-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthesis.py
66 lines (50 loc) · 2.36 KB
/
synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import os
import torch
from model import Model
import librosa
import numpy as np
import pickle
import random
sample_rate = 22050
def generate(model, data_path, output_path, bits, samples=3):
ids = os.path.join(data_path, 'dataset_ids.pkl')
with open(ids, 'rb') as f:
dataset_ids = pickle.load(f)
random.shuffle(dataset_ids)
test_mels = []
ground_truth = []
for i in range(samples):
name_id = dataset_ids[i]
test_mels.append(np.load(f'{data_path}mels{name_id}.npy'))
ground_truth.append(np.load(f'{data_path}quant{name_id}.npy'))
for i, (gt, mel) in enumerate(zip(ground_truth, test_mels)):
gt = 2 * gt.astype(np.float32) / (2**bits - 1.) - 1.
librosa.output.write_wav(f'{output_path}_{i}_target.wav', gt, sr=sample_rate)
output = model.generate(mel)
librosa.output.write_wav(f'{output_path}_{i}_generated.wav', output, sample_rate)
def main():
parser = argparse.ArgumentParser(description='WaveRNN-PyTorch Training')
parser.add_argument('--data_path', metavar='DIR', default='/home/lynn/workspace/wumenglin/WaveRNN_pytorch/dataset/',
help='path to data')
parser.add_argument('--model_path', metavar='DIR', default='/home/lynn/workspace/wumenglin/WaveRNN_pytorch/',
help='path to model')
parser.add_argument('--output_dir', metavar='DIR', default='/home/lynn/workspace/wumenglin/WaveRNN_pytorch/outputwavs/',
help='path to output wavs')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('-q', '--quant_bits', default=9, type=int,
metavar='N', help='quantilization bits (default: 9)')
args = parser.parse_args()
# create model
model = Model(rnn_dims=512, fc_dims=512, bits=args.quant_bits, pad=2,
upsample_factors=(5, 5, 11), feat_dims=80,
compute_dims=128, res_out_dims=128, res_blocks=10)
if os.path.exists(args.model_path):
checkpoint = torch.load(args.model_path + "checkpoint.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
if args.gpu is not None:
model = model.cuda(args.gpu)
generate(model, data_path=args.data_path, output_path=args.output_dir, bits=args.quant_bits)
if __name__ == '__main__':
main()