diff --git a/README.md b/README.md index 65b03dba7..e5ac13c1e 100644 --- a/README.md +++ b/README.md @@ -84,6 +84,8 @@ We trained and evaluated our models on the following datasets: 2. [MNIST](https://yann.lecun.com/exdb/mnist/) (19,999 samples | 32 $\times$ 32 | CSV format) 3. [MNIST-M](https://www.kaggle.com/datasets/aquibiqbal/mnistm/data) (6,000 samples | 32 $\times$ 32) +You can download our datasets directly from [here](https://www.dropbox.com/scl/fi/ll19yhimdi1jscbft7ttm/Diffusion-Model-Datasets.zip?rlkey=d6ahl9ry5brxd9or7rz1emugm&st=a8n19949&dl=0). + ## How to Run 1. **Download the Datasets**: Download the datasets using the provided links. diff --git a/index.md b/index.md index bf5db1d72..123df87f3 100644 --- a/index.md +++ b/index.md @@ -11,6 +11,9 @@ This project investigates the integration of alias-free resampling techniques, i - **Rotation Equivariance**: Enabled consistent image generation across various rotations, showcasing the model's enhanced rotational capabilities. - **Efficient Design**: Achieved performance improvements through strategic architectural design, avoiding the need for additional trainable parameters. + +You can find our implementation and codebase on [GitHub](https://github.com/MDFahimAnjum/AliasFree-Diffusion-Models-PyTorch). + ## Results ### Standard Image Synthesis @@ -84,6 +87,8 @@ We trained and evaluated our models on the following datasets: 2. [MNIST](https://yann.lecun.com/exdb/mnist/) (19,999 samples | 32 $\times$ 32 | CSV format) 3. [MNIST-M](https://www.kaggle.com/datasets/aquibiqbal/mnistm/data) (6,000 samples | 32 $\times$ 32) +You can download our datasets directly from [here](https://www.dropbox.com/scl/fi/ll19yhimdi1jscbft7ttm/Diffusion-Model-Datasets.zip?rlkey=d6ahl9ry5brxd9or7rz1emugm&st=a8n19949&dl=0). + ## How to Run 1. **Download the Datasets**: Download the datasets using the provided links.