-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
685 lines (564 loc) · 31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import argparse
import csv
import logging
import os
import sys
from ast import literal_eval
from datetime import datetime
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torch.optim.lr_scheduler import MultiStepLR
from tqdm import tqdm, trange
from collections import OrderedDict
import actquant
import models
from clr import CyclicLR # Until it will be included in official PyTorch release
from data import get_dataset
from logger import CsvLogger
from preprocess import get_transform
from utils.log import save_checkpoint
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ConvNet Training')
parser.add_argument('--results_dir', metavar='RESULTS_DIR', default='./results', help='results dir')
parser.add_argument('--datapath', metavar='DATA_PATH', default='./results', help='datasets dir')
parser.add_argument('--save', metavar='SAVE', default='', help='saved folder')
parser.add_argument('--dataset', metavar='DATASET', default='imagenet', help='dataset name or folder')
parser.add_argument('--model', '-a', metavar='MODEL', default='alexnet', choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: alexnet)')
parser.add_argument('--input_size', type=int, default=None, help='image input size')
parser.add_argument('--model_config', default='', help='additional architecture configuration')
parser.add_argument('--type', default='float32', help='type of tensor - e.g float16')
parser.add_argument('--gpus', default='0', help='gpus used for training - e.g 0,1,3')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--optimizer', default='SGD', type=str, metavar='OPT', help='optimizer function used')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', type=str, metavar='FILE', help='evaluate model FILE on validation set')
parser.add_argument('--no-quantization', action='store_true', default=False, help='disables quantization')
parser.add_argument('--no-noise', action='store_true', default=False, help='noise')
parser.add_argument('--bitwidth', default=32, type=int, metavar='N', help='Quantization bitwidth (default: 5)')
parser.add_argument('--scale', default=1, type=float, metavar='N', help='scale of MobileNet2')
parser.add_argument('--step', default=2, type=int, metavar='N',
help='portion of net to be quantized at second stage(default: 2)')
parser.add_argument('--depth', default=18, type=int, metavar='N', help='depth of the model(default: 18)')
parser.add_argument('--act-bitwidth', default=32, type=int, metavar='N',
help='Quantization activation bitwidth (default: 5)')
parser.add_argument('--no-act-quantization', action='store_true', default=False, help='disables quantization')
parser.add_argument('--start-from-zero', action='store_true', default=False, help='Start from epoch 0')
parser.add_argument('--no-quant-edges', action='store_true', default=False,
help='no quantization for first and last layers')
#parser.add_argument('--step-setup', default='15,9', help='start of steps and interval- e.g 0,1')
parser.add_argument('--quant_start_stage', default=0, type=int, metavar='N', help='from which level of quant to start')
parser.add_argument('--quant_epoch_step', type=float, default=1.0, help='hot often to change state of quant')
# CLR
parser.add_argument('--clr', dest='clr', action='store_true', help='Use CLR')
parser.add_argument('--min-lr', type=float, default=1e-5, help='Minimal LR for CLR.')
parser.add_argument('--max-lr', type=float, default=1, help='Maximal LR for CLR.')
parser.add_argument('--epochs-per-step', type=int, default=20,
help='Number of epochs per step in CLR, recommended to be between 2 and 10.')
parser.add_argument('--mode', default='triangular2', help='CLR mode. One of {triangular, triangular2, exp_range}')
parser.add_argument('--find-clr', dest='find_clr', action='store_true',
help='Run search for optimal LR in range (min_lr, max_lr)')
# Optimization options
parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='The learning rate.')
parser.add_argument('--momentum', '-m', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float, default=4e-5, help='Weight decay (L2 penalty).')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma at scheduled epochs.')
parser.add_argument('--schedule', type=int, nargs='+', default=[81, 122, 164],
help='Decrease learning rate at these epochs.')
