forked from Feng-Hong/SHE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
179 lines (153 loc) · 7.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import yaml
import os
import argparse
import torch
import torch.nn as nn
import numpy as np
import random
from utils.logger import custom_logger
import wandb
import torch.multiprocessing as mp
import torch.distributed as dist
import train_funs
from utils.general import random_str, get_date, re_nest_configs
WORLD_SIZE = 1
MULTIPROCESSING_DISTRIBUTED = True
DISTRIBUTED = WORLD_SIZE > 1 or MULTIPROCESSING_DISTRIBUTED
RANK = 0
def init_seeds(seed):
print('=====> Using fixed random seed: ' + str(seed))
# random.seed(args.seed)
# torch.manual_seed(args.seed)
# torch.cuda.manual_seed(args.seed)
# torch.cuda.manual_seed_all(args.seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
# ============================================================================
# argument parser
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default=None, type=str, help='Indicate the config file used for the training.')
parser.add_argument('--seed', default=None, type=int, help='Fix the random seed for reproduction. Default is 25.')
parser.add_argument('--output_dir', default=None, type=str, help='Output directory that saves everything.')
parser.add_argument('--log_file', default=None, type=str, help='Logger file name.')
# phase
parser.add_argument('--phase', default=None, type=str, help='Phase of the program. Default is train.')
# port
parser.add_argument('--port', default=29500, type=int, help='Port for distributed training.')
args = parser.parse_args()
# load config file
print('=====> Loading config file: ' + args.cfg)
with open(args.cfg, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
f.close()
print('=====> Config file loaded')
# ============================================================================
# fix random seed
if args.seed is None:
args.seed = 25
# ============================================================================
# update config file
if args.phase is not None:
config['phase'] = args.phase
if args.seed is not None:
config['seed']["train"] = args.seed
if args.log_file is not None:
config['log_file'] = args.log_file
if args.port is not None:
config['port'] = args.port
# ============================================================================
# init logger
if args.output_dir is None:
args.output_dir = './exp/'+ config['dataset']['name'].split("-")[0]+'/' #./datset/
# model
args.output_dir = args.output_dir + config['networks']['type']
# networks: params: m_type or base_encoder
args.output_dir = args.output_dir + '-' + config['networks']['params']['m_type'] if 'm_type' in config['networks']['params'].keys() else args.output_dir + '-' + config['networks']['params']['base_encoder']
if 'imb' in config['dataset'].keys():
args.output_dir = args.output_dir + '-imb_' + str(config['dataset']['imb']) # imbalance ratio
args.output_dir = args.output_dir + '-imb_type_' + config['dataset']['imb_type']
args.output_dir = args.output_dir + '-loss_' + config['training_opt']['loss']
else:
args.output_dir = args.output_dir + 'loss_' + config['training_opt']['loss']
args.output_dir = args.output_dir + '-' + config['training_opt']['type']
# optimizer
args.output_dir = args.output_dir + '-optim_' + config['training_opt']['optimizer']
# bs
args.output_dir = args.output_dir + '-bs_' + str(config['training_opt']['batch_size'])
# epochs
args.output_dir = args.output_dir + '-epochs_' + str(config['training_opt']['num_epochs'])
# lr
args.output_dir = args.output_dir + '-lr_' + str(config['training_opt']['optim_params']['lr'])
args.output_dir = args.output_dir + '-wd_' + str(config['training_opt']['optim_params']['weight_decay'])
# sampler
args.output_dir = args.output_dir + '-sampler_' + config['sampler']
# seed
args.output_dir = args.output_dir + '-seed_t' + str(config['seed']['train']) + '_d' + str(config['seed']['dataset'])
# notes
args.output_dir = args.output_dir + '-' + config['notes'] if "notes" in config else args.output_dir
args.output_dir = args.output_dir + '/' + get_date()+ '_' + random_str(6)
if args.output_dir is not None:
config['output_dir'] = args.output_dir
# config.update({'output_dir': args.output_dir})
os.makedirs(args.output_dir, exist_ok=True)
# run.name = wandb_config['dataset']['name'] + '_' + args.output_dir.split('/')[-2]
if args.log_file is None:
logger = custom_logger(args.output_dir)
else:
logger = custom_logger(args.output_dir, args.log_file)
logger.info('========================= Start Main =========================')
# ============================================================================
# save config file
logger.info('=====> Saving config file')
with open(os.path.join(args.output_dir, 'config.yaml'), 'w') as f:
yaml.dump(config, f, default_flow_style=False)
logger.info('=====> Config file saved')
# ============================================================================
# ddp
ngpus_per_node = torch.cuda.device_count()
if MULTIPROCESSING_DISTRIBUTED:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
config["world_size"] = ngpus_per_node * WORLD_SIZE
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, config, logger))
else:
# Simply call main_worker function
main_worker(0, ngpus_per_node, config, logger)
# ============================================================================
# end
logger.info('========================= End Main =========================')
def main_worker(gpu, ngpus_per_node, config, logger):
config['gpu'] = gpu
config['ngpus_per_node'] = ngpus_per_node
config['multiprocessing_distributed'] = MULTIPROCESSING_DISTRIBUTED
config['distributed'] = DISTRIBUTED
init_seeds(config['seed']['train'] + gpu)
if gpu is not None:
logger.info("Use GPU: {} for training".format(gpu))
if gpu % ngpus_per_node == 0:
print('wandb init')
run = wandb.init(config=config,project="group_imbalance")
re_nest_configs(run.config)
wandb.define_metric('acc', 'max')
run.name = config['dataset']['name'] + '_' + config['output_dir'].split('/')[-2]
if DISTRIBUTED:
if MULTIPROCESSING_DISTRIBUTED:
config['rank'] = RANK * ngpus_per_node + gpu
# batch size
config['training_opt']['batch_size'] = config['training_opt']['batch_size'] // config['world_size']
dist.init_process_group(backend='nccl', init_method=f'tcp://localhost:{config["port"]}', world_size=config["world_size"], rank=config['rank'])
# ============================================================================
# train
if config['phase'] == 'train':
train_fun = getattr(train_funs, config['training_opt']['type'])(config, logger, eval=True)
train_fun.run()
if __name__ == '__main__':
main()