-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathWorker.py
108 lines (88 loc) · 3.73 KB
/
Worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.nn as nn
import utils
from model import Network
from torch.autograd import Variable
import torchvision
import torch.backends.cudnn as cudnn
import numpy as np
class Worker(object):
def __init__(self, actions_p, actions_log_p, actions_index, args, device):
self.actions_p = actions_p
self.actions_log_p = actions_log_p
self.actions_index = actions_index
self.genotype = utils.parse_actions_index(actions_index)
self.args = args
self.device = device
self.params_size = None
self.acc = None
def get_acc(worker):
torch.manual_seed(worker.args.seed)
np.random.seed(worker.args.seed)
if torch.cuda.is_available():
device = torch.device(worker.device)
cudnn.benchmark = True
cudnn.enable = True
torch.cuda.manual_seed(worker.args.seed)
else:
device = torch.device('cpu')
train_transform, valid_transform = utils._data_transforms_cifar10(worker.args)
train_data = torchvision.datasets.MNIST(root=worker.args.data, train=True,
transform=train_transform,
download=True)
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(worker.args.train_portion * num_train))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=worker.args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=False, num_workers=2)
valid_queue = torch.utils.data.DataLoader(
train_data, batch_size=worker.args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
pin_memory=False, num_workers=2)
criterion = nn.CrossEntropyLoss()
model = Network(worker.genotype).to(device)
worker.params_size = utils.count_params(model)
optimizer = torch.optim.SGD(model.parameters(),
worker.args.model_lr,
momentum=worker.args.model_momentum,
weight_decay=worker.args.model_weight_decay)
for model_epoch in range(worker.args.model_epochs):
train_loss, train_acc = train(model, train_queue, criterion, optimizer, device)
#print('train loss {:.4f} acc {:.4f}'.format(train_loss, train_acc))
valid_loss, valid_acc = infer(model, valid_queue, criterion, device)
print('valid loss {:.4f} acc {:.4f}'.format(valid_loss, valid_acc))
worker.acc = valid_acc
def train(model, train_queue, criterion, optimizer, device):
avg_loss = 0
avg_acc = 0
batch_num = len(train_queue)
model.train()
for batch, (input, target) in enumerate(train_queue):
input = Variable(input, requires_grad=False).to(device)
target = Variable(target, requires_grad=False).to(device)
optimizer.zero_grad()
logits = model(input)
loss = criterion(logits, target)
loss.backward()
optimizer.step()
acc = utils.accuracy(logits.data, target.data)[0]
avg_loss += float(loss)
avg_acc += float(acc)
return avg_loss / batch_num, avg_acc / batch_num
def infer(model, valid_queue, criterion, device):
avg_loss = 0
avg_acc = 0
batch_num = len(valid_queue)
model.eval()
for batch, (input, target) in enumerate(valid_queue):
with torch.no_grad():
input = Variable(input).to(device)
target = Variable(target).to(device)
logits = model(input)
loss = criterion(logits, target)
acc = utils.accuracy(logits.data, target.data)[0]
avg_loss += float(loss)
avg_acc += float(acc)
return avg_loss / batch_num, avg_acc / batch_num