forked from Artamus/fpointnet-tiny
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
258 lines (178 loc) · 8.52 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import argparse
import preprocessing
import time
import numpy as np
import tensorflow as tf
from fpointnet_tiny_functional import get_compiled_model
from scipy import stats
import pypcd
def read_raw_data(data_path, allowed_class, sample_limit=None):
data_filenames = sorted(os.listdir(data_path))
data_filenames = [filename for filename in data_filenames if filename.endswith('.npz')]
frustums_data = list()
kept_frustums = list()
num_samples = 0
for filename in data_filenames:
file_path = os.path.join(data_path, filename)
with np.load(file_path) as data:
class_name = data['class_name']
point_data = data['points']
if class_name != allowed_class:
continue
frustums_data.append(point_data)
kept_frustums.append(filename)
num_samples += 1
if sample_limit and num_samples >= sample_limit:
break
return frustums_data, kept_frustums
def sample_points(labelled_points, num_points, sample_at_least_once=False):
scene_points = np.array(labelled_points)
if sample_at_least_once:
if len(scene_points) > num_points:
mask = np.random.choice(len(scene_points), num_points, replace=False)
elif len(scene_points) == num_points:
mask = np.arange(len(scene_points))
np.random.shuffle(mask)
else:
mask = np.zeros(shape=num_points, dtype=np.int32)
mask[:len(scene_points)] = np.arange(len(scene_points), dtype=np.int32)
mask[len(scene_points):] = np.random.choice(len(scene_points), num_points - len(scene_points), replace=True)
np.random.shuffle(mask)
else:
mask = np.random.choice(len(scene_points), num_points, replace=True)
sampled_labelled_points = scene_points[mask]
return sampled_labelled_points, mask
def structure_data(scenes_labelled_points, num_points):
points = np.zeros(shape=(len(scenes_labelled_points), num_points, 3))
labels = np.zeros(shape=(len(scenes_labelled_points), num_points))
masks = np.zeros(shape=(len(scenes_labelled_points), num_points))
for i, labelled_points in enumerate(scenes_labelled_points):
sampled_labelled_points, mask = sample_points(labelled_points, num_points, True)
points[i] = sampled_labelled_points[:, :3]
labels[i] = sampled_labelled_points[:, 3]
masks[i] = mask
points = np.expand_dims(points, axis=2)
return points, labels, masks
def all_samples_softmax(x):
x_exp = np.exp(x)
probabilities = x_exp / x_exp.sum(axis=2)[:, :, None]
return np.argmax(probabilities, axis=2)
def match_predictions_points(frustums, predicted_labels, masks):
predicted_frustums = list()
for points, predictions, mask in zip(frustums, predicted_labels, masks):
points = np.array(points)
for point_index in range(len(points)):
points_matching_original = np.where(mask == point_index)[0]
if len(points_matching_original) == 0:
mode_label = 0
else:
mode_label = stats.mode(predictions[points_matching_original]).mode[0]
points[point_index, 3] = float(mode_label)
predicted_frustums.append(points)
return predicted_frustums
def match_predictions_points_structured(frustums, predicted_labels, masks):
predicted_frustums = list()
for points, predictions, mask in zip(frustums, predicted_labels, masks):
points = np.array(points)
structured_points = list()
for point_index in range(len(points)):
points_matching_original = np.where(mask == point_index)[0]
if len(points_matching_original) == 0:
mode_label = 0
else:
mode_label = stats.mode(predictions[points_matching_original]).mode[0]
to_append = points[point_index]
to_append[3] = float(mode_label)
structured_points.append(to_append)
predicted_frustums.append(structured_points)
return predicted_frustums
def save_predictions(output_dir, filenames, frustum_data):
for filename, data in zip(filenames, frustum_data):
output_file_path = os.path.join(output_dir, filename)
np.savez(output_file_path, points=data)
def save_predictions_sequential(output_dir, frustum_data):
for idx, data in enumerate(frustum_data):
output_file_path = os.path.join(output_dir, 'frame'+str(idx)+'.pcd')
pcd_cloud = pypcd.make_xyz_label_point_cloud(np.array(data))
pcd_cloud.save(output_file_path)
def calculate_accuracy(predictions, values):
return (predictions == values).mean()
def calculate_true_accuracy(predictions, values):
assert len(predictions) == len(values), 'Predictions and ground truth don\'t have the same length'
counts = np.zeros(shape=(len(predictions), 2))
for index in range(len(predictions)):
counts[index] = [(predictions[index][:, 3] == values[index][:, 3]).sum(), len(predictions[index])]
total_counts = counts.sum(axis=0)
return 1.0 * total_counts[0] / total_counts[1]
def get_arguments():
parser = argparse.ArgumentParser(description='The program to predict from validation data.')
