-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlocal_matching.py
78 lines (68 loc) · 2.43 KB
/
local_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import random
from glob import glob
import torch.nn.functional as F
import datetime
import numpy as np
import cv2
import math
def get_keypoints(img_size):
# flaten by x
H,W = img_size
patch_size = 1#14
N_h = H//patch_size
N_w = W//patch_size
keypoints = np.zeros((2, N_h*N_w), dtype=int)
keypoints[0] = np.tile(np.linspace(patch_size//2, W-patch_size//2, N_w,
dtype=int), N_h)
keypoints[1] = np.repeat(np.linspace(patch_size//2, H-patch_size//2, N_h,
dtype=int), N_w)
return np.transpose(keypoints)
def match_batch_tensor(fm1, fm2, trainflag, grid_size):
'''
fm1: (l,D)
fm2: (N,l,D)
mask1: (l)
mask2: (N,l)
'''
M = torch.matmul(fm2, fm1.T) # (N,l,l)
max1 = torch.argmax(M, dim=1) #(N,l)
max2 = torch.argmax(M, dim=2) #(N,l)
m = max2[torch.arange(M.shape[0]).reshape((-1,1)), max1] #(N, l)
valid = torch.arange(M.shape[-1]).repeat((M.shape[0],1)).cuda() == m #(N, l) bool
scores = torch.zeros(fm2.shape[0]).cuda()
kps = get_keypoints(grid_size)
for i in range(fm2.shape[0]):
idx1 = torch.nonzero(valid[i,:]).squeeze()
idx2 = max1[i,:][idx1]
assert idx1.shape==idx2.shape
if trainflag:
if len(idx1.shape)>0:
similarity = torch.mean(torch.sum(fm1[idx1] * fm2[i][idx2],dim=1),dim=0)
else:
print("No mutual nearest neighbors!")
similarity = torch.mean(torch.sum(fm1 * fm2[i],dim=1),dim=0)
return similarity
else:
if len(idx1.shape)<1:
scores[i] = 0
else:
scores[i] = len(idx1)
return scores
def local_sim(features_1, features_2, trainflag=False):
B, H, W, C = features_2.shape
if trainflag:
queries = features_1
preds = features_2
queries,preds = queries.view(B, H*W, C),preds.view(B, H*W, C)
similarity = torch.zeros(B).cuda()
for i in range(B):
query,pred = queries[i],preds[i].unsqueeze(0)
similarity[i] = match_batch_tensor(query, pred, trainflag, grid_size=(H, W))
return similarity
else:
query = features_1
preds = features_2
query,preds = query.view(H*W, C),preds.view(B, H*W, C)
scores = match_batch_tensor(query, preds,trainflag, grid_size=(H, W))
return scores