parser.add_argument('--val_batch_size', default=64, type=int , help='val mini-batch size (default: 64)')
# NICE
parser.add_argument('--param-std-cutoff', type=float, default=3, help='how many std to include before cutoff')
parser.add_argument('--quant-dataloader', action='store_true', default=False, help='Load quantized data loader')
parser.add_argument('-sb', '--act_stats_batch_size', default=64, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--no_pre_process_normalize', action='store_true', default=False, help='normalize in the preprocess')
parser.add_argument('--noise_mask', type=float, default=0.05, help='Probability to add noise')
clamp_stats_dict = {}
cos_loss_dict = {}
def load_model(model, checkpoint):
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = k if k[0:7] != 'module.' else k[7:] # remove `module. if needed (happen when the model created with DataParallel
new_state_dict[name] = v if v.dim() > 1 or 'num_batches_tracked' in name else v*v.new_ones(1)
# load params
model.load_state_dict(new_state_dict, strict=False) #strict false in case the loaded doesn't have alll variables like running mean
def main():
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
global args, best_prec1
best_prec1 = 0
args = parser.parse_args()
time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
if args.evaluate:
args.results_dir = '/tmp'
if args.save is '':
args.save = time_stamp
save_path = os.path.join(args.results_dir, args.save)
if not os.path.exists(save_path):
os.makedirs(save_path)
args.noise = not args.no_noise
args.quant = not args.no_quantization
args.act_quant = not args.no_act_quantization
args.quant_edges = not args.no_quant_edges
logging.info("saving to %s", save_path)
logging.debug("run arguments: %s", args)
if args.gpus is not None:
args.gpus = [int(i) for i in args.gpus.split(',')]
device = 'cuda:' + str(args.gpus[0])
cudnn.benchmark = True
else:
device = 'cpu'
dtype = torch.float32
args.step_setup = None
model = models.__dict__[args.model]
model_config = {'scale': args.scale, 'input_size': args.input_size, 'dataset': args.dataset,
'bitwidth': args.bitwidth, 'quantize': args.quant, 'noise': args.noise, 'step': args.step,
'depth': args.depth, 'act_bitwidth': args.act_bitwidth, 'act_quant': args.act_quant,
'quant_edges': args.quant_edges, 'step_setup': args.step_setup,
'quant_epoch_step': args.quant_epoch_step, 'quant_start_stage': args.quant_start_stage,
'normalize': args.no_pre_process_normalize,
'noise_mask': args.noise_mask}
if args.model_config is not '':
model_config = dict(model_config, **literal_eval(args.model_config))
# create model
model = model(**model_config)
logging.info("creating model %s", args.model)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("number of parameters: ", params)
logging.info("created model with configuration: %s", model_config)
print(model)
data = None
checkpoint_epoch=0
# optionally resume from a checkpoint
if args.evaluate:
if not os.path.isfile(args.evaluate):
parser.error('invalid checkpoint: {}'.format(args.evaluate))
checkpoint = torch.load(args.evaluate, map_location=device)
load_model(model, checkpoint)
logging.info("loaded checkpoint '%s' (epoch %s)",
args.evaluate, checkpoint['epoch'])
print("loaded checkpoint {0} (epoch {1})".format(args.evaluate, checkpoint['epoch']))
elif args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location=device)
if not args.start_from_zero:
args.start_epoch = checkpoint['epoch'] - 1
best_test = checkpoint['best_prec1']
checkpoint_epoch = checkpoint['epoch']
load_model(model, checkpoint)
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
elif os.path.isdir(args.resume):
checkpoint_path = os.path.join(args.resume, 'checkpoint.pth.tar')
csv_path = os.path.join(args.resume, 'results.csv')
print("=> loading checkpoint '{}'".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path, map_location=device)
best_test = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
data = []
with open(csv_path) as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
data.append(row)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.gpus is not None:
model = torch.nn.DataParallel(model, [args.gpus[0]]) # Statistics need to be calculated on single GPU to be consistant with data among multiplr GPUs
# Data loading code
default_transform = {
