-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgd.py
executable file
·308 lines (268 loc) · 12.3 KB
/
sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*-coding: utf-8 -*-
"""
Created on April 8, 2016
"""
import copy
import numpy
import time
from loss_function import LossFunctionsRegistry
from regularization_functions import RegularizationRegistry
from svm import ModelsRegistry
class SGD(object):
def __init__(
self, input_array, target_array, loss_type="hinge",
regularization_type="l2", learning_rate=0.1, lambda_coeff=0.05,
max_epochs=100, max_failed_iterations=10, minibatch_size=1,
n_valid_samples=1000, initialization="zero", random_seed=42,
stop_condition="loss", model="linear_svm"):
# TODO: add shuffle dataset
self.input = input_array
self.target = target_array
self.max_minibatch_size = minibatch_size
self.learning_rate = learning_rate
self.lambda_coeff = lambda_coeff
self.max_epochs = max_epochs
self.max_failed_iterations = max_failed_iterations
self.loss_type = loss_type
self.regularization_type = regularization_type
self.model_name = model
self.max_valid_accuracy = 0.0
self.epoch = 0
self.failed_iterations = 0
self.random_seed = random_seed
self.initialization = initialization
self.stop_condition = stop_condition
self.prev_loss_valid = numpy.iinfo(numpy.uint32).max
self.accuracy_per_epoch = {}
self.loss_per_epoch = {}
for set_name in ("valid", "train"):
for name in ("_input", "_target", "batches_n"):
setattr(self, set_name + name, None)
self.accuracy_per_epoch[set_name] = [self.max_valid_accuracy]
self.loss_per_epoch[set_name] = [self.prev_loss_valid]
for attr_name in (
"prediction", "weights", "bias", "target_train_minibatch",
"minibatch", "loss_function", "regularization",
"minibatch_size", "best_weights", "best_bias",
"current_loss_valid", "current_loss_train"):
setattr(self, attr_name, None)
self.n_valid_samples = n_valid_samples
self.n_total_samples, self.n_features = self.input.shape
self.n_train_samples = self.n_total_samples - self.n_valid_samples
self.n_valid_samples = self.n_valid_samples
self.split_data_to_train_and_validation()
self.weights, self.bias = getattr(
self, "initialize_weights_" + self.initialization)()
self.loss_function = LossFunctionsRegistry.loss_functions[
self.loss_type]
self.regularization = RegularizationRegistry.regularization[
self.regularization_type]
self.model = ModelsRegistry.models[self.model_name]
@staticmethod
def get_max_min_value(data):
return data.max(), data.min()
def get_batches_number(self, n_samples):
"""
Gets number of minibatches fron number of samples and minibatch size
"""
return int(numpy.ceil(n_samples / self.max_minibatch_size))
def split_data_to_train_and_validation(self):
"""
Splits data and targets to train and validation sets
"""
self.train_batches_n = self.get_batches_number(self.n_train_samples)
self.train_input = self.input[:self.n_train_samples]
self.train_target = self.target[:self.n_train_samples]
self.valid_batches_n = self.get_batches_number(self.n_valid_samples)
self.valid_input = self.input[
self.n_train_samples: self.n_total_samples]
self.valid_target = self.target[
self.n_train_samples: self.n_total_samples]
assert self.train_input.shape == (
self.n_train_samples, self.n_features)
assert self.valid_input.shape == (
self.n_valid_samples, self.n_features)
def initialize_weights_zero(self):
"""
Set weights and bias to zero
"""
weights = numpy.zeros(
(self.n_features, 1), dtype=numpy.float32)
bias = 0
return weights, bias
def initialize_weights_random(self):
"""
Set weights and bias to random
"""
numpy.random.seed(self.random_seed)
max_value, min_value = self.get_max_min_value(self.train_input)
weights = numpy.random.uniform(
min_value, max_value, (self.n_features, 1))
bias = numpy.random.uniform(min_value, max_value)
return weights, bias
def get_minibatches(self, minibatch_index, set_name):
"""
Finds current minibatch_size, minibatch and its targets
on train/validation
"""
batches_number = getattr(self, set_name + "_batches_n")
samples_number = getattr(self, "n_%s_samples" % set_name)
input_set = getattr(self, set_name + "_input")
target_set = getattr(self, set_name + "_target")
if minibatch_index != batches_number - 1:
self.minibatch_size = self.max_minibatch_size
else:
self.minibatch_size = (
samples_number - (batches_number - 1) *
self.max_minibatch_size)
return (
input_set[minibatch_index:minibatch_index + self.minibatch_size],
target_set[minibatch_index:minibatch_index + self.minibatch_size])
def train_epoch(self):
"""
Trains training dataset one time
"""
train_time_start = time.time()
good_train_samples = 0
train_loss = []
for minibatch_index in range(self.train_batches_n):
self.minibatch, self.target_train_minibatch = \
self.get_minibatches(minibatch_index, "train")
self.prediction = numpy.dot(
self.minibatch, self.weights) - self.bias
loss_function = self.loss_function(
target=self.target_train_minibatch, prediction=self.prediction)
regularization = self.regularization(
weights=self.weights,
lambda_coeff=self.lambda_coeff)
model = self.model(
self.n_features, self.minibatch_size, self.minibatch)
# Need to minimize: F = 1/n * sum(E(y(w, b))) + R(w, b),
# where y(w, b) - model and E(y) - loss function
# Need to find partial derivative on weights and bias:
# dF/dw = 1/n * sum(dE/dy * dy/dw) + dR/dw
# dF/db = 1/n * sum(dE/dy * dy/db) + dR/db
# Find sum(dE/dy * dy/dw), where dE/dy - loss_grad parameter,
# dE/dy calculates in loss_function.get_weights_loss_grad(),
# dy/dw calculates in model.get_sum_grad_weights:
loss_grad = loss_function.get_loss_grad()
grad_without_reg = model.get_sum_grad_weights(loss_grad=loss_grad)
# Find dF/dw = 1/n * sum(dE/dy * dy/dw) + dR/dw,
# where dR/dw calculates in regularization.get_weights_reg_grad(),
# and sum(dE/dy * dy/dw) is already calculated:
grad_weights = (
(1 / self.minibatch_size) * grad_without_reg +
regularization.get_weights_reg_grad())
# Same for bias. Find sum(dE/dy * dy/db),
# where dE/dy - loss_grad parameter, was already calculated,
# dy/db calculates in model.get_sum_grad_bias:
grad_without_reg_bias = model.get_sum_grad_bias(
loss_grad=loss_grad)
# Find dF/db = 1/n * sum(dE/dy * dy/db) + dR/db,
# where dR/db calculates in regularization.get_bias_reg_grad(),
# and sum(dE/dy * dy/db) is already calculated:
grad_bias = (
(-1 / self.minibatch_size) * grad_without_reg_bias +
regularization.get_bias_reg_grad())
# Update weights and bias:
self.weights -= grad_weights * self.learning_rate
self.bias -= grad_bias * self.learning_rate
# Calculate accuracy and loss:
good_train_samples, loss = self.get_n_good_samples_from_minibatch(
"train", self.minibatch, good_train_samples)
train_loss.append(loss)
self.current_loss_train = numpy.mean(train_loss)
train_time_end = time.time()
return good_train_samples, train_time_end - train_time_start
def validation_epoch(self):
"""
Validates validation dataset one time
"""
valid_time_start = time.time()
good_valid_samples = 0
valid_loss = []
if self.current_loss_valid is not None:
self.prev_loss_valid = self.current_loss_valid
for minibatch_index in range(self.valid_batches_n):
self.minibatch, self.target_valid_minibatch = \
self.get_minibatches(minibatch_index, "valid")
# Calculate accuracy and loss:
good_valid_samples, loss = self.get_n_good_samples_from_minibatch(
"valid", self.minibatch, good_valid_samples)
valid_loss.append(loss)
self.current_loss_valid = numpy.mean(valid_loss)
valid_time_end = time.time()
return good_valid_samples, valid_time_end - valid_time_start
def get_n_good_samples_from_minibatch(
self, set_name, minibatch, good_samples):
"""
Calculates number of good samples and loss for one
(train or validation) minibatch
"""
target_minibatch = getattr(self, "target_%s_minibatch" % set_name)
prediction_minibatch = numpy.zeros_like(target_minibatch)
for sample_index in range(minibatch.shape[0]):
prediction = numpy.dot(
minibatch[sample_index],
self.weights.reshape(self.n_features)) - self.bias
target = target_minibatch[sample_index]
prediction_minibatch[sample_index] = prediction
if prediction < 0:
prediction = -1
else:
prediction = 1
if prediction == target:
good_samples += 1
loss_function = self.loss_function(
target=target_minibatch, prediction=prediction_minibatch)
loss = loss_function.get_loss()
return good_samples, loss
def evaluation(self, good_samples, set_time, set_name):
"""
Print some statistics (accuracy, loss) for each epoch. Saved statistics
"""
n_samples = getattr(self, "n_%s_samples" % set_name)
current_accuracy = (good_samples / n_samples * 100)
current_loss = getattr(self, "current_loss_%s" % set_name)
if set_name == "valid":
if current_accuracy > self.max_valid_accuracy:
self.max_valid_accuracy = current_accuracy
print("Validation accuracy is better!!!")
self.best_weights = copy.deepcopy(self.weights)
self.best_bias = copy.deepcopy(self.bias)
self.failed_iterations = 0
else:
self.failed_iterations += 1
print(
"Epoch # %s in %.2f sec. %s set: %s good from %s (%.2f " %
(self.epoch, set_time, set_name, good_samples, n_samples,
current_accuracy) + "%). " + "Loss: %s" % current_loss)
self.accuracy_per_epoch[set_name].append(current_accuracy)
self.loss_per_epoch[set_name].append(current_loss)
def set_condition(self):
"""
Define condition to stop training process
"""
if self.stop_condition == "accuracy":
condition = self.failed_iterations <= self.max_failed_iterations
elif self.stop_condition == "loss":
condition = (
self.current_loss_valid is None or
self.prev_loss_valid > self.current_loss_valid)
else:
NotImplementedError(
"Please select stop_condition of 'accuracy' and 'loss'")
return condition
def run(self):
"""
Trains and validates dataset until the stop condition is not met or
number of epochs becomes equal to the maximum
"""
condition = self.set_condition()
while self.epoch < self.max_epochs and condition:
good_train_samples, train_time = self.train_epoch()
self.evaluation(good_train_samples, train_time, "train")
good_valid_samples, valid_time = self.validation_epoch()
self.evaluation(good_valid_samples, valid_time, "valid")
self.epoch += 1
condition = self.set_condition()