-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathextract_features.py
300 lines (253 loc) · 9.07 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
__author__ = 'shua'
import argparse
import numpy as np
import wave
import os
from os import listdir
from os.path import isfile, join
import math
from scipy.fftpack.realtransforms import dct
from scipy.signal import lfilter, hamming
from copy import deepcopy
from scipy.fftpack import fft, ifft
# from scikits.talkbox.linpred import lpc
from levinson_lpc import lpc
import shutil
from helpers.utilities import *
epsilon = 0.0000000001
prefac = .97
def build_data(wav,begin=None,end=None):
wav_in_file = wave.Wave_read(wav)
wav_in_num_samples = wav_in_file.getnframes()
N = wav_in_file.getnframes()
dstr = wav_in_file.readframes(N)
data = np.fromstring(dstr, np.int16)
if begin is not None and end is not None:
#return data[begin*16000:end*16000] #numpy 1.11.0
return data[np.int32(begin*16000):np.int32(end*16000)] #numpy 1.14.0
X = []
l = len(data)
for i in range(0, l-100, 160):
X.append(data[i:i + 480])
return X
def periodogram(x, nfft=None, fs=1):
"""Compute the periodogram of the given signal, with the given fft size.
Parameters
----------
x : array-like
input signal
nfft : int
size of the fft to compute the periodogram. If None (default), the
length of the signal is used. if nfft > n, the signal is 0 padded.
fs : float
Sampling rate. By default, is 1 (normalized frequency. e.g. 0.5 is the
Nyquist limit).
Returns
-------
pxx : array-like
The psd estimate.
fgrid : array-like
Frequency grid over which the periodogram was estimated.
Examples
--------
Generate a signal with two sinusoids, and compute its periodogram:
>>> fs = 1000
>>> x = np.sin(2 * np.pi * 0.1 * fs * np.linspace(0, 0.5, 0.5*fs))
>>> x += np.sin(2 * np.pi * 0.2 * fs * np.linspace(0, 0.5, 0.5*fs))
>>> px, fx = periodogram(x, 512, fs)
Notes
-----
Only real signals supported for now.
Returns the one-sided version of the periodogram.
Discrepency with matlab: matlab compute the psd in unit of power / radian /
sample, and we compute the psd in unit of power / sample: to get the same
result as matlab, just multiply the result from talkbox by 2pi"""
x = np.atleast_1d(x)
n = x.size
if x.ndim > 1:
raise ValueError("Only rank 1 input supported for now.")
if not np.isrealobj(x):
raise ValueError("Only real input supported for now.")
if not nfft:
nfft = n
if nfft < n:
raise ValueError("nfft < signal size not supported yet")
pxx = np.abs(fft(x, nfft)) ** 2
if nfft % 2 == 0:
pn = nfft / 2 + 1
else:
pn = (nfft + 1 )/ 2
fgrid = np.linspace(0, fs * 0.5, int(pn))
return pxx[:int(pn)] / (n * fs), fgrid
def arspec(x, order, nfft=None, fs=1):
"""Compute the spectral density using an AR model.
An AR model of the signal is estimated through the Yule-Walker equations;
the estimated AR coefficient are then used to compute the spectrum, which
can be computed explicitely for AR models.
Parameters
----------
x : array-like
input signal
order : int
Order of the LPC computation.
nfft : int
size of the fft to compute the periodogram. If None (default), the
length of the signal is used. if nfft > n, the signal is 0 padded.
fs : float
Sampling rate. By default, is 1 (normalized frequency. e.g. 0.5 is the
Nyquist limit).
Returns
-------
pxx : array-like
The psd estimate.
fgrid : array-like
Frequency grid over which the periodogram was estimated.
"""
x = np.atleast_1d(x)
n = x.size
if x.ndim > 1:
raise ValueError("Only rank 1 input supported for now.")
if not np.isrealobj(x):
raise ValueError("Only real input supported for now.")
if not nfft:
nfft = n
a, e, k = lpc(x, order)
# This is not enough to deal correctly with even/odd size
if nfft % 2 == 0:
pn = nfft / 2 + 1
else:
pn = (nfft + 1 )/ 2
px = 1 / np.fft.fft(a, nfft)[:int(pn)]
pxx = np.real(np.conj(px) * px)
pxx /= fs / e
fx = np.linspace(0, fs * 0.5, pxx.size)
return pxx, fx
def taper(n, p=0.1):
"""Return a split cosine bell taper (or window)
Parameters
----------
n: int
number of samples of the taper
p: float
proportion of taper (0 <= p <= 1.)
Note
----
p represents the proportion of tapered (or "smoothed") data compared to a
boxcar.