parser.add_argument(
'input', type=str,
help='Path to directory containing data to perform predictions on (XYZ points with label per point saved in the .npz format)'
)
parser.add_argument(
'output', type=str,
help='Directory to save output to, will be created if it does not exist'
)
parser.add_argument(
'--model', type=str, required=True,
help='Path to the model file or directory containing models (in case of >1 models they will be sorted alphabetically and last will be used)'
)
parser.add_argument(
'-np', '--num_points', type=int, default=512,
help='Number of points to sample from each frustum'
)
parser.add_argument(
'--class_name', default='person',
choices=['person', 'car'],
help='Class to use from the KITTI dataset'
)
parser.add_argument(
'--eval', action='store_true', default=True,
help='Perform evaluation of the predictions'
)
return parser.parse_args()
if __name__ == '__main__':
args = get_arguments()
input_dir = args.input
if not input_dir or not os.path.isdir(input_dir):
exit('Invalid input directory')
output_dir = args.output
model_path = args.model
if os.path.isdir(model_path):
files = os.listdir(model_path)
files = sorted([filename for filename in files if filename.endswith('.h5') or filename.endswith('.hdf5')])
model_path = os.path.join(model_path, files[-1])
num_points = args.num_points
allowed_class = args.class_name
frustums_data, filenames = read_raw_data(input_dir, allowed_class)
print("Lenght of frustum data "+str(len(frustums_data)))
processed_frustums_data = list()
for frustum in frustums_data:
processed_frustum = preprocessing.rotate_to_center(frustum)
scale_factor = []
mean = []
x_ = (processed_frustum[:, :3] - mean)/scale_factor
# processed_frustum = preprocessing.scale_standard(processed_frustum)
processed_frustums_data.append([x_, processed_frustum[:,3]])
print("Shape of processed frustum data"+str(np.array(processed_frustums_data).shape))
print("Lenght of processed frustum data "+str(len(processed_frustums_data)))
data_x, data_y, masks = structure_data(processed_frustums_data, num_points)
model = get_compiled_model(num_points, 3e-4) # learning rate is just for reusing the model code
model.load_weights(model_path)
start_time = time.time()
prediction_logits = model.predict(data_x)
end_time = time.time()
print('Inference took '+str(end_time)+'-' + str(start_time)+'s')
predictions = all_samples_softmax(prediction_logits)
# frustums_with_predicted_structured_labels = match_predictions_points_structured(frustums_data, predictions, masks)
# save_predictions_sequential(output_dir, frustums_with_predicted_structured_labels)
frustums_with_predicted_labels = match_predictions_points(frustums_data, predictions, masks)
save_predictions(output_dir, filenames, frustums_with_predicted_labels)
if not args.eval:
exit()
accuracy = calculate_accuracy(predictions, data_y)
print('Accuracy on structured points is '+str(accuracy))
true_accuracy = calculate_true_accuracy(frustums_with_predicted_labels, frustums_data)
print('Accuracy on raw points is '+str(true_accuracy))