Skip to content

Latest commit

 

History

History
66 lines (55 loc) · 2.63 KB

README.md

File metadata and controls

66 lines (55 loc) · 2.63 KB

MOnte carlo code for QUIck proton dose calculation (moqui)

Installation

Requirements

  • GDCM > 2
    • Please refer to GDCM v2 installation guide
    • You can also install GDCM v3 using package manager
  • CUDA
  • The code has been tested with GDCM v2 and CUDA v10.2 on Ubuntu 20.04
  • The code has been tested with GDCM v3 and CUDA v11.8 on Ubuntu 22.04

Obtaining the code

$ git clone https://github.com/mghro/moquimc.git

Compile the phantom case

$ cd moquimc/tests/mc/phantom
$ cmake .
$ make
  • You may need to modify the CUDA configuration on the CMakeList.txt
  • The default is to use CUDA compute capability 7.5

Running the phantom example

$ python create_phantom.py # create water phantom
$ ./phantom_env --lxyz 100 100 350 --pxyz 0.0 0.0 -175 --nxyz 200 200 350 --spot_energy 200.0 0.0 --spot_position 0 0 0.5 --spot_size 30.0 30.0 --histories 100000 --phantom_path ./water_phantom.raw --output_prefix ./ --gpu_id 0 > ./log.out

Update Dec/26/2023

  • There have been large updates in moqui and we added new features
    • Statistical uncertainty based stopping criteria (Please refer to the example input parameter Statistical stopping criteria)
    • Robust options (setup errors and density scaling, Please refer to the example input parameter Robust options)
    • Aperture handling
    • Support multiple calibration curves (You can override machine selection and define multiple calibration curves for a machine)
    • Unit weights per spot for Dij calculation (This only works for Dij scorer. The UnitWeight will be the absolute number of particles simulated)

Getting calibration curves

  • moqui uses fitted functions for calibration curves
  • You need to obtain stopping power ratio to water and radiation length per density and define compute_rsp_ and compute_rl_ functions in patient_material_t
  • To obtain the curves:
    1. Obtain material information using TOPAS
    2. Calculate correction factors for desired SPR curve
    3. Calculate fitting curves and implement them in moqui
    4. You can refer to the fit_rsp.py for the curve fitting
  • You can find the TOPAS extensions and example parameter file under treatment_machines/TOPAS
  • These are updated version of the HU extension in TOPAS (https://github.com/topasmc/extensions/tree/master/HU)

Authors

Hoyeon Lee ([email protected])
Jungwook Shin
Joost M. Verburg
Mislav Bobić
Brian Winey
Jan Schuemann
Harald Paganetti

Acknowledgements

This work is supported by NIH/NCI R01 234210 "Fast Individualized Delivery Adaptation in Proton Therapy"