-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
347 lines (312 loc) · 16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from collections import OrderedDict
from einops import rearrange
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import models
from torchvision.transforms import Normalize
import pytorch_lightning as pl
from torchmetrics.functional import accuracy, precision_recall, f1
class CNN(torch.nn.Module):
def __init__(self, features, fc, dropout=0.0):
super(CNN, self).__init__()
self.features = features
self.fc = fc
self.dropout = nn.Dropout(dropout)
self.pool = nn.AdaptiveAvgPool2d((1,1))
self.flatten = nn.Flatten()
def forward(self, x):
x = self.features(x)
x = self.pool(x)
x = self.dropout(x)
x = self.fc(x)
x = self.flatten(x)
return x
class ATTN(torch.nn.Module):
def __init__(self, features, attention):
super(ATTN, self).__init__()
self.features = features
self.attention = attention
self.flatten = nn.Flatten()
def forward(self, x):
x = self.features(x)
x = self.attention(x)
x = self.flatten(x)
return x
class ResidualAttentionBlock(torch.nn.Module):
def __init__(self, embd, dim, heads, ff_multi=0, dropout=0):
super(ResidualAttentionBlock, self).__init__()
self.heads = heads
self.ln = nn.LayerNorm(embd)
self.to_qkv = nn.Linear(embd, 3*dim*heads, bias=False)
self.attn_out = nn.Linear(dim*heads, embd, bias=False)
self.scale_factor = dim ** -0.5
self.dropout = nn.Dropout(dropout, inplace=True)
self.mlp = None
if ff_multi>0:
self.mlp = nn.Sequential(OrderedDict([
("in_proj", nn.Linear(embd, embd*ff_multi)),
("gelu", nn.GELU()),
("dropout", nn.Dropout(dropout)),
("out_proj", nn.Linear(embd*ff_multi, embd)),
("dropout", nn.Dropout(dropout)),
]))
def attention(self, x):
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L186
qkv = self.to_qkv(x) # B T 3*D*H
qkv = rearrange(qkv, 'b t (k d h) -> k b h t d', k=3, h=self.heads) # 3 B H T D
q, k, v = qkv.unbind(0) # B H T D
dots = torch.einsum('... i d , ... j d -> ... i j', q, k) * self.scale_factor # B H T T
attn = torch.softmax(dots, dim=-1) # B H T T
out = torch.einsum('... i j , ... j d -> ... i d', attn, v) # B H T D
out = rearrange(out, 'b h t d -> b t (h d)') # B T D*H
return self.attn_out(out), attn # B T E
def forward(self, x):
# Doing the attention and mlp in parallel
residual, attn = self.attention(x)
if self.mlp is not None:
residual = residual + self.mlp(x)
residual = self.dropout(residual)
return self.ln(x + residual)
class AttentionClassifier(torch.nn.Module):
def __init__(self, embd, dim, heads, layers, num_classes,
ff_multi=0, dropout=0, attn_pos_size=2,
avg_tokens=False):
super(AttentionClassifier, self).__init__()
self.input_norm = nn.LayerNorm(embd)
self.blocks = nn.Sequential(*[ResidualAttentionBlock(embd, dim, heads, ff_multi, dropout) for _ in range(layers)])
self.out = nn.Linear(embd, num_classes)
self.cls_token = nn.Parameter(torch.randn(1, 1, embd)) # B 1 E
self.pos_embd = nn.Parameter(torch.randn(1, embd, attn_pos_size, attn_pos_size)) # B E H W, this is the corners of the position embedding
self.dropout = nn.Dropout(dropout)
self.avg_tokens = avg_tokens
self.embd_scale = embd ** -0.5
# https://github.com/openai/CLIP/blob/main/clip/model.py#L300
nn.init.normal_(self.cls_token, std=0.02)
nn.init.normal_(self.pos_embd, std=0.01)
proj_std, attn_std, fc_std = (embd ** -0.5) * ((2 * layers) ** -0.5), embd ** -0.5, (2 * embd) ** -0.5
for block in self.blocks:
nn.init.normal_(block.to_qkv.weight, std=attn_std)
nn.init.normal_(block.attn_out.weight, std=proj_std)
if block.mlp is not None:
nn.init.normal_(block.mlp.in_proj.weight, std=fc_std)
nn.init.normal_(block.mlp.out_proj.weight, std=fc_std)
def features_to_tokens(self, x):
n, c, h, w = x.shape
pos_embd = F.interpolate(self.pos_embd, size=(h,w), mode='bilinear', align_corners=True)
pos_embd = rearrange(pos_embd, 'b c h w -> b (h w) c')
x = rearrange(x, 'b c h w -> b (h w) c')
# TODO: mask out tokens like dropout
if self.avg_tokens:
x = torch.cat([x.mean(dim=1, keepdim=True), x], dim=1) # B (HW+1) C
pos_embd = torch.cat([self.cls_token, pos_embd], dim=1) # 1 (HW+1) C
else:
x = torch.cat([self.cls_token.expand(n, -1, -1), x], dim=1) # B (HW+1) C
pos_embd = torch.cat([torch.zeros(1, 1, c, device=x.device), pos_embd], dim=1) # 1 (HW+1) C
x = x + pos_embd*self.embd_scale
return x
def forward(self, x):
x = self.features_to_tokens(x)
x = self.input_norm(x)
x = self.blocks(x)
out = self.out(x[:,0])