'train': get_transform(args.dataset, input_size=args.input_size, augment=True,
integer_values=args.quant_dataloader, norm=not args.no_pre_process_normalize),
'eval': get_transform(args.dataset, input_size=args.input_size, augment=False,
integer_values=args.quant_dataloader, norm=not args.no_pre_process_normalize)
}
transform = getattr(model.module, 'input_transform', default_transform)
val_data = get_dataset(args.dataset, 'val', transform['eval'], datasets_path=args.datapath)
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.val_batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
train_data = get_dataset(args.dataset, 'train', transform['train'], datasets_path=args.datapath)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
statistics_train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.act_stats_batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.decay,
nesterov=True)
model, criterion = model.to(device, dtype), criterion.to(device, dtype)
if args.clr:
scheduler = CyclicLR(optimizer, base_lr=args.min_lr, max_lr=args.max_lr,
step_size=args.epochs_per_step * len(train_loader), mode=args.mode)
else:
scheduler = MultiStepLR(optimizer, milestones=args.schedule, gamma=args.gamma)
csv_logger = CsvLogger(filepath=save_path, data=data)
csv_logger.save_params(sys.argv, args)
csv_logger_training_stats = os.path.join(save_path, 'training_stats.csv')
# pre-training activation and parameters statistics calculation ####
if check_if_need_to_collect_statistics(model):
for layer in model.modules():
if isinstance(layer, actquant.ActQuantBuffers):
layer.pre_training_statistics = True # Turn on pre-training activation statistics calculation
model.module.statistics_phase = True
validate(statistics_train_loader, model, criterion, device, epoch=0, num_of_batches=80, stats_phase=True) # Run validation on training set for statistics
model.module.quantize.get_act_max_value_from_pre_calc_stats(list(model.modules()))
_ = model.module.quantize.set_weight_basis(list(model.modules()), None)
for layer in model.modules():
if isinstance(layer, actquant.ActQuantBuffers):
layer.pre_training_statistics = False # Turn off pre-training activation statistics calculation
model.module.statistics_phase = False
else: # Maximal activation values still need to be derived from loaded stats
model.module.quantize.assign_act_clamp_during_val(list(model.modules()), print_clamp_val=True)
model.module.quantize.assign_weight_clamp_during_val(list(model.modules()), print_clamp_val=True)
# model.module.quantize.get_act_max_value_from_pre_calc_stats(list(model.modules()))
if args.gpus is not None: # Return to Multi-GPU after statistics calculations
model = torch.nn.DataParallel(model.module, args.gpus)
model, criterion = model.to(device, dtype), criterion.to(device, dtype)
# pre-training activation statistics calculation ####
if args.evaluate:
val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, device, epoch=0)
print("val_prec1: ", val_prec1)
return
# fast forward to curr stage
for i in range(args.quant_start_stage):
model.module.switch_stage(0)
for epoch in trange(args.start_epoch, args.epochs + 1):
if not isinstance(scheduler, CyclicLR):
scheduler.step()
# scheduler.optimizer = optimizer
train_loss, train_prec1, train_prec5 = train(
train_loader, model, criterion, device, epoch, optimizer, scheduler,
training_stats_logger=csv_logger_training_stats)
for layer in model.modules():
if isinstance(layer, actquant.ActQuantBuffers):
layer.print_clamp()
# evaluate on validation set
val_loss, val_prec1, val_prec5 = validate(
val_loader, model, criterion, device, epoch)
# remember best prec@1 and save checkpoint
is_best = val_prec1 > best_prec1
best_prec1 = max(val_prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'model': args.model,
'config': args.model_config,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'layers_b_dict': model.module.layers_b_dict #TODO this doesn't work for multi gpu - need to del
}, is_best, path=save_path)
# New type of logging
csv_logger.write({'epoch': epoch + 1, 'val_error1': 1 - val_prec1, 'val_error5': 1 - val_prec5,
'val_loss': val_loss, 'train_error1': 1 - train_prec1,
'train_error5': 1 - train_prec5, 'train_loss': train_loss})
csv_logger.plot_progress(title=args.model+str(args.depth))
csv_logger.write_text('Epoch {}: Best accuracy is {:.2f}% top-1'.format(epoch + 1, best_prec1 * 100.))
