-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.cpp
96 lines (96 loc) · 2.35 KB
/
test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
const double INF = 1e10;
struct Point {
double x, y;
int id;//用来查询时避免同一个点求解到自身的距离(针对题目所设置)
};
typedef vector<Point> Points;
struct kdTreeNode {
int dim;//切分维度,0是x,1是y
kdTreeNode* left;
kdTreeNode* right;
Point p;
kdTreeNode(int d, Point val) :dim(d), p(val), left(NULL), right(NULL) {};
};
double dis(Point a, Point b) {
if (a.id == b.id) {
return INF;
}
return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y));
}
kdTreeNode* buildTree(Points& pts, int d,int left,int right) {
if (left > right) {
return NULL;
}
d %= 2;
int mid = (right - left) / 2 + left;
nth_element(pts.begin() + left, pts.begin() + mid, pts.begin() + right+1, [d](Point a, Point b) {return d == 0 ? a.x < b.x :a.y < b.y; });//找到中间点,并且左边小于中间点,右边大于(快速选择算法,时间复杂度O(n))
Point p = pts[mid];
kdTreeNode* root = new kdTreeNode(d, p);
root->left = buildTree(pts, d + 1, left, mid-1);
root->right = buildTree(pts,d + 1, mid + 1,right);
return root;
}
void query(kdTreeNode* t, Point target,double& minDis) {
if (t == NULL) {
return;
}
if (t->dim == 0) {
if (target.x < t->p.x) {
query(t->left, target, minDis);
}
else {
query(t->right, target, minDis);
}
minDis = min(minDis, dis(target, t->p));
if (minDis > abs(target.x-t->p.x)) {
if (target.x < t->p.x) {
query(t->right, target, minDis);
}
else {
query(t->left, target, minDis);
}
}
}
else {
if (target.y < t->p.y) {
query(t->left, target, minDis);
}
else {
query(t->right, target, minDis);
}
minDis = min(minDis, dis(target, t->p));
if (minDis > abs(target.y - t->p.y)) {
if (target.y < t->p.y) {
query(t->right, target, minDis);
}
else {
query(t->left, target, minDis);
}
}
}
}
int main() {
int n;
cin >> n;
Points a;
for (int j = 0; j < n; ++j) {
double x, y;
cin >> x >> y;
a.push_back({ x,y,j });
}
kdTreeNode* t = buildTree(a, 0, 0, a.size() - 1);
double ans = INF;
for (int i = 0; i < a.size(); i++) {
double minDis = INF;
query(t, a[i],minDis);
ans = min(ans, minDis);
}
printf("%.3f", ans);
system("pause");
return 0;
}