return out
def get_model(args):
norm = Normalize(args.mean, args.std, inplace=True)
use_att = False
model_name = args.model
i = model_name.find("attn") # Check for attention head
if i>0:
use_att = True
model_name = model_name[:i-1]
if callable(models.__dict__[model_name]):
m = models.__dict__[model_name](pretrained=args.pretrained)
# Get model features after pooling
if "resnet" in model_name or "resnext" in model_name:
layers = list(m.children())[:-2] # Remove pooling and fc
elif "shufflenet" in model_name:
layers = list(m.children())[:-1] # Remove fc
elif "squeezenet" in model_name:
layers = list(m.children())[:-1] # Remove classifer
elif "densenet" in model_name:
layers = list(m.children())[:-1] # Remove classifer
elif "mobilenet_v2" in model_name:
layers = list(m.children())[:-1] # Remove classifer
elif "mobilenet_v3" in model_name:
layers = list(m.children())[:-2] # Remove pooling and classifer
elif "mnasnet" in model_name:
layers = list(m.children())[:-1] # Remove pooling and classifer
else:
raise ValueError("Model with pretrained not supported : {}".format(model_name))
layers.append(nn.Dropout(args.dropout)) # Dropout on the features
features = nn.Sequential(norm, *layers)
# Create a fake image to get the output dimension
fake_img = torch.zeros(1, 3, args.input_size, args.input_size)
yhat = features(fake_img)
_, final_dim, _, _ = yhat.shape
if use_att:
if args.attn_embd!=final_dim:
features.add_module("proj", nn.Conv2d(final_dim, args.attn_embd, kernel_size=1, bias=False))
attention = AttentionClassifier(args.attn_embd, args.attn_dim, args.attn_heads,
args.attn_layers, args.num_classes, args.attn_ff_multi,
args.dropout, args.attn_pos_size, args.attn_avg_tokens)
return ATTN(features, attention)
else:
fc = nn.Conv2d(final_dim, args.num_classes, kernel_size=1, bias=True)
return CNN(features, fc, args.dropout)
raise ValueError("Unknown model arg: {}".format(args.model))
class GarbageModel(pl.LightningModule):
def __init__(self, **kwargs):
super(GarbageModel, self).__init__()
self.save_hyperparameters()
self.hparams.num_classes = len(self.hparams.classes)
self.model = get_model(self.hparams)
self.scheduler = None # Set in configure_optimizers()
self.opt_init_lr = None # Set in configure_optimizers()
self.cross_entropy = nn.CrossEntropyLoss()
assert 0 <= self.hparams.label_smoothing < (self.hparams.num_classes-1)/self.hparams.num_classes
self.criterion = nn.CrossEntropyLoss(
weight=self.hparams.class_weights if self.hparams.imbalance_weights else None,
label_smoothing=self.hparams.label_smoothing
)
def forward(self, x):
""" Inference Method Only"""
return torch.softmax(self.model(x), dim=1)
def batch_step(self, batch):
""" Used in train and validation """
data, target = batch
if self.training and self.hparams.cutmix>0 and torch.rand(1) < self.hparams.cutmix_prob:
lam = np.random.beta(self.hparams.cutmix, self.hparams.cutmix)
rand_index = torch.randperm(data.size()[0]).to(data.device)
target_a = target
target_b = target[rand_index]
# Now the bboxes for the input and mask
_, _, w, h = data.size()
cut_rat = np.sqrt(1.0 - lam)
cut_w, cut_h = int(w*cut_rat), int(h*cut_rat) # Box size
cx, cy = np.random.randint(w), np.random.randint(h) # Box center
bbx1 = np.clip(cx - cut_w // 2, 0, w)
bbx2 = np.clip(cx + cut_w // 2, 0, w)
bby1 = np.clip(cy - cut_h // 2, 0, h)
bby2 = np.clip(cy + cut_h // 2, 0, h)
data[:, :, bbx1:bbx2, bby1:bby2] = data[rand_index, :, bbx1:bbx2, bby1:bby2]
# Adjust the classification loss based on pixel area ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (w*h))
logits = self.model(data)
loss = self.criterion(logits, target_a)*lam + self.criterion(logits, target_b)*(1.0-lam)
else:
logits = self.model(data)
loss = self.criterion(logits, target)
cross_entropy = self.cross_entropy(logits, target)
pred = torch.argmax(logits, dim=1)
acc = accuracy(pred, target)
avg_precision, avg_recall = precision_recall(pred, target, num_classes=self.hparams.num_classes,
average="macro", mdmc_average="global")
weighted_f1 = f1(pred, target, num_classes=self.hparams.num_classes,
threshold=0.5, average="weighted")
metrics = {
"loss": loss, # attached to computation graph, not necessary in validation, but I'm to lazy to fix
"accuracy": acc,
"error": 1-acc,
"average_precision": avg_precision,
"average_recall": avg_recall,
"weighted_f1": weighted_f1,
"inv_f1": 1-weighted_f1,
"cross_entropy": cross_entropy,
}
return metrics