def check_if_need_to_collect_statistics(model):
for layer in model.modules():
# for layer in model.module.layers_list():
if isinstance(layer, actquant.ActQuantBuffers):
if hasattr(layer, 'running_std') and float(layer.running_std) != 0:
return False
return True
def forward(data_loader, model, criterion, device, epoch=0, num_of_batches=None, training=True, optimizer=None,
scheduler=None, training_stats_logger=None, stats_phase=False):
correct1, correct5 = 0, 0
print_correct_1 , print_correct_5 = 0, 0
print_batch_counter = 0
quant_stage_counter = 0
quant_stage_correct_1 = 0
t = time.time()
for batch_idx, (inputs, target) in enumerate(tqdm(data_loader)):
if num_of_batches:
if batch_idx > num_of_batches: # Debug
break
if isinstance(scheduler, CyclicLR):
scheduler.batch_step()
inputs, target = inputs.to(device=device), target.to(device=device)
if (training):
epoch_progress = epoch + batch_idx/len(data_loader)
stage_switch = model.module.switch_stage(epoch_progress)
if stage_switch:
quant_stage_counter = 0
quant_stage_correct_1 = 0
# compute output
output = model(inputs)
loss = criterion(output, target)
if type(output) is list:
output = output[0]
# measure accuracy and record loss
corr = correct(output, target, topk=(1, 5))
correct1 += corr[0]
correct5 += corr[1]
if training:
# compute gradient
optimizer.zero_grad()
loss.backward()
optimizer.step()
quant_stage_correct_1 += corr[0]
print_correct_1 += corr[0]
print_correct_5 += corr[1]
print_batch_counter += output.shape[0]
quant_stage_counter += output.shape[0]
if batch_idx % args.print_freq == 0:
if stats_phase:
tqdm.write('Stats phase : [{}/{} ({:.0f}%)]\tLoss: {:.6f}. Top-1 accuracy: {:.2f}%({:.2f}%). '
'Top-5 accuracy: '
'{:.2f}%({:.2f}%).'.format(batch_idx, len(data_loader),
100. * batch_idx / len(data_loader), loss.item(),
100. * print_correct_1 / print_batch_counter,
100. * correct1 / (args.act_stats_batch_size * (batch_idx + 1)),
100. * print_correct_5 / print_batch_counter,
100. * correct5 / (args.act_stats_batch_size * (batch_idx + 1))))
elif training:
tqdm.write('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. Top-1 accuracy: {:.2f}%({:.2f}%). '
'Top-5 accuracy: {:.2f}%({:.2f}%). \t'
'lr: {:.2e}.'.format(epoch, batch_idx, len(data_loader),
100. * batch_idx / len(data_loader), loss.item(),
100. * print_correct_1 / print_batch_counter,
100. * correct1 / (args.batch_size * (batch_idx + 1)),
100. * print_correct_5 / print_batch_counter,
100. * correct5 / (args.batch_size * (batch_idx + 1)),
scheduler.get_lr()[0] if scheduler is not None else 0))
dur = time.time() - t
with open(training_stats_logger, 'a') as f: #TODO add title
f.write('{},{},{},{},{},{},{},{},{},{},{},{},{} \n'.format(epoch, batch_idx, len(data_loader),
epoch * len(data_loader) + batch_idx,
100. * batch_idx / len(data_loader), loss.item(),
100. * print_correct_1 / print_batch_counter,
100. * correct1 / (args.batch_size * (batch_idx + 1)),
100. * print_correct_5 / print_batch_counter,
100. * correct5 / (args.batch_size * (batch_idx + 1)),
scheduler.get_lr()[0] if scheduler is not None else 0,
dur ,
100. * quant_stage_correct_1 / quant_stage_counter,
)
)
else:
tqdm.write('Validation Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}. Top-1 accuracy: {:.2f}%({:.2f}%). '
'Top-5 accuracy: '
'{:.2f}%({:.2f}%).'.format(epoch, batch_idx, len(data_loader),
100. * batch_idx / len(data_loader), loss.item(),
100. * print_correct_1 / print_batch_counter,
100. * correct1 / (args.val_batch_size * (batch_idx + 1)),
100. * print_correct_5 / print_batch_counter,
100. * correct5 / (args.val_batch_size * (batch_idx + 1))))
print_correct_1, print_correct_5 = 0 , 0
print_batch_counter = 0
return loss.item(), correct1 / len(data_loader.dataset), correct5 / len(data_loader.dataset)
def train(data_loader, model, criterion, device, epoch, optimizer, scheduler,
training_stats_logger=None, num_of_batches=None):
# switch to train mode
model.train()
return forward(data_loader, model, criterion, device, epoch, training=True, optimizer=optimizer,
