forked from TomTomTommi/DeepMIH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_oldversion.py
167 lines (134 loc) · 6.43 KB
/
test_oldversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import warnings
import sys
import math
import os
import torch
import torch.nn
import torch.optim
import torchvision
import numpy as np
import tqdm
# import cv2
from model import *
from imp_subnet import *
import config as c
from os.path import join
import datasets
import modules.module_util as mutil
import modules.Unet_common as common
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load(name, net, optim):
state_dicts = torch.load(name)
network_state_dict = {k: v for k, v in state_dicts['net'].items() if 'tmp_var' not in k}
net.load_state_dict(network_state_dict)
try:
optim.load_state_dict(state_dicts['opt'])
except:
print('Cannot load optimizer for some reason or other')
def gauss_noise(shape):
noise = torch.zeros(shape).to(device)
for i in range(noise.shape[0]):
noise[i] = torch.randn(noise[i].shape).to(device)
return noise
def computePSNR(origin, pred):
origin = np.array(origin)
origin = origin.astype(np.float32)
pred = np.array(pred)
pred = pred.astype(np.float32)
mse = np.mean((origin / 1.0 - pred / 1.0) ** 2)
if mse < 1.0e-10:
return 100
return 10 * math.log10(255.0 ** 2 / mse)
net1 = Model_1()
net2 = Model_2()
net3 = ImpMapBlock()
net1.cuda()
net2.cuda()
net3.cuda()
init_model(net1)
init_model(net2)
net1 = torch.nn.DataParallel(net1, device_ids=c.device_ids)
net2 = torch.nn.DataParallel(net2, device_ids=c.device_ids)
net3 = torch.nn.DataParallel(net3, device_ids=c.device_ids)
params_trainable1 = (list(filter(lambda p: p.requires_grad, net1.parameters())))
params_trainable2 = (list(filter(lambda p: p.requires_grad, net2.parameters())))
params_trainable3 = (list(filter(lambda p: p.requires_grad, net3.parameters())))
optim1 = torch.optim.Adam(params_trainable1, lr=c.lr, betas=c.betas, eps=1e-6, weight_decay=c.weight_decay)
optim2 = torch.optim.Adam(params_trainable2, lr=c.lr, betas=c.betas, eps=1e-6, weight_decay=c.weight_decay)
optim3 = torch.optim.Adam(params_trainable3, lr=c.lr3, betas=c.betas, eps=1e-6, weight_decay=c.weight_decay)
weight_scheduler1 = torch.optim.lr_scheduler.StepLR(optim1, c.weight_step, gamma=c.gamma)
weight_scheduler2 = torch.optim.lr_scheduler.StepLR(optim2, c.weight_step, gamma=c.gamma)
weight_scheduler3 = torch.optim.lr_scheduler.StepLR(optim3, c.weight_step, gamma=c.gamma)
dwt = common.DWT()
iwt = common.IWT()
if c.pretrain:
load(c.PRETRAIN_PATH + c.suffix_pretrain + '_1.pt', net1, optim1)
load(c.PRETRAIN_PATH + c.suffix_pretrain + '_2.pt', net2, optim2)
if c.PRETRAIN_PATH_3 is not None:
load(c.PRETRAIN_PATH_3 + c.suffix_pretrain_3 + '_3.pt', net3, optim3)
with torch.no_grad():
net1.eval()
net2.eval()
net3.eval()
import time
start = time.time()
for i, x in enumerate(datasets.testloader):
# for x in datasets.testloader:
x = x.to(device)
cover = x[:x.shape[0] // 3] # channels = 3
secret_1 = x[x.shape[0] // 3: 2 * (x.shape[0] // 3)]
secret_2 = x[2 * (x.shape[0] // 3): 3 * (x.shape[0] // 3)]
cover_dwt = dwt(cover) # channels = 12
secret_dwt_1 = dwt(secret_1)
secret_dwt_2 = dwt(secret_2)
input_dwt_1 = torch.cat((cover_dwt, secret_dwt_1), 1) # channels = 24
#################
# forward1: #
#################
output_dwt_1 = net1(input_dwt_1) # channels = 24
output_steg_dwt_1 = output_dwt_1.narrow(1, 0, 4 * c.channels_in) # channels = 12
output_z_dwt_1 = output_dwt_1.narrow(1, 4 * c.channels_in,
output_dwt_1.shape[1] - 4 * c.channels_in) # channels = 12
# get steg1
output_steg_1 = iwt(output_steg_dwt_1).to(device) # channels = 3
#################
# forward2: #
#################
if c.use_imp_map:
imp_map = net3(cover, secret_1, output_steg_1) # channels = 3
else:
imp_map = torch.zeros(cover.shape).cuda()
imp_map_dwt = dwt(imp_map) # channels = 12
input_dwt_2 = torch.cat((output_steg_dwt_1, imp_map_dwt), 1) # 24, without secret2
input_dwt_2 = torch.cat((input_dwt_2, secret_dwt_2), 1) # 36
output_dwt_2 = net2(input_dwt_2) # channels = 36
output_steg_dwt_2 = output_dwt_2.narrow(1, 0, 4 * c.channels_in) # channels = 12
output_z_dwt_2 = output_dwt_2.narrow(1, 4 * c.channels_in,
output_dwt_2.shape[1] - 4 * c.channels_in) # channels = 24
# get steg2
output_steg_2 = iwt(output_steg_dwt_2).to(device) # channels = 3
#################
# backward2: #
#################
output_z_guass_1 = gauss_noise(output_z_dwt_1.shape) # channels = 12
output_z_guass_2 = gauss_noise(output_z_dwt_2.shape) # channels = 24
output_rev_dwt_2 = torch.cat((output_steg_dwt_2, output_z_guass_2), 1) # channels = 36
rev_dwt_2 = net2(output_rev_dwt_2, rev=True) # channels = 36
rev_steg_dwt_1 = rev_dwt_2.narrow(1, 0, 4 * c.channels_in) # channels = 12
rev_secret_dwt_2 = rev_dwt_2.narrow(1, 4 * c.channels_in, 4 * c.channels_in) # channels = 12
rev_steg_1 = iwt(rev_steg_dwt_1).to(device) # channels = 3
rev_secret_2 = iwt(rev_secret_dwt_2).to(device) # channels = 3
#################
# backward1: #
#################
output_rev_dwt_1 = torch.cat((rev_steg_dwt_1, output_z_guass_1), 1) # channels = 24
rev_dwt_1 = net1(output_rev_dwt_1, rev=True) # channels = 36
rev_secret_dwt = rev_dwt_1.narrow(1, 4 * c.channels_in, 4 * c.channels_in) # channels = 12
rev_secret_1 = iwt(rev_secret_dwt).to(device)
torchvision.utils.save_image(cover, c.TEST_PATH_cover + '%.5d.png' % i)
torchvision.utils.save_image(secret_1, c.TEST_PATH_secret_1 + '%.5d.png' % i)
torchvision.utils.save_image(secret_2, c.TEST_PATH_secret_2 + '%.5d.png' % i)
torchvision.utils.save_image(output_steg_1, c.TEST_PATH_steg_1 + '%.5d.png' % i)
torchvision.utils.save_image(rev_secret_1, c.TEST_PATH_secret_rev_1 + '%.5d.png' % i)
torchvision.utils.save_image(output_steg_2, c.TEST_PATH_steg_2 + '%.5d.png' % i)
torchvision.utils.save_image(rev_secret_2, c.TEST_PATH_secret_rev_2 + '%.5d.png' % i)