-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWine.py
215 lines (170 loc) · 8.5 KB
/
Wine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import plot_confusion_matrix, classification_report
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
import sys
sys.stdout = open('C:/Users/Saulo/source/repos/AI Luciana/output.txt','w')
#sem seleção
wine = datasets.load_wine()#pequena mudança, antes só 12 dos 13 features eram usados
df = pd.DataFrame(wine.data, columns = wine.feature_names)
#print(df.keys())
#'alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium',
#'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins',
#'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline'
X_training, X_testing, y_training, y_testing = train_test_split(df, wine.target, test_size=0.4)
clf = MLPClassifier(alpha=0.01,max_iter=5000, hidden_layer_sizes=20,activation='relu')
clf.fit(X_training, y_training)
yp = clf.predict(X_testing)
#titles_options = [("Matriz de confusão, sem normalizar", None), ("Matriz de
#confusão normalizada", 'true')]
titles_options = [("Matriz de confusão normalizada", 'true')]
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf, X_testing, y_testing,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_semSelecao.png', dpi=400)
plt.clf()
#plt.show()
print("MLP Classifier all-features\n",classification_report(y_testing, yp))
#com seleção
df['classe'] = wine.target
correlacoes = df.corr()
fig, ax = plt.subplots(figsize=(20,15))
heat = sns.heatmap(correlacoes, annot = True,ax=ax)#cmap="YlGnBu"
figure = heat.get_figure()
figure.savefig('Figures/heatmap.png', dpi=400)
#checando as combinações
"""
names=df.keys()
for x in range(12):
for y in range(12):
if(y<x):
continue
wine_n = np.array(df[[names[x], names[y+1]]])
Xn_training, Xn_testing, yn_training, yn_testing = train_test_split(wine_n, wine.target, test_size=0.4)
clfn = MLPClassifier(alpha=0.01,max_iter=5000, hidden_layer_sizes=20,activation='relu')
clfn.fit(Xn_training, yn_training)
ypn = clfn.predict(Xn_testing)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clfn, Xn_testing, yn_testing,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/'+title+str(x)+'_'+str(y+1)+'.png', dpi=400)
print(names[x],names[y+1],'\n',classification_report(yn_testing, ypn))
"""
#Logistica
wine_log = np.array(df[['alcalinity_of_ash', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'hue', 'od280/od315_of_diluted_wines', 'proline']])
X_training_log, X_testing_log, y_training_log, y_testing_log = train_test_split(wine_log, wine.target, test_size=0.4)
clf_log = LogisticRegression(max_iter=5000)
clf_log.fit(X_training_log, y_training_log)
yp_log = clf_log.predict(X_testing_log)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_log, X_testing_log, y_testing_log,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_log.png', dpi=400)
#plt.show()
print("RegLog all-features\n",classification_report(y_testing_log, yp_log))
#Logistica 2
wine_slog = np.array(df[['alcalinity_of_ash', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'hue', 'od280/od315_of_diluted_wines', 'proline']])
X_training_slog, X_testing_slog, y_training_slog, y_testing_slog = train_test_split(wine_slog, wine.target, test_size=0.4)
clf_slog = LogisticRegression(max_iter=5000)
clf_slog.fit(X_training_slog, y_training_slog)
yp_slog = clf_slog.predict(X_testing_slog)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_slog, X_testing_slog, y_testing_slog,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_slog.png', dpi=400)
#plt.show()
print("RegLog\n",classification_report(y_testing_slog, yp_slog))
#MP 1
wine_mp1 = np.array(df[['alcohol','total_phenols', 'flavanoids','proanthocyanins','hue', 'od280/od315_of_diluted_wines']])