scheduler=scheduler, training_stats_logger=training_stats_logger,num_of_batches=num_of_batches)
def validate(data_loader, model, criterion, device, epoch, num_of_batches=None, stats_phase=False):
# switch to evaluate mode
model.eval()
return forward(data_loader, model, criterion, device, epoch, num_of_batches=num_of_batches,
training=False, optimizer=None, scheduler=None, stats_phase=stats_phase)
# TODO: separate file
def correct(output, target, topk=(1,)):
"""Computes the correct@k for the specified values of k"""
maxk = max(topk)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t().type_as(target)
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0).item()
res.append(correct_k)
return res
def plot_bn_statistic(model):
# plot histogram
i = 0
for m in model.module.modules():
if isinstance(m, torch.nn.BatchNorm2d):
for p in m._parameters:
if m._parameters[p] is not None:
gaussian_numbers = m._parameters[p].view(-1).cpu().detach().numpy()
plt.hist(gaussian_numbers, bins=256)
file_name = p + '_layer_' + str(i)
directory = './plot_stats'
if not os.path.isdir(directory):
os.mkdir(directory)
file_name = os.path.join(directory, file_name + '.png')
plt.savefig(file_name)
plt.close()
for b in m._buffers:
if m._buffers[b] is not None:
gaussian_numbers = m._buffers[b].view(-1).cpu().detach().numpy()
plt.hist(gaussian_numbers, bins=256)
file_name = b + '_layer_' + str(i)
directory = './plot_stats'
if not os.path.isdir(directory):
os.mkdir(directory)
file_name = os.path.join(directory, file_name + '.png')
plt.savefig(file_name)
plt.close()
i += 1
def migrate_models(model, target_model, best_epoch, model_name='marvis_mobilenet_multi_gpu'):
"""
This code snnipet is meant to adapt pre-trained model to a new model containing buffers
"""
module_list = [m for m in list(model.modules()) if isinstance(m, torch.nn.Conv2d) or
isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.BatchNorm2d)]
if args.gpus is not None:
target_model = torch.nn.DataParallel(target_model, args.gpus)
target_module_list = [m for m in list(target_model.modules()) if isinstance(m, torch.nn.Conv2d) or
isinstance(m, torch.nn.Linear) or isinstance(m, torch.nn.BatchNorm2d)]
for idx, m in enumerate(module_list):
for p in m._parameters:
if m._parameters[p] is not None:
target_module_list[idx]._parameters[p].data = m._parameters[p].data.clone()
for b in m._buffers: # For batchnorm stats
if m._buffers[b] is not None:
target_module_list[idx]._buffers[b].data = m._buffers[b].data.clone()
save_dir = os.path.join('./trained_models', model_name)
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
save_checkpoint({
'epoch': best_epoch,
'model': args.model,
'config': args.model_config,
'state_dict': target_model.state_dict(),
'best_prec1': best_epoch
}, True, path=save_dir)
def gather_clamp_statistic(model):
act_layer_num = 0
conv_linear_layer_num = 0
# Activation clamp are taken from the model itself
for layer in list(model.modules()):
if isinstance(layer, actquant.ActQuantBuffers):
layer_name = 'Activation_{}_clamp_val'.format(act_layer_num)
if layer.clamp_val.data is not None:
if layer_name not in clamp_stats_dict:
clamp_stats_dict[layer_name] = []
clamp_stats_dict[layer_name].append(layer.clamp_val.data.item())
else:
clamp_stats_dict[layer_name].append(layer.clamp_val.data.item())
act_layer_num += 1
for layer in list(model.modules()):
if isinstance(layer, torch.nn.Conv2d) or isinstance(layer, torch.nn.Linear):
for p in layer._parameters:
if layer._parameters[p] is not None:
if p == 'layer_basis':
layer_name = 'Conv_Fc_{}_clamp_val'.format(conv_linear_layer_num)
lb = layer._parameters[p]
if lb is not None:
clamp_val = (2 ** (args.bitwidth - 1) - 1) * lb * layer.layer_b
if layer_name not in clamp_stats_dict:
clamp_stats_dict[layer_name] = []
clamp_stats_dict[layer_name].append(clamp_val.item())
else:
clamp_stats_dict[layer_name].append(clamp_val.item())
conv_linear_layer_num += 1
def plot_clamp_statistic(stats_dict, save_path):
# plot histogram
for k, v in stats_dict.items():
epoch = len(stats_dict[k])
plt.plot(list(range(epoch)), v,'.')
