-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclincnv2vcf.py
211 lines (187 loc) · 8.1 KB
/
clincnv2vcf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os.path
import re
from time import strftime
import pandas as pd
from pyfaidx import Fasta
def main(reference_genome: Fasta, input_file: str, sample_id: str, ci: int) -> None:
folder = os.path.dirname(input_file)
skip_lines, metadata = parse_metadata(input_file)
df_in = pd.read_csv(input_file, delimiter="\t", skiprows=skip_lines)
if metadata["gender of sample"].lower() == "m":
male = True
else:
male = False
df_out = pd.DataFrame()
df_out["#CHROM"] = df_in["#chr"]
df_out["POS"] = df_in["start"]
df_out["ID"] = "."
df_out["REF"] = df_in.apply(
lambda x: get_base(reference_genome, x["#chr"], x["start"]), axis=1
)
df_out["ALT"] = df_in.apply(
lambda x: get_DELDUP_by_CN(
x["CN_change"],
ltgt=True,
male_x=(male and (x["#chr"] == "X") or (x["#chr"] == "chrX")),
),
axis=1,
)
df_out["QUAL"] = df_in[
"loglikelihood"
].abs() # Use absolute value of loglikelihood because clincnv sometimes reports negative values
df_out["FILTER"] = df_in.apply(
lambda x: "PASS"
if get_DELDUP_by_CN(
x["CN_change"],
male_x=(male and (x["#chr"] == "X") or (x["#chr"] == "chrX")),
)
!= "."
else f"CN={x['CN_change']}",
axis=1,
)
df_out["INFO"] = (
df_in.apply(
lambda x: f"SVTYPE={get_DELDUP_by_CN(x['CN_change'], male_x=(male and ((x['#chr'] == 'X') or (x['#chr'] == 'chrX'))))}",
axis=1,
)
+ ";END="
+ df_in["end"].astype(str)
+ ";SVLEN="
+ (df_in["end"] - df_in["start"]).astype(str)
+ f";CIPOS=-{ci},{ci}"
+ f";CIEND=-{ci},{ci}"
+ ";NOREGIONS="
+ df_in["no_of_regions"].astype(str)
+ ";PAF="
+ df_in["potential_AF"].astype(str)
+ ";GENES="
+ df_in["genes"].apply(clean_info)
+ ";QVALUE="
+ df_in["qvalue"].astype(str)
+ ";OLAPAFIMGAG="
+ df_in["overlap af_genomes_imgag"].apply(clean_info)
+ ";CNPATO="
+ df_in["cn_pathogenic"].apply(clean_info)
+ ";CLINVAR="
+ df_in["clinvar_cnvs"].apply(clean_info)
+ ";GENEINFO="
+ df_in["gene_info"].apply(clean_info)
+ ";OWNPATO="
+ df_in["ngsd_pathogenic_cnvs"].apply(clean_info)
)
df_out["FORMAT"] = "GT:CN"
df_out[sample_id] = "./.:" + df_in["CN_change"].astype(str)
df_out.fillna(".", inplace=True)
with open(os.path.join(folder, f"{sample_id}_cnvs_clincnv.vcf"), "w") as f:
VCF_HEAD = f"""##fileformat=VCFv4.3
##fileDate={strftime("%Y%m%d")}
##reference=file://{reference_genome.filename}
##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural variant",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the variant described in this record",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=SVLEN,Number=.,Type=Integer,Description="Difference in length between REF and ALT alleles",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=CIPOS,Number=2,Type=Integer,Description="Confidence interval around POS for imprecise variants",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=CIEND,Number=2,Type=Integer,Description="Confidence interval around END for imprecise variants",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=NOREGIONS,Number=1,Type=Integer,Description="Number of regions in the CNV",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=PAF,Number=1,Type=Float,Description="Potential allelic fraction",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=GENES,Number=.,Type=String,Description="List of genes affected by the CNV",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=QVALUE,Number=1,Type=Float,Description="Q-value of the CNV",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=OLAPAFIMGAG,Number=.,Type=String,Description="Overlap with inhouse database of IMGAG and GnomAD",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=CNPATO,Number=.,Type=String,Description="Known pathogenic CNVs",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=CLINVAR,Number=.,Type=String,Description="ClinVar overlapping CNVs",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=GENEINFO,Number=.,Type=String,Description="Gene informations (i.e. stringency, region, etc.)",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##INFO=<ID=OWNPATO,Number=.,Type=String,Description="Known CNVs in inhouse database",Source="ClinCNV",Version={metadata["ClinCNV version"]}>
##ALT=<ID=DEL,Description="Deletion">
##ALT=<ID=DUP,Description="Duplication">
##ALT=<ID=INS,Description="Insertion of novel sequence">
##ALT=<ID=INV,Description="Inversion">
##ALT=<ID=CNV,Description="Copy number variable region">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=CN,Number=1,Type=Integer,Description="Copy number genotype for imprecise events">
"""
f.write(VCF_HEAD + df_out.to_csv(sep="\t", index=False))
def get_base(reference_genome: Fasta, chromosome: str, position: int) -> str:
return reference_genome[chromosome][position - 1 : position].seq
def parse_metadata(file: str) -> tuple[list[int], dict[str, str]]:
skip_lines = []
metadata = {}
metadata_pattern = re.compile(r"##(.*?):\s*(.*)")
with open(file) as f:
for i, line in enumerate(f):
if line.startswith("##"):
skip_lines.append(i)
metadata_match = re.match(metadata_pattern, line)
if metadata_match:
metadata[metadata_match.group(1).strip()] = metadata_match.group(2).strip()
return skip_lines, metadata
def get_DELDUP_by_CN(cn: int, ltgt: bool = False, male_x: bool = False) -> str:
if male_x:
cn_decision = 1
else:
cn_decision = 2
if cn == cn_decision:
return "."
return_value = ""
if cn < cn_decision:
return_value = "DEL"
elif cn > cn_decision:
return_value = "DUP"
if ltgt:
return_value = f"<{return_value}>"
return return_value
def clean_info(info: str) -> str:
if pd.isna(info):
return "."
else:
return re.sub(r"[^a-zA-Z0-9\.]", "_", info)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert ClinCNV TSV file(s) to VCF-format."
)
parser.add_argument(
"-r",
"--reference",
required=True,
help="reference genome in FASTA format.",
type=str.strip,
)
parser.add_argument(
"-i",
"--input",
required=True,
nargs="+",
help="input file(s) in ClinCNV TSV format.",
type=str.strip,
)
parser.add_argument(
"-s",
"--sampleid",
nargs="+",
help="sample id(s). Will be infered from input filename if not given.",
type=str.strip,
)
parser.add_argument(
"-c",
"--confidenceinterval",
default="500",
help="confidence interval around POS/END for imprecise variants. Will be used in in both directions. Defaults to `500` resulting in `CIPOS=-500,500;CIEND=-500,500`.",
type=int,
)
args = parser.parse_args()
if os.path.isfile(args.reference):
reference_genome = Fasta(filename=args.reference)
else:
raise FileNotFoundError(f"Reference genome not found: {args.reference}")
if args.sampleid and len(args.input) != len(args.sampleid):
raise ValueError("Number of input files and sample ids do not match.")
for index, file in enumerate(args.input):
if os.path.isfile(file):
if not args.sampleid:
sample_id = (
os.path.basename(file).split(".")[0].removesuffix("_cnvs_clincnv")
)
else:
sample_id = args.sampleid[index]
main(reference_genome, file, sample_id, args.confidenceinterval)
else:
raise FileNotFoundError(f"Input file not found: {file}")