"""
if p > 1. or p < 0:
raise ValueError("taper proportion should be betwen 0 and 1 (was %f)"
% p)
w = np.ones(n)
ntp = np.floor(0.5 * n * p)
w[:ntp] = 0.5 * (1 - np.cos(np.pi * 2 * np.linspace(0, 0.5, ntp)))
w[-ntp:] = 0.5 * (1 - np.cos(np.pi * 2 * np.linspace(0.5, 0, ntp)))
return w
def atal(x, order, num_coefs):
x = np.atleast_1d(x)
n = x.size
if x.ndim > 1:
raise ValueError("Only rank 1 input supported for now.")
if not np.isrealobj(x):
raise ValueError("Only real input supported for now.")
a, e, kk = lpc(x, order)
c = np.zeros(num_coefs)
c[0] = a[0]
for m in range(1, order+1):
c[m] = - a[m]
for k in range(1, m):
c[m] += (float(k)/float(m)-1)*a[k]*c[m-k]
for m in range(order+1, num_coefs):
for k in range(1, order+1):
c[m] += (float(k)/float(m)-1)*a[k]*c[m-k]
return c
def preemp(input, p):
"""Pre-emphasis filter."""
return lfilter([1., -p], 1, input)
def arspecs(input_wav,order,Atal=False):
epsilon = 0.0000000001
data = input_wav
if Atal:
ar = atal(data, order, 30)
return ar
else:
ar = []
ars = arspec(data, order, 4096)
for k, l in zip(ars[0], ars[1]):
ar.append(math.log(math.sqrt((k**2)+(l**2))))
for val in range(0,len(ar)):
if ar[val] == 0.0:
ar[val] = deepcopy(epsilon)
mspec1 = np.log10(ar)
# Use the DCT to 'compress' the coefficients (spectrum -> cepstrum domain)
ar = dct(mspec1, type=2, norm='ortho', axis=-1)
return ar[:30]
def specPS(input_wav,pitch):
N = len(input_wav)
samps = N/pitch
if samps == 0:
samps = 1
frames = int(N/samps)
data = input_wav[0:frames]
specs = periodogram(data,nfft=4096)
for i in range(1,int(samps)):
data = input_wav[frames*i:frames*(i+1)]
peri = periodogram(data,nfft=4096)
for sp in range(len(peri[0])):
specs[0][sp] += peri[0][sp]
for s in range(len(specs[0])):
specs[0][s] /= float(samps)
peri = []
for k, l in zip(specs[0], specs[1]):
if k == 0 and l == 0:
peri.append(epsilon)
else:
peri.append(math.log(math.sqrt((k ** 2) + (l ** 2))))
# Filter the spectrum through the triangle filterbank
mspec = np.log10(peri)
# Use the DCT to 'compress' the coefficients (spectrum -> cepstrum domain)
ceps = dct(mspec, type=2, norm='ortho', axis=-1)
return ceps[:50]
def build_single_feature_row(data, Atal=False):
lpcs = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
arr = []
periodo = specPS(data, 50)
arr.extend(periodo)
for j in lpcs:
if Atal:
ars = arspecs(data, j, Atal=True)
else:
ars = arspecs(data, j)
arr.extend(ars)
for i in range(len(arr)):
if np.isnan(float(arr[i])):
arr[i] = 0.0
return arr
def create_features(input_wav_filename, feature_filename, begin=None, end=None, Atal=False):
tmp_wav16_filename = generate_tmp_filename("wav")
easy_call("sox " + input_wav_filename + " -c 1 -r 16000 " + tmp_wav16_filename)
X = build_data(tmp_wav16_filename, begin, end)
if begin is not None and end is not None:
arr = [input_wav_filename]
arr.extend(build_single_feature_row(X, Atal))
np.savetxt(feature_filename, np.asarray([arr]), delimiter=",", fmt="%s")
return arr
arcep_mat = []
for i in range(len(X)):
arr = [input_wav_filename + str(i)]
arr.extend(build_single_feature_row(X[i], Atal))
arcep_mat.append(arr)
np.savetxt(feature_filename, np.asarray(arcep_mat), delimiter=",", fmt="%s")
return arcep_mat
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser(description='Extract features for formants estimation.')
parser.add_argument('wav_file', default='', help="WAV audio filename (single vowel or an whole utternace)")
parser.add_argument('feature_file', default='', help="output feature text file")
parser.add_argument('--begin', help="beginning time in the WAV file", default=0.0, type=float)
parser.add_argument('--end', help="end time in the WAV file", default=-1.0, type=float)
args = parser.parse_args()
if args.begin > 0.0 or args.end > 0.0:
create_features(args.wav_file, args.feature_file, args.begin, args.end)
else:
create_features(args.wav_file, args.feature_file)