X_training_mp1, X_testing_mp1, y_training_mp1, y_testing_mp1 = train_test_split(wine_mp1, wine.target, test_size=0.4)
clf_mp1 = MLPClassifier(alpha=0.01,max_iter=5000, hidden_layer_sizes=20,activation='relu')
clf_mp1.fit(X_training_mp1, y_training_mp1)
yp_mp1 = clf_mp1.predict(X_testing_mp1)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_mp1, X_testing_mp1, y_testing_mp1,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_mp1.png', dpi=400)
#plt.show()
print("MLP Classifier 1\n",classification_report(y_testing_mp1, yp_mp1))
#MP 2
wine_mp2 = np.array(df[['alcohol', 'flavanoids']])
X_training_mp2, X_testing_mp2, y_training_mp2, y_testing_mp2 = train_test_split(wine_mp2, wine.target, test_size=0.4)
clf_mp2 = MLPClassifier(alpha=0.01,max_iter=5000, hidden_layer_sizes=20,activation='relu')
clf_mp2.fit(X_training_mp2, y_training_mp2)
yp_mp2 = clf_mp2.predict(X_testing_mp2)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_mp2, X_testing_mp2, y_testing_mp2,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_mp2.png', dpi=400)
#plt.show()
print("MLP Classifier 2\n",classification_report(y_testing_mp2, yp_mp2))
#Naive Bayes
wine_nb = np.array(df[['alcohol','total_phenols', 'flavanoids','proanthocyanins','hue', 'od280/od315_of_diluted_wines']])
X_training_nb, X_testing_nb, y_training_nb, y_testing_nb = train_test_split(wine_nb, wine.target, test_size=0.4)
clf_nb = GaussianNB()
clf_nb.fit(X_training_nb, y_training_nb)
yp_nb = clf_nb.predict(X_testing_nb)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_nb, X_testing_nb, y_testing_nb,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_nb.png', dpi=400)
#plt.show()
print("Naive Bayes\n",classification_report(y_testing_nb, yp_nb))
#Decision Tree
wine_dt = np.array(df[['alcohol','total_phenols', 'flavanoids','proanthocyanins','hue', 'od280/od315_of_diluted_wines']])
X_training_dt, X_testing_dt, y_training_dt, y_testing_dt = train_test_split(wine_dt, wine.target, test_size=0.4)
clf_dt = DecisionTreeClassifier()
clf_dt.fit(X_training_dt, y_training_dt)
yp_dt = clf_dt.predict(X_testing_dt)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_dt, X_testing_dt, y_testing_dt,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_dt.png', dpi=400)
#plt.show()
print("Decision Tree\n",classification_report(y_testing_dt, yp_dt))
#KNeighboors
wine_kn = np.array(df[['alcohol','total_phenols', 'flavanoids','proanthocyanins','hue', 'od280/od315_of_diluted_wines']])
X_training_kn, X_testing_kn, y_training_kn, y_testing_kn = train_test_split(wine_kn, wine.target, test_size=0.4)
clf_kn = KNeighborsClassifier()
clf_kn.fit(X_training_kn, y_training_kn)
yp_kn = clf_kn.predict(X_testing_kn)
for title, normalize in titles_options:
disp = plot_confusion_matrix(clf_kn, X_testing_kn, y_testing_kn,cmap=plt.cm.Blues,normalize=normalize)
disp.ax_.set_title(title)
plt.savefig('Figures/' + title + '_kn.png', dpi=400)
#plt.show()
print("KNeighboors\n",classification_report(y_testing_kn, yp_kn))
#KMeans
data = datasets.load_wine().data
pca = PCA(2)
DF = pca.fit_transform(data)
kmeans = KMeans(n_clusters= 3)
label = kmeans.fit_predict(DF)
centroids = kmeans.cluster_centers_
u_labels = np.unique(label)
plt.clf()
#plotting the results:
for i in u_labels:
plt.scatter(DF[label == i , 0] , DF[label == i , 1] , label = i)
plt.scatter(centroids[:,0] , centroids[:,1] , s = 80, color = 'k')
plt.title("KMeans")
plt.savefig('Figures/KMeans.png', dpi=400)
#Linear Reg
tp = np.array(df['total_phenols']).reshape(-1, 1)
fl = np.array(df['flavanoids'])
X_training_lr, X_testing_lr, y_training_lr, y_testing_lr = train_test_split(tp,fl, test_size=0.4)
clf_lr = LinearRegression()
clf_lr.fit(X_training_lr, y_training_lr)
yp_lr = clf_lr.predict(X_testing_lr)
print(clf_lr.score(X_testing_lr,y_testing_lr))
sys.stdout.close()