forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
61 lines (53 loc) · 2.38 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig
import torch
import time
import os
import argparse
from ipex_llm import optimize_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for InternLM-XComposer model')
parser.add_argument('--repo-id-or-model-path', type=str, default="internlm/internlm-xcomposer-vl-7b",
help='The huggingface repo id for the InternLM-XComposer model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-path', type=str, required=True,
help='Image path for the input image that the chat will focus on')
parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image = args.image_path
# Load model
# For successful IPEX-LLM optimization on InternLM-XComposer, skip the 'qkv' module during optimization
model = AutoModelForCausalLM.from_pretrained(model_path, device='cpu', load_in_4bit=True,
trust_remote_code=True, modules_to_not_convert=['qkv'])
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model.tokenizer = tokenizer
history = None
while True:
try:
user_input = input("User: ")
except EOFError:
user_input = ""
if not user_input:
print("exit...")
break
response, history = model.chat(text=user_input, image=image , history = history)
print(f'Bot: {response}', end="")
image = None