-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathtrain.py
318 lines (270 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import numpy as np
import torch
import argparse
import os
import math
import gym
import sys
import random
import time
import json
import dmc2gym
import copy
import utils
from logger import Logger
from video import VideoRecorder
from curl_sac import RadSacAgent
from torchvision import transforms
import data_augs as rad
def parse_args():
parser = argparse.ArgumentParser()
# environment
parser.add_argument('--domain_name', default='cartpole')
parser.add_argument('--task_name', default='swingup')
parser.add_argument('--pre_transform_image_size', default=100, type=int)
parser.add_argument('--image_size', default=84, type=int)
parser.add_argument('--action_repeat', default=1, type=int)
parser.add_argument('--frame_stack', default=3, type=int)
# replay buffer
parser.add_argument('--replay_buffer_capacity', default=100000, type=int)
# train
parser.add_argument('--agent', default='rad_sac', type=str)
parser.add_argument('--init_steps', default=1000, type=int)
parser.add_argument('--num_train_steps', default=1000000, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--hidden_dim', default=1024, type=int)
# eval
parser.add_argument('--eval_freq', default=1000, type=int)
parser.add_argument('--num_eval_episodes', default=10, type=int)
# critic
parser.add_argument('--critic_lr', default=1e-3, type=float)
parser.add_argument('--critic_beta', default=0.9, type=float)
parser.add_argument('--critic_tau', default=0.01, type=float) # try 0.05 or 0.1
parser.add_argument('--critic_target_update_freq', default=2, type=int) # try to change it to 1 and retain 0.01 above
# actor
parser.add_argument('--actor_lr', default=1e-3, type=float)
parser.add_argument('--actor_beta', default=0.9, type=float)
parser.add_argument('--actor_log_std_min', default=-10, type=float)
parser.add_argument('--actor_log_std_max', default=2, type=float)
parser.add_argument('--actor_update_freq', default=2, type=int)
# encoder
parser.add_argument('--encoder_type', default='pixel', type=str)
parser.add_argument('--encoder_feature_dim', default=50, type=int)
parser.add_argument('--encoder_lr', default=1e-3, type=float)
parser.add_argument('--encoder_tau', default=0.05, type=float)
parser.add_argument('--num_layers', default=4, type=int)
parser.add_argument('--num_filters', default=32, type=int)
parser.add_argument('--latent_dim', default=128, type=int)
# sac
parser.add_argument('--discount', default=0.99, type=float)
parser.add_argument('--init_temperature', default=0.1, type=float)
parser.add_argument('--alpha_lr', default=1e-4, type=float)
parser.add_argument('--alpha_beta', default=0.5, type=float)
# misc
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--work_dir', default='.', type=str)
parser.add_argument('--save_tb', default=False, action='store_true')
parser.add_argument('--save_buffer', default=False, action='store_true')
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--save_model', default=False, action='store_true')
parser.add_argument('--detach_encoder', default=False, action='store_true')
# data augs
parser.add_argument('--data_augs', default='crop', type=str)
parser.add_argument('--log_interval', default=100, type=int)
args = parser.parse_args()
return args
def evaluate(env, agent, video, num_episodes, L, step, args):
all_ep_rewards = []
def run_eval_loop(sample_stochastically=True):
start_time = time.time()
prefix = 'stochastic_' if sample_stochastically else ''
for i in range(num_episodes):
obs = env.reset()
video.init(enabled=(i == 0))
done = False
episode_reward = 0
while not done:
# center crop image
if args.encoder_type == 'pixel' and 'crop' in args.data_augs:
obs = utils.center_crop_image(obs,args.image_size)
if args.encoder_type == 'pixel' and 'translate' in args.data_augs:
# first crop the center with pre_image_size
obs = utils.center_crop_image(obs, args.pre_transform_image_size)
# then translate cropped to center
obs = utils.center_translate(obs, args.image_size)
with utils.eval_mode(agent):
if sample_stochastically:
action = agent.sample_action(obs / 255.)
else:
action = agent.select_action(obs / 255.)
