adam_beta2), eps=hparams.adam_epsilon,
weight_decay=hparams.weight_decay)
scheduler = ExpLRDecay(init_learning_rate=hparams.init_learning_rate, decay_rate=hparams.decay_rate,
start_step=hparams.start_decay, decay_steps=hparams.decay_step)
# optionally resume from a checkpoint
if checkpoint_name is not None:
if os.path.isfile(checkpoint_name):
load_checkpoint(checkpoint_name, model, hparams.device, optimizer, reset_optimizer)
else:
file_full_path = os.path.join(checkpoint_path, checkpoint_name)
if os.path.isfile(file_full_path):
load_checkpoint(file_full_path, model, hparams.device, optimizer, reset_optimizer)
else:
log("=> no checkpoint found at '{}'".format(checkpoint_name))
# synthesis
if phase == "synthesis":
if text_list_file_path is None:
test_lines = [
"yun2cong2ke1ji4cheng2li4yu2er4ling2yi1wu3nian2si4yue4",
"shi4yi1jia1fu1hua4yu2zhong1guo2ke1xue2yuan4chong2qing4yan2jiu1yuan4de0gao1ke1ji4qi3ye4"
"zhuan1zhu4yu2ji4suan4ji1shi4jue2yu3ren2gong1zhi4neng2",
"yi2ge4hao3zheng4quan2zhi1de2yi3bao3chi2da4bu4fen4zai4yu2bu4tong2de0zheng4jian4",
"he2li3de0fa1hui1qi2gong1yong4"
]
else:
test_lines = []
with open(text_list_file_path, "rb") as f:
lines = f.readlines()
for line in lines:
text = line.decode("utf-8")[:-1]
test_lines.append(text)
synthesis(test_lines, model, device, log_dir)
return
# Setup summary writer for tensorboard
if log_event_path is None:
log_event_path = os.path.join(log_dir, "log_event_path")
print("Los event path: {}".format(log_event_path))
writer = SummaryWriter(log_dir=log_event_path)
# Prepare dataset
dataset_dir = os.path.join(dirname(__file__), data_root)
texts_list, mels_list, mels_length_list, speaker_ids_list = get_item_list(dataset_dir, "train.txt")
#indices = np.arange(256*16)
indices = np.arange(len(texts_list) - len(texts_list) % hparams.batch_size)
test_size = hparams.test_batches * hparams.batch_size
train_indices, val_indices = train_test_split(indices, test_size=test_size, random_state=hparams.seed)
collate_fn = AudioCollate(padding_mels=hparams.padding_mels)
# prepare train dataset
train_dataset_text_ids = [texts_list[i] for i in train_indices]
train_dataset_mels_ids = [mels_list[i] for i in train_indices]
train_dataset_mels_length_ids = [mels_length_list[i] for i in train_indices]
if speaker_ids_list is not None:
train_dataset_speaker_ids = [speaker_ids_list[i] for i in train_indices]
else:
train_dataset_speaker_ids = None
train_dataset = AudiobookDataset(train_dataset_text_ids, train_dataset_mels_ids, train_dataset_speaker_ids,
dataset_dir)
if distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=hparams.batch_size,
num_workers=2, shuffle=True, pin_memory=hparams.pin_memory)
else:
if hparams.dynamical_batch_size:
train_sampler = DynamicalSimilarTimeLengthSampler(train_dataset_mels_length_ids,
batch_size_min=hparams.batch_size,
batch_expand_level=hparams.batch_size_level,
batch_group=hparams.batch_group,
permutate=hparams.permutate)
train_batch_sampler = DynamicalBatchSampler(train_sampler)
train_loader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=hparams.batch_size,
batch_sampler=train_batch_sampler, num_workers=2, shuffle=False, pin_memory=True)
else:
train_sampler = SimilarTimeLengthSampler(train_dataset_mels_length_ids, descending=True,
batch_size=hparams.batch_size,
batch_group_size=hparams.batch_group_size,
permutate=hparams.permutate)
train_sampler = None
shuffle = (train_sampler == None)
train_loader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=hparams.batch_size,
sampler=train_sampler, num_workers=2, shuffle=False, pin_memory=True)
# prepare val dataset
val_dataset_text_ids = [texts_list[i] for i in val_indices]
val_dataset_mels_ids = [mels_list[i] for i in val_indices]
val_dataset_mels_length_ids = [mels_length_list[i] for i in val_indices]
if speaker_ids_list is not None:
val_dataset_speaker_ids = [speaker_ids_list[i] for i in val_indices]
else:
val_dataset_speaker_ids = None
val_dataset = AudiobookDataset(val_dataset_text_ids, val_dataset_mels_ids, val_dataset_speaker_ids, dataset_dir)
val_loader = DataLoader(val_dataset, collate_fn=collate_fn, batch_size=hparams.batch_size, num_workers=2,
shuffle=True, pin_memory=True)
for epoch in range(global_epoch, hparams.nepochs):
# train for one epoch
train(train_loader, model, hparams.device, mels_criterion, stop_criterion, optimizer, scheduler, writer,
train_path)
# evaluate on validation set
loss = validate(val_loader, model, hparams.device, mels_criterion, stop_criterion, writer, val_path)
# remember best prec@1 and save checkpoint
is_best = loss < best_loss
best_loss = min(loss, best_loss)
save_checkpoint(model, optimizer, checkpoint_path)
if __name__ == '__main__':
main()