file_name = k
directory = os.path.join(save_path, 'clamp_plot_stats')
# directory = 'clamp_plot_stats'
if not os.path.isdir(directory):
os.mkdir(directory)
file_name = os.path.join(directory, file_name + '.png')
plt.savefig(file_name)
plt.close()
def plot_clamp_statistic_from_file(dict_file, act_layers_list, save_path):
plt.figure()
file_name = os.path.join(save_path,'unified_activation_clamp.png')
stats_dict = np.load(dict_file)
dict_keys = list(stats_dict.item().keys())
for layer in act_layers_list:
act_vals = stats_dict.item()[dict_keys[layer]]
epoch = len(act_vals)
plt.plot(list(range(epoch)), act_vals)
plt.xlabel('epoch')
plt.ylabel('Clamp Value')
plt.savefig(file_name)
plt.show()
def plot_cos_loss(stats_dict, save_path):
for k, v in stats_dict.items():
epoch = len(stats_dict[k])
plt.plot(list(range(epoch)), v,'.')
file_name = k
directory = os.path.join(save_path, 'cos_loss')
if not os.path.isdir(directory):
os.mkdir(directory)
file_name = os.path.join(directory, file_name + '.png')
plt.savefig(file_name)
plt.close()
def gather_cos_loss(model):
num_layers = len(model.module.quantize.cosine_sim_loss)
total_cosine_loss=0
layer_num = 0
for layer, cos_loss in model.module.quantize.cosine_sim_loss.items():
total_cosine_loss += cos_loss
layer_string = "cos_loss_layer_{}".format(layer_num)
if layer_string not in cos_loss_dict:
cos_loss_dict[layer_string] = []
cos_loss_dict[layer_string].append(cos_loss)
else:
cos_loss_dict[layer_string].append(cos_loss)
layer_num += 1
if 'total_cosine_loss' not in cos_loss_dict:
cos_loss_dict['total_cosine_loss'] = []
cos_loss_dict['total_cosine_loss'].append(total_cosine_loss/num_layers)
else:
cos_loss_dict['total_cosine_loss'].append(total_cosine_loss/num_layers)
return
def plot_act_quant_error_statistic(model, save_path):
for layer in model.module.modules():
# if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear):
if isinstance(layer, actquant.ActQuantBuffers):
i = layer.layer_num
plt.hist(layer.quant_error, bins=256)
file_name = 'layer_' + str(i)
directory = os.path.join(save_path, 'act_quant_error_stats')
if not os.path.isdir(directory):
os.mkdir(directory)
file_name = os.path.join(directory, file_name + '.png')
plt.savefig(file_name)
plt.close()
return
def plot_weight_quant_error_statistic(model, save_path):
i = 0
for layer, stats in model.module.quantize.quant_error.items():
if isinstance(layer, torch.nn.Conv2d) or isinstance(layer, torch.nn.Linear):
plt.hist(np.concatenate(stats), bins=256)
file_name = 'layer_' + str(i)
directory = os.path.join(save_path, 'weight_quant_error_stats')
if not os.path.isdir(directory):
os.mkdir(directory)
full_path = os.path.join(directory, file_name + '.png')
plt.savefig(full_path)
plt.close()
i += 1
return
if __name__ == '__main__':
main()