obs, reward, done, _ = env.step(action)
video.record(env)
episode_reward += reward
video.save('%d.mp4' % step)
L.log('eval/' + prefix + 'episode_reward', episode_reward, step)
all_ep_rewards.append(episode_reward)
L.log('eval/' + prefix + 'eval_time', time.time()-start_time , step)
mean_ep_reward = np.mean(all_ep_rewards)
best_ep_reward = np.max(all_ep_rewards)
std_ep_reward = np.std(all_ep_rewards)
L.log('eval/' + prefix + 'mean_episode_reward', mean_ep_reward, step)
L.log('eval/' + prefix + 'best_episode_reward', best_ep_reward, step)
filename = args.work_dir + '/' + args.domain_name + '--'+args.task_name + '-' + args.data_augs + '--s' + str(args.seed) + '--eval_scores.npy'
key = args.domain_name + '-' + args.task_name + '-' + args.data_augs
try:
log_data = np.load(filename,allow_pickle=True)
log_data = log_data.item()
except:
log_data = {}
if key not in log_data:
log_data[key] = {}
log_data[key][step] = {}
log_data[key][step]['step'] = step
log_data[key][step]['mean_ep_reward'] = mean_ep_reward
log_data[key][step]['max_ep_reward'] = best_ep_reward
log_data[key][step]['std_ep_reward'] = std_ep_reward
log_data[key][step]['env_step'] = step * args.action_repeat
np.save(filename,log_data)
run_eval_loop(sample_stochastically=False)
L.dump(step)
def make_agent(obs_shape, action_shape, args, device):
if args.agent == 'rad_sac':
return RadSacAgent(
obs_shape=obs_shape,
action_shape=action_shape,
device=device,
hidden_dim=args.hidden_dim,
discount=args.discount,
init_temperature=args.init_temperature,
alpha_lr=args.alpha_lr,
alpha_beta=args.alpha_beta,
actor_lr=args.actor_lr,
actor_beta=args.actor_beta,
actor_log_std_min=args.actor_log_std_min,
actor_log_std_max=args.actor_log_std_max,
actor_update_freq=args.actor_update_freq,
critic_lr=args.critic_lr,
critic_beta=args.critic_beta,
critic_tau=args.critic_tau,
critic_target_update_freq=args.critic_target_update_freq,
encoder_type=args.encoder_type,
encoder_feature_dim=args.encoder_feature_dim,
encoder_lr=args.encoder_lr,
encoder_tau=args.encoder_tau,
num_layers=args.num_layers,
num_filters=args.num_filters,
log_interval=args.log_interval,
detach_encoder=args.detach_encoder,
latent_dim=args.latent_dim,
data_augs=args.data_augs
)
else:
assert 'agent is not supported: %s' % args.agent
def main():
args = parse_args()
if args.seed == -1:
args.__dict__["seed"] = np.random.randint(1,1000000)
utils.set_seed_everywhere(args.seed)
pre_transform_image_size = args.pre_transform_image_size if 'crop' in args.data_augs else args.image_size
pre_image_size = args.pre_transform_image_size # record the pre transform image size for translation
env = dmc2gym.make(
domain_name=args.domain_name,
task_name=args.task_name,
seed=args.seed,
visualize_reward=False,
from_pixels=(args.encoder_type == 'pixel'),
height=pre_transform_image_size,
width=pre_transform_image_size,
frame_skip=args.action_repeat
)
env.seed(args.seed)
# stack several consecutive frames together
if args.encoder_type == 'pixel':
env = utils.FrameStack(env, k=args.frame_stack)
# make directory
ts = time.gmtime()
ts = time.strftime("%m-%d", ts)
env_name = args.domain_name + '-' + args.task_name
exp_name = env_name + '-' + ts + '-im' + str(args.image_size) +'-b' \
+ str(args.batch_size) + '-s' + str(args.seed) + '-' + args.encoder_type
args.work_dir = args.work_dir + '/' + exp_name
utils.make_dir(args.work_dir)
video_dir = utils.make_dir(os.path.join(args.work_dir, 'video'))
model_dir = utils.make_dir(os.path.join(args.work_dir, 'model'))
buffer_dir = utils.make_dir(os.path.join(args.work_dir, 'buffer'))
video = VideoRecorder(video_dir if args.save_video else None)
with open(os.path.join(args.work_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, sort_keys=True, indent=4)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
action_shape = env.action_space.shape
if args.encoder_type == 'pixel':
obs_shape = (3*args.frame_stack, args.image_size, args.image_size)
pre_aug_obs_shape = (3*args.frame_stack,pre_transform_image_size,pre_transform_image_size)
else:
obs_shape = env.observation_space.shape
pre_aug_obs_shape = obs_shape
replay_buffer = utils.ReplayBuffer(
obs_shape=pre_aug_obs_shape,
action_shape=action_shape,
capacity=args.replay_buffer_capacity,
batch_size=args.batch_size,
device=device,
image_size=args.image_size,
pre_image_size=pre_image_size,
)
agent = make_agent(
obs_shape=obs_shape,
action_shape=action_shape,
args=args,
device=device
)
L = Logger(args.work_dir, use_tb=args.save_tb)
episode, episode_reward, done = 0, 0, True
start_time = time.time()
for step in range(args.num_train_steps):
# evaluate agent periodically
if step % args.eval_freq == 0:
L.log('eval/episode', episode, step)
evaluate(env, agent, video, args.num_eval_episodes, L, step,args)
if args.save_model:
agent.save_curl(model_dir, step)
if args.save_buffer:
replay_buffer.save(buffer_dir)
if done:
if step > 0:
if step % args.log_interval == 0:
L.log('train/duration', time.time() - start_time, step)
L.dump(step)
start_time = time.time()
if step % args.log_interval == 0:
L.log('train/episode_reward', episode_reward, step)
obs = env.reset()
done = False
episode_reward = 0
episode_step = 0
episode += 1
if step % args.log_interval == 0:
L.log('train/episode', episode, step)
# sample action for data collection
if step < args.init_steps:
action = env.action_space.sample()
else:
with utils.eval_mode(agent):
action = agent.sample_action(obs / 255.)
# run training update
if step >= args.init_steps:
num_updates = 1
for _ in range(num_updates):
agent.update(replay_buffer, L, step)
next_obs, reward, done, _ = env.step(action)
# allow infinit bootstrap
done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(
done
)
episode_reward += reward
replay_buffer.add(obs, action, reward, next_obs, done_bool)
obs = next_obs
episode_step += 1
if __name__ == '__main__':
torch.multiprocessing.set_start_method('spawn')
main()