-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
106 lines (83 loc) · 3.39 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import torchvision.transforms as T
import numpy as np
from PIL import Image
def time_to_string(t):
if t > 3600: return "{:.2f} hours".format(t/3600)
if t > 60: return "{:.2f} minutes".format(t/60)
else: return "{:.2f} seconds".format(t)
""" https://github.com/NVIDIA/DeepLearningExamples/blob/8d8b21a933fff3defb692e0527fca15532da5dc6/PyTorch/Classification/ConvNets/image_classification/smoothing.py """
class LabelSmoothing(nn.Module):
"""
NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.0):
"""
Constructor for the LabelSmoothing module.
:param smoothing: label smoothing factor
"""
super(LabelSmoothing, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
def forward(self, x, target):
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
class AddGaussianNoise(torch.nn.Module):
def __init__(self, std=0.01):
self.std = std
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std * np.random.uniform()
def __repr__(self):
return self.__class__.__name__ + f'(std={self.std})'
def pil_loader(path):
return Image.open(open(path, 'rb')).convert('RGB')
def prepare_image(img, size=None, centercrop=False):
if size:
img = T.Resize(size, interpolation=T.InterpolationMode.BICUBIC)(img)
if centercrop:
img = T.CenterCrop(size)(img)
return T.ToTensor()(img).unsqueeze_(0)
def crop_center(pil_img, crop_width, crop_height):
img_width, img_height = pil_img.size
return pil_img.crop(((img_width - crop_width) // 2,
(img_height - crop_height) // 2,
(img_width + crop_width) // 2,
(img_height + crop_height) // 2))
def crop_max_square(pil_img, size):
return crop_center(pil_img, min(pil_img.size), min(pil_img.size)).resize((size, size))
class EnsembleModel(nn.Module):
def __init__(self, models, input_size, classes):
super(EnsembleModel, self).__init__()
self.models = models
self.input_size = input_size
self.classes = classes
def forward(self, x):
predictions = [torch.softmax(m(x.clone()), dim=1) for m in self.models]
return torch.mean(torch.stack(predictions), dim=0)
def make_ensemble(paths, plmodel, device):
print(" * Loading ensemble ...")
# Load ensemble
emodels = []
for i in range(len(paths)):
m = plmodel.load_from_checkpoint(paths[i], map_location=device)
m.eval()
m.freeze()
if i==0: # The first model sets the inputs for the rest
classes = m.hparams.classes
input_size = m.hparams.input_size
if classes == m.hparams.classes:
print("Adding {}".format(paths[i]))
m.to(device)
emodels.append(m)
else:
print("Did not add : {}".format(paths[i]))
print("Categories :", classes)
print("Input Size :", input_size)
model = EnsembleModel(emodels, input_size, classes)
print(" * Ensemble loaded.")
return model