def training_step(self, batch, batch_idx):
metrics = self.batch_step(batch)
for k, v in metrics.items():
key = "{}/train".format(k)
self.log(key, v, on_step=True, on_epoch=True)
if self.global_step==self.hparams.finetune_after and self.hparams.finetune_after>=0:
for param in self.model.parameters():
param.requires_grad = True
if self.trainer.global_step < self.hparams.lr_warmup_steps:
opt = self.optimizers()
lr_scale = min(1, float(self.trainer.global_step+1)/self.hparams.lr_warmup_steps)
for pg, init_lr in zip(opt.param_groups, self.opt_init_lr):
pg['lr'] = lr_scale*init_lr
elif self.scheduler:
if type(self.scheduler) in [torch.optim.lr_scheduler.MultiStepLR, torch.optim.lr_scheduler.ExponentialLR]:
self.scheduler.step()
lr = self.optimizers().param_groups[0]['lr']
self.logger.experiment.add_scalar('Learning Rate/step', lr, global_step=self.global_step)
return metrics["loss"]
# def training_epoch_end(self, outputs):
# avg_loss = torch.stack([x["loss"] for x in outputs]).mean().item()
# Add graph to tensorboard
# if self.current_epoch == 0:
# sample = torch.rand((1, 3, self.hparams.input_size, self.hparams.input_size), device=self.device)
# self.logger.experiment.add_graph(self.model, sample)
# Parameter histograms
# Too long to reload tensorboard, so commented out
# for name, params in self.named_parameters():
# try:
# self.logger.experiment.add_histogram(name, params, self.current_epoch)
# self.logger.experiment.add_histogram(f'{name}.grad', params.grad, self.current_epoch)
# except Exception as e:
# pass
def validation_step(self, batch, batch_idx):
metrics = self.batch_step(batch)
for k, v in metrics.items():
key = "{}/val_epoch".format(k)
self.log(key, v, on_step=False, on_epoch=True)
return metrics["loss"]
def validation_epoch_end(self, outputs):
avg_loss = torch.stack(outputs).mean().item()
lr = self.optimizers().param_groups[0]['lr']
self.logger.experiment.add_scalar('Learning Rate', lr, global_step=self.current_epoch)
# Step scheduler
if self.scheduler:
if type(self.scheduler) == torch.optim.lr_scheduler.ReduceLROnPlateau:
self.scheduler.step(avg_loss)
def configure_optimizers(self):
"""https://discuss.pytorch.org/t/weight-decay-in-the-optimizers-is-a-bad-idea-especially-with-batchnorm/16994/3"""
def add_weight_decay(module, weight_decay, lr):
decay = []
no_decay = []
for name, param in module.named_parameters():
if param.requires_grad:
if len(param.shape) == 1: # Bias and bn parameters
no_decay.append(param)
else:
decay.append(param)
return [{'params': no_decay, 'lr': lr, 'weight_decay': 0.0},
{'params': decay, 'lr': lr, 'weight_decay': weight_decay}]
if self.hparams.pretrained:
head_layer = self.model.fc if type(self.model)==CNN else self.model.attention
if self.hparams.weight_decay != 0:
params = add_weight_decay(head_layer, self.hparams.weight_decay, self.hparams.lr)
# Don't weight decay on pretrained weights
params += add_weight_decay(self.model.features, self.hparams.weight_decay, self.hparams.finetune_lr)
else:
params = [{'params': head_layer.parameters(), 'lr': self.hparams.lr},
{'params': self.model.features.parameters(), 'lr': self.hparams.finetune_lr}]
# Pretrained weights are frozen until finetune_after
for param in self.model.features.parameters():
param.requires_grad = False
else:
# Not pretrained so all weights use the same hyperparameters
if self.hparams.weight_decay != 0:
params = add_weight_decay(self.model, self.hparams.weight_decay, self.hparams.lr)
else:
params = self.model.parameters()
if self.hparams.opt == 'sgd':
optimizer = torch.optim.SGD(params, lr=self.hparams.lr, momentum=self.hparams.momentum,
nesterov=self.hparams.nesterov)
elif self.hparams.opt == 'adam':
optimizer = torch.optim.Adam(params, lr=self.hparams.lr)
elif self.hparams.opt == 'adamw':
optimizer = torch.optim.AdamW(params, lr=self.hparams.lr)
# Keep a copy of the initial lr for each group because this will get overwritten during warmup steps
self.opt_init_lr = [pg['lr'] for pg in optimizer.param_groups]
if self.hparams.scheduler == 'step':
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.hparams.milestones, gamma=self.hparams.lr_gamma)
elif self.hparams.scheduler == 'plateau':
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=self.hparams.lr_gamma, patience=self.hparams.plateau_patience, verbose=False)
elif self.hparams.scheduler == 'exp':
self.scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=self.hparams.lr_gamma